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Here, we provide a concise overview of recent developments in the identification
of immunogenic epitopes in human apolipoprotein B-100 for immunization
against atherosclerotic cardiovascular disease. Major steps forward toward a
clinical application of vaccines include the design of humanized mouse
models, tetramer-based identification of antigen-specific T cells, and novel
analysis tools, such as single-cell RNA sequencing and cytometry by time of
flight, to assess temporal and spatial changes in immune cells in
atherosclerotic cardiovascular disease.
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GRAPHICAL ABSTRACT

Humanized mouse models enable comprehensive in vivo assessment of immune responses upon apolipoprotein B-100 (apoB-100) vaccination in the
presence of constitutive apoB-100 expression, thus reflecting the human situation. Major histocompatibility class-tetramers identify immunogenic
peptide epitopes in apoB-100 (orange) binding to the antigen-specific groove in HLA-DR (blue), with the latter coupled to biotin (yellow). Streptavidin
(red) conjugation of this antigen-loaded complex with fluorochrome/lanthanide metals (yellow triangle) bound to the streptavidin core enables the
detection of the tetramer. Single-cell RNA sequencing (scRNAseq) and the specific application of mass cytometry by time of flight along with
vascular imaging by fluorodeoxyglucose positron emission tomography allow the vaccine response against atherosclerotic vascular disease in humans
to be monitored.
Introduction

Apolipoprotein B-100 (apoB-100) constitutes the core protein in

non-high-density lipoprotein (non-HDL) cholesterol (1, 2). The

ApoB:ApoA-1 ratio was identified as a major predictor of adverse

clinical events among several other classical cardiovascular risk

factors in a primary prevention setting (3). In a meta-analysis of

patients with atherosclerotic cardiovascular disease (ASCVD)

treated with statins, apoB-100 remained a strong predictor of

adverse clinical events (4).

The intricate link between innate and adaptive immunity in low-

density lipoprotein (LDL)-driven atherosclerosis has long been

recognized (5). Among findings bolstering this hypothesis is the

discovery of a danger-associated peptide from apoB-100 (ApoBDS-

1) that triggers innate proatherogenic responses (6) representing an

immune reaction against self. Conversely, immune reactions

directed against oxidized phospholipids or aldehydes covalently

linked to the apoB molecule (modified peptides from apoB) have

been identified as danger-associated molecular patterns (DAMPs)
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that are recognized by pattern recognition receptors (PRR) of

innate immunity (7). This notion is supported by the finding that

major histocompatibility class (MHC) class II-restricted antigen

presentation by plasmacytoid dendritic cells, a cell type combining

innate and adaptive immune responses, drives proatherogenic

CD4+ T-cell immunity (8).
Antibodies directed against
immunogenic epitopes in human
apolipoprotein B-100

Humoral immune responses comprise immunoglobulins IgG

and IgM produced by B cells. Natural IgM antibodies are

secreted by B1 cells, conferring atheroprotection (9). These

antibodies recognize oxidation-specific epitopes in oxidized

(ox)LDL, and immunization-mediated artificial expansion of

IgM antibodies specific for one of these epitopes, oxidized

phosphatidylcholine (PC), significantly reduced atherosclerosis in
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hyperlipidemic mice (10). Antibody library screening from patients

with ASCVD events identified specific apoB-100 peptide sequences

termed p210 and p45 (11). The prognostic accuracy of p210 was

evaluated in the Malmö Diet and Cancer Cohort (n = 5,393, with

a follow-up of more than 15 years) and demonstrated that higher

IgG titers against native p210 conferred protection against

coronary events [adjusted hazard ratio (95% confidence interval),

0.73 (0.56–0.97); P = 0.029] (12).

A novel humanized hypercholesterolemic mouse model of

atherosclerosis characterized by T-cell receptor (TCR) transgenic

T cells enabled the analysis of T-cell reactivity to human apoB-

100 (hybridoma-derived) in human APOB100-tg Ldlrtm1Her

(HuBL) mice (13). Upon antigen injection, LDL induced a

T-cell-dependent B-cell response, leading to the production of

anti-LDL antibodies (IgG) that increased LDL clearance and

ameliorated atherosclerosis (14). In another experiment using

these TCR-transgenic humanized mice (BT1xHuBL cross),

LDL-autoreactive T cells that provided T-cell help for anti-LDL

antibody production conferred atheroprotection from birth (14).
Human apolipoprotein B-100-specific
atheroprotection mediated by
regulatory T cells

Regulatory T cells (Tregs) constitute an inherent anti-

inflammatory counterbalance to proatherogenic T-cell immunity

(15). The transcription factor FoxP3 constitutes a key lineage marker

and master switch in the regulation and development of Tregs that

centrally mediates peripheral tolerance (antigen-specific protection

from autoimmunity) (16–18). Natural thymus-derived Tregs

characterized by the surface markers CD4 and CD25 (19, 20), or

more specifically by the expression of CD4 with the bona fide marker

of Tregs, Foxp3, confer atheroprotection in hyperlipidemic mice

(21). The depletion of transgenic Tregs exacerbates atherosclerosis in

hyperlipidemic mice and promotes hypercholesterolemia [very-low-

density lipoprotein (VLDL)/chylomicron fraction] (21). In patients

with acute coronary syndrome, Tregs (CD4+CD25+CD127low) were

enriched in coronary thrombi compared with peripheral blood

mononuclear cells. A DNA sequencing approach identified the

clonal restriction of T cells, indicating a reduced T-cell receptor

diversity in coronary thrombi (22).

The antigen-specific induction of atheroprotective immunity

against immunogenic epitopes in human apoB-100 mediated by

inducible Tregs has been shown for the apoB-100 peptide p210

identified by human antibody library screening in patients with

ASCVD (11). Distinct subsets of inducible Tregs have been

detected with different routes of administration of the p210

vaccine and adjuvants that effected distinct mechanisms of

action, all of which resulted in a reduction in atherosclerosis in

hyperlipidemic mice (Figure 1). These distinct subsets comprise

CD4+Foxp3+cells producing transforming growth factor beta

(TGFβ) upon subcutaneous administration of the antigen (23),

CD4+Foxp3+ cells upon subcutaneous infusion of adjuvant-free

antigen (24), or CD4+IL-10+ regulatory type 1 (Tr1) cells

producing IL-10 upon nasal administration of the p210 antigen
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coupled to the cholera toxin B subunit as an adjuvant with

apoB-100-specific attenuation of cell proliferation in an antigen

rechallenge assay (25). Recently, subcutaneous immunization

with the p210 antigen in peptide amphiphile micelles

(nanoparticles) was shown to mediate atheroprotection with an

increase in CD8+CTLA4+ Tregs recognizing the epitope bound

to MHC class I in mice along with CD4+CD25+Foxp3+ Tregs (26).

The repetitive adoptive transfer of naive CD4+ T cells

recognizing human ApoB100 from TCR-transgenic mice into

humanized hypercholesterolemic mice with TCR-transgenic T

cells against human apoB-100 (13) induced tolerance in recipient

mice with an increase in Tr1 cells that suppress apoB-100-

specific responses via IL-10 (27).

Tetramers constructed to contain a streptavidin-biotin core labeled

with a fluorochrome coupled to four HLA-DR molecules carrying a

defined antigen (here the apoB peptide p18) allow the detection of

apoB peptide-specific CD4+ T cells in human peripheral blood

mononuclear cells (28). Atherosclerosis in apolipoprotein E-deficient

(Apoe−/−) mice vaccinated with p18 (identical sequence in human

and mouse) reduced atherosclerosis. Interestingly, Tregs co-

expressing the lineage-specific transcription factors RORγt or T-bet

were detected, suggesting that phenotype changes occur when

cardiovascular disease is present or evolving (28). In mice, MHC

class II tetramers were employed to detect CD4+ T cells that

recognize the peptide apo B978-993 (p6) (29). Using DNA

sequencing, a population of oligoclonal apoB-100-reactive CD4+ T

cells (apoB+) was found to reside in the lymph nodes of healthy

C57Bl/6 mice (29). Of note, apoB-100-reactive CD4+ Tregs change

in the course of developing murine atherosclerosis, acquiring a pro-

inflammatory T helper 17/T helper 1 phenotype. In patients with

coronary artery disease, apoB-100-reactive T cells were found and

are characterized by distinct features, including the secretion of Th1

and Th17 cytokines (29), which is in line with the notion of

temporal changes in the Treg phenotype and function.

A major step forward was the unbiased identification of

immunogenic apoB-100 sequences using apoB-100 tetramer

constructs, which yielded six immunodominant HLA-II-restricted

apoB-100 epitopes in humans that trigger highly specific immune

responses correlated with coronary artery disease severity (30).

The activation of CD4+ T cells was associated with the severity

of coronary artery disease, characterized by the skewed

expression of antigen-experienced phenotypes and an increased

secretion of pro-inflammatory cytokines in response to these

dominant apoB-100 epitopes (30).

Technological advances comprising multiplex immune

phenotyping to decipher plaque immune cell heterogeneity, single-

cell RNA sequencing (scRNAseq), and the specific application of

mass cytometry by time of flight (CyTOF) have enabled the

comprehensive characterization of single (immune) cells residing

in the atherosclerotic plaque and peripheral blood. By employing

these technologies, a recent study found that a high frequency of

memory T cells is associated with protection against myocardial

infarction or stroke after carotid endarterectomy (31). A recent

report demonstrated that full-length transcriptome analysis of

individual pairs of TCR α (V and J segment) and β chain (V and J

segment) sequences revealed that CD4+ T cells carrying this
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FIGURE 1

ApoB-100 p210 peptide vaccination induces atheroprotective regulatory T cells. All approaches shown used apoB-100 peptide p210 as a vaccine
antigen; however, different routes and adjuvants impact distinct mechanisms of action with distinct subsets of the Tregs involved. ApoB-100,
apolipoprotein B-100; CD4+ T cell, cluster of differentiation 4 positive T cell; CTLA-4, cytotoxic T-lymphocyte-associated protein-4; Foxp3,
forkhead box P3; IL-10, interleukin-10.
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combination were specifically expanded upon immunization with

the specific apoB-100 peptide p6. Furthermore, clonally expanded

T cells expressed a clear Treg signature by scRNAseq with

upregulation of suppressor genes after immunization with the p6

apoB-100 peptide (32).
Outlook

A number of recent technological advances have enabled major

steps to be taken toward the clinical application of apoB-100-based

immunization against ASCVD in humans. One of these advances

is the development of humanized mouse models expressing human

apoB-100, which allow a comprehensive analysis of the distinct

parts of adaptive (humoral and cellular) immunity over time,

mirroring the situation in humans. Tetramer-based recognition of

antigen-specific T cells has identified a set of peptide sequences

within apoB-100 that are immunogenic in humans and associated

with the severity of coronary artery disease. To assess their

potential use in vaccination against ASCVD in humans, further

studies analyzing individuals at different stages and various

vascular beds of ASCVD are needed. It will be important to
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determine the optimal vaccination setting and strategy by

addressing aspects such as combining several apoB-100 antigens

vs. single peptide vaccination, the type of adjuvant, and the route

and timing of vaccination. scRNAseq and the specific application

of mass CyTOF have made it possible to assess temporal and

spatial changes in immune cells in ASCVD, adding a new level of

complexity but also the ability to distinguish specific aspects of

apoB-100 vaccination. Finally, these novel technologies will assist

in deciphering the mechanisms involved and the specific roles of

subsets of Tregs and B cells or antibodies and should also help to

assess the efficacy of novel therapeutic approaches. Future studies

need to establish the optimal read-out after apoB-100 vaccination

to allow for quantitative analysis over time, making use of

tetramers, scRNAseq, CyTOF, and vascular imaging strategies such

as fluorodeoxyglucose positron emission tomography to determine

efficacy and potential side effects.
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