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Background: Cardiovascular diseases (CVD) constitute a grave global health
challenge, engendering significant socio-economic repercussions. Carotid
artery plaques (CAP) are critical determinants of CVD risk, and proactive
screening can substantially mitigate the frequency of cardiovascular incidents.
However, the unequal distribution of medical resources precludes many
patients from accessing carotid ultrasound diagnostics. Machine learning (ML)
offers an effective screening alternative, delivering accurate predictions
without the need for advanced diagnostic equipment. This study aimed to
construct ML models that utilize routine health assessments and blood
biomarkers to forecast the onset of CAP.
Methods: In this study, seven ML models, including LightGBM, LR, multi-layer
perceptron (MLP), NBM, RF, SVM, and XGBoost, were used to construct the
prediction model, and their performance in predicting the risk of CAP was
compared. Data on health checkups and biochemical indicators were
collected from 19,751 participants at the Beijing MJ Health Screening Center
for model training and validation. Of these, 6,381 were diagnosed with CAP
using carotid ultrasonography. In this study, 21 indicators were selected. The
performance of the models was evaluated using the accuracy, sensitivity,
specificity, positive predictive value (PPV), negative predictive value (NPV), F1
score, and area under the curve (AUC) value.
Results: Among the seven ML models, the light gradient boosting machine
(LightGBM) had the highest AUC value (85.4%). Moreover, age, systolic blood
pressure (SBP), gender, low-density lipoprotein cholesterol (LDL-C), and total
cholesterol (CHOL) were the top five predictors of carotid plaque formation.
Conclusions: This study demonstrated the feasibility of predicting carotid plaque
risk using ML algorithms. ML offers effective tools for improving public health
monitoring and risk assessment, with the potential to improve primary care
and community health by identifying high-risk individuals and enabling
proactive healthcare measures and resource optimization.
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1 Introduction

The “China Cardiovascular Health and Disease Report 2021”

stated that with the developing society and economy, changing

national lifestyle, the aging of the population and the acceleration

of its urbanization process, and unhealthy lifestyles among

residents have become increasingly prominent; thus, the

prevalence and incidence continue to rise in 2019. Rural and

urban CVD deaths accounted for 46.74% and 44.26% of the total

deaths, respectively, and CVD accounted for two out of every

five deaths. It is estimated that the number of CVD patients in

China is 330 million, and in 2019, the total hospitalization cost

of cardiovascular and cerebrovascular diseases in China was

313.366 billion yuan, which poses a major burden on the

economy and medical resources (1).

Assessing the epidemiological burden of carotid atherosclerosis

can serve as a basis for preventing and managing CVD. Song et al.

(2) conducted a systematic review, meta-analysis, and modeling

study. Carotid plaque, a characteristic manifestation of

atherosclerosis, is found in quantifying the prevalence of

atherosclerosis. The proportion of carotid plaque is estimated to

be 21.1% (13.2–31.5), equivalent to 815.76 million patients,

representing a 58.97% increase since 2000. The Western Pacific

region has the largest proportion [240.7 million of 72,525 million

patients (33.20%)]. Carotid plaque is a major global health

concern, with substantial implications for the prevalence of

cardiovascular diseases. Effective prevention and management

strategies, including early screening, are essential to mitigate its

impact on individuals, families, and societal health. Early

detection can significantly reduce the risk associated with

cardiovascular conditions and alleviate the broader social and

economic burden. Despite its importance, there is currently no

national epidemiological survey targeting carotid plaque in

China. This oversight might stem from the fact that carotid

ultrasound, the primary screening tool, is often viewed more as a

preventive measure than a definitive diagnostic tool for severe

illnesses (3, 4). Given these circumstances, there is a critical need

to develop cost-effective screening methods to facilitate the early

identification and management of carotid plaque.

With the advancement of medical technology and computer

science, ML has been widely used in the field of medicine.

ML can effectively handle large-scale, high-dimensional data,

and automatically extract complex patterns and correlations,

surpassing traditional statistical methods. Through iterative

optimization of massive data, ML models have strong

generalization capabilities, enabling them to adapt to complex

real situations. In the analysis of carotid plaques, researchers

have developed various predictive models using ML, aiming

to predict plaque characteristics and differentiate plaque

components. Cilla et al. (5) used CT angiography image group

features combined with ML models to effectively distinguish

vulnerable and non-vulnerable carotid plaques. Zhang et al. (6)

developed a high-risk plaque prediction model based on

MRI, using radiomic features to differentiate symptomatic and

asymptomatic plaques, with more accuracy than traditional
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methods. However, although these imaging-based models have

high predictive efficiency, they still face resource-intensive

challenges in widespread screening.

Comparatively, using regular physical examinations and

biochemical indicators as features of the ML model, is a more

practical method to conveniently collect data without generating

additional costs. This study aims to develop an ML model based

on existing indicators to predict carotid artery plaques in an

economically efficient and accurate manner, thereby improving

the efficiency of clinical cardiovascular risk assessment. We hope

that this model can effectively enhance the efficiency of

cardiovascular risk assessment in a clinical setting, providing new

ideas for early screening and prevention. At the same time, this

endeavor will lay the foundation for further exploration of the

potential of ML in the prevention of cardiovascular diseases and

promote the development of personalized medicine.
2 Materials and methods

2.1 Study design and data resource

The data used for the ML model in this study were obtained

from the physical examination data of Beijing MJ Healthcare

from January 2017 to December 2022. The inclusion criteria

were as follows: (1) age ≥18 years, and (2) patients without

coronary heart disease, stroke, heart disease, cancer, or other

serious diseases. It is worth mentioning that, 5,019 participants

had missing values for over 30% of potential predictors, and to

ensure the authenticity of the data, these participants were

excluded from the analysis. Physical examination data were

collected from 19,751 patients, including 6,381 patients with

carotid plaques and 13,370 normal patients. The dataset was then

split into a training set (13,826 participants) and a test set (5,925

participants) at a 7:3 ratio. Subsequently, data normalization was

performed, followed by developing, training, and evaluating a

machine learning model to ensure the reliability and accuracy of

predictions for carotid plaques.

The data processing and model building processes of ML are

displayed in Figure 1.
2.2 Quality control and ethics

In our study, we selected a reputable physical examination

institution with standardized protocols for ultrasound

examinations, ensuring data consistency and reliability. We

rigorously screened the data to remove any incomplete records

and confirmed the institution’s operational and equipment

calibration details, enhancing our study’s quality. The diagnosis

of carotid plaque was based on an ultrasound examination. Strict

confidentiality was maintained for all the personal information.

Ethical approval was granted by the Institutional Review Board

of Hainan Medical University (approval ID: HYLL-2023-449),

and all participant data were anonymized. Informed consent was
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FIGURE 1

The flow diagram of data processing and model building process.

Wei et al. 10.3389/fcvm.2024.1454642
obtained from each participant before administering the

questionnaire and providing healthcare services.
2.3 Feature selection

All the potential factors associated with carotid plaque reported

in recent studies were considered. Considering the availability

of variables in the database, 21 variables were extracted according

to studies by Fan et al. (7) and Wu et al. (8), including
Frontiers in Cardiovascular Medicine 03
(1) demographic characteristics: gender and age; (2) physical

examination indicators: waistline (WaWidth), hip circumference

(HipWidth), body mass index (BMI), systolic blood pressure

(SBP), and diastolic blood pressure (DBP); (3) laboratory

examination indicators: total cholesterol (CHOL), triglycerides

(TG), high-density lipoprotein cholesterol (HDL-C), low-density

lipoprotein cholesterol (LDL-C), fasting blood glucose (FBG),

alanine transaminase (ALT), aspartate aminotransferase (AST),

direct bilirubin (DBil), total bilirubin (TBil), alkaline phosphatase

(ALP), uric acid (UA), and gamma-glutamyl transferase (GGT);
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1454642
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 Characteristics of study population.

Characteristic CaroNormal p-valueb

Negative,
N= 13,370a

Positive,
N= 6,381a

Age (Years) 43 ± 9 57 ± 11 <0.001

Sex <0.001

Male 6,711 (50%) 4,140 (65%)

Female 6,659 (50%) 2,241 (35%)

Smoke <0.001

No 10,870 (81%) 4,384 (69%)

Yes 2,500 (19%) 1,997 (31%)

Drink <0.001

No 10,835 (81%) 4,666 (73%)

Yes 2,535 (19%) 1,715 (27%)

BMI (kg/m2) 23.8 ± 3.2 24.7 ± 3.0 <0.001

WaWidth (cm) 80 ± 10 84 ± 9 <0.001

HipWidth (cm) 95.9 ± 5.9 96.5 ± 5.8 <0.001

CHOL (mmol/L) 4.60 ± 0.78 4.74 ± 0.87 <0.001

HDL-C (mmol/L) 1.43 ± 0.34 1.36 ± 0.33 <0.001

LDL-C (mmol/L) 3.05 ± 0.73 3.20 ± 0.82 <0.001

TG (mmol/L) 1.16 ± 0.54 1.34 ± 0.55 <0.001

FBG (mmol/L) 5.39 ± 0.45 5.63 ± 0.51 <0.001

UA (umol/L) 315 ± 81 334 ± 78 <0.001

TBil (umol/L) 11.6 ± 4.2 12.1 ± 4.1 <0.001

DBil (umol/L) 4.24 ± 1.29 4.39 ± 1.28 <0.001

ALP (U/L) 62 ± 16 67 ± 16 <0.001

AST (U/L) 17.3 ± 4.1 18.6 ± 4.2 <0.001

ALT (U/L) 18 ± 8 19 ± 8 <0.001

GGT (U/L) 19 ± 10 21 ± 10 <0.001

SBP (mmHg) 114 ± 14 122 ± 15 <0.001

DBP (mmHg) 70 ± 10 74 ± 10 <0.001

aMean ± SD; n (%).
bWelch two sample t-test; Pearson’s Chi-squared test.
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(4) questionnaire survey: alcohol consumption and smoking status.

All variables are presented in Table 1.

The outcome was defined as the presence or absence of carotid

plaque on the carotid artery ultrasound examination. Specifically, the

common carotid arteries, bifurcation, and external and internal carotid

arteries were examined on each side by experienced sonographers

operating a Doppler ultrasound system (Sonoscape S50, China) with a

linear 7.5 MHz probe under standardized protocols. The distance

between the lumen-intima echo’s leading edge and the media-

adventitia echo’s leading edge was defined as the carotid intima-media

thickness. Based on the Chinese Health Checkup Guidelines for

Carotid Artery Ultrasonography (9), patients are considered positive

for carotid artery plaques if the perpendicular distance from the

leading edge of the intima-lumen interface to the leading edge of the

media-adventitia interface exceeds 1.5 mm. This distance should be at

least 0.5 mm greater than the surrounding normal values or should

exceed the surrounding normal values by more than 50%.

Additionally, patients exhibiting localized structural changes

protruding into the lumen were also classified as positive for CAP.
2.4 ML algorithms

Seven predictive models were used to develop the risk models

based on the extracted features to predict the risk of CAP formation.
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Logistic regression (LR): LR analyzes datasets with one or more

independent variables to predict a dichotomous outcome using a

logistic function. This S-shaped function maps any real number

into a probability between 0 and 1. LR has low computational

costs and performs well with limited data (10).

Support vector machine (SVM): SVM is used for classification

and regression. It finds a hyperplane that best separates classes by

maximizing the margin between them. The closest points to the

hyperplane, called support vectors, are crucial for model

construction. SVM enhances the generalization ability for new

data (11).

Random forest (RF): RF is an ensemble method that creates

multiple decision trees from bootstrapped datasets and random

subsets of variables. Trees vote for the final prediction. RF

is flexible, easy to use, and performs well without extensive

tuning (12).

Light gradient boosting machine (LightGBM): LightGBM

is an efficient gradient boosting framework for large-scale

data, known for its fast training, low memory usage, and

ability to handle categorical features. It supports parallel and

GPU learning, built-in cross-validation, and custom objective

functions (13).

Extreme gradient boosting (XGBoost): XGBoost is a gradient

boosting implementation known for efficiency, performance, and

scalability. It excels in handling large datasets, reducing

overfitting through regularization, and simplifying model

tuning with built-in cross-validation and feature importance

assessment. It prunes trees optimally and handles missing values

effectively (14).

Naive Bayes model (NBM): NBM is a probabilistic classifier

based on Bayes’ theorem with strong independence assumptions

between features. It is suitable for high-dimensional datasets and

popular in text categorization. NBM calculates conditional

probability to make predictions (15).

The multi-layer perceptron (MLP) neural network: MLP is a

feedforward Artificial Neural Network (ANN) with at least three

layers (input, hidden, output). Neurons use non-linear activation

functions, and the network is trained using backpropagation.

MLP can handle non-linearly separable data, unlike single-layer

perceptrons (16).
2.5 Model performance assessment

In this study, we randomly divided the enrolled patients into

two groups: a training set (70%) and a validation set (30%). The

training set is mainly used for model training, while the

validation set is used to fine-tune model parameters and select

the best performing model. After this division, we organized and

preprocessed the collected data. Data normalization was

performed, and features with very low variance, low correlation

with the target label, or high interrelations were removed to

enhance the quality of the dataset. We adopted a 10-fold cross-

validation strategy for the training set, repeated ten times to

optimize of hyperparameters for seven classification algorithms.

This optimization was achieved using grid search techniques to
frontiersin.org
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find the best parameter combinations. After training and modeling

data with these algorithms, we evaluated the predictions of each

model. The final model score was determined by calculating the

average accuracy over multiple iterations. Furthermore, the model

with the best AUC was selected as the baseline for this study,

resulting in the final predictive model. All ML algorithms were

operated in Python 3.10.
2.6 Validation

The receiver operating characteristic (ROC) curve is a visual

tool for evaluating classification methods/models (17). Its basic

principle involves sorting the predicted values for cases and non-

cases from the smallest to the largest, thus creating a series of

cut-off values. For each cut-off value, the corresponding

sensitivity and specificity can be calculated. The point closest to

the top-left corner of the coordinate axis can simultaneously

satisfy the relatively optimal sensitivity and specificity of the

screening test, which is considered the best cut-off value. The

area under the curve (AUC) is the area under the ROC curve.

The ROC curve is a curve, whereas the AUC is a numerical

value used to quantify the performance of an indicator/model,

which can be used for performance comparison between two

indicators/models. The calibration curve is a tool used to assess

the consistency between the probabilities output by predictive

models and the actual outcomes, by comparing the predicted

probabilities with the actual results. The x-axis (horizontal axis)

represents the probability values predicted by the model, while

the y-axis (vertical axis) represents the frequency or proportion

of the observed actual outcomes. Ideally, a perfectly calibrated

model’s calibration curve would follow the diagonal line (i.e.,

y = x), indicating that the model’s predicted probabilities are

entirely consistent with the actual occurrence probabilities.

Therefore, its shape and position can reveal the model’s

predictive bias and consistency (18). Decision Curve Analysis

(DCA) is a commonly used method for evaluating and

comparing the performance of predictive models (19). It

integrates both the predictive accuracy and practical utility of the

models, aiding in the assessment of the economic benefits and

risk-reward trade-offs of different models within specific

threshold ranges.

Accuracy is typically defined as the ratio of correct

predictions to the total number of predictions. It is a standard

metric for evaluating the performance of classification

models, particularly when the target variable is binary or

multi-classification. Accuracy can be expressed using the

following formula:

Accuracy ¼ TPþ TN=(TPþ FPþ TNþ FN)� 100%

where TP, TN, FP, and FN denote true positive, true negative, false

positive, and false negative, respectively.

Sensitivity, also known as the true positive rate or recall, is a

statistical measure that quantifies the ability of a model to identify

positive cases among all actual positive cases correctly. It is essential
Frontiers in Cardiovascular Medicine 05
in medical testing and other binary classification tasks, where the

cost of missing a positive case (such as a disease) can be high.

Sensitivity ¼ TP=(TPþ FN)� 100%
In the context of model specificity, specificity refers to the

ability of a model to identify negative examples (non-target

classes) correctly. It measures the proportion of all actual

negative cases that the model correctly predicts to be negative.

Specificity is critical in cases where the cost of incorrectly

predicting a negative case as a positive case (a false positive) is high.

Specificity ¼ TN=(TNþ FP)� 100%

The positive predictive value (PPV), also known as precision, is

a measure of the accuracy of a diagnostic test or performance of a

classification model. It represents the proportion of positive test

results that are truly positive. In other words, it measures the

likelihood that, the result is actually positive when the model

predicts a positive result.

PPV ¼ TP=(TPþ FP)� 100%

The negative predictive value (NPV) is a measure used to assess

the performance of a diagnostic test or classification model. It

represents the proportion of negative test results that are truly

negative. Essentially, NPV indicates the likelihood that when the

model predicts a negative result, that result is actually negative.

NPV ¼ TN=(TNþ FN)� 100%

The F1 score is a measure of a test’s accuracy that considers

both the precision (or PPV) and the recall (or sensitivity) of the

test. It is the harmonic mean of precision and recall, balancing

the two when they are uneven.

F1 score ¼ 2�(PPV� Sensitivity)=(PPVþ Sensitivity)
2.7 Model interpretation

Shapley Additive exPlanations (SHAP) represent an advanced

interpretive method derived from cooperative game theory,

which utilizes Shapley values to distribute an ML model’s output

among its input features (20). This technique ensures a fair

contribution assessment by averaging the incremental impact of

each feature across all potential combinations, offering a reliable

and precise elucidation of the model’s predictions. By

incorporating SHAP into predictive modeling, it is possible to

gain an insightful comprehension of feature impacts, thus

bolstering the transparency and intelligibility of intricate models,

particularly in critical decision-making contexts. Unlike the

conventional interpretive approaches, which merely gauge feature

significance, SHAP provides a nuanced perspective on the

relationship between features and their predictive outcomes,
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thereby addressing the limitations of traditional methods. SHAP

values, computed for each feature per individual prediction,

quantify the extent to which each feature sways the prediction

positively or negatively toward the final result.
3 Results

3.1 Baseline characteristics

This study included 19,751 participants: 10,851 males and

8,900 females. Among the participants, 6,381 were diagnosed

with carotid plaques, with an average age of 57 ± 11 years,

whereas those without carotid plaques had an average age of

43 ± 9 years. Additionally, compared to the control group,

the case group had higher average BMI (24.7 ± 3.0 vs. 23.8 ± 3.2,

p < 0.001), waistline (84 ± 9 vs. 80 ± 10, p < 0.001), hip

circumference (96.5 ± 5.8 vs. 95.9 ± 5.9, p < 0.001), CHOL levels

(4.74 ± 0.87 vs. 4.60 ± 0.78, p < 0.001), and HDL-C levels

(1.36 ± 0.33 vs. 1.43 ± 0.34, p < 0.001). All included variables were

presented as mean (SD), and a two-sample t-test showed

significant differences between the two groups (Table 1). Figure 2

demonstrates the violin plots of the five features with the most

significant differences. Overall, this chart clearly shows the
FIGURE 2

The top 5 features exhibit the most significant differences between patients

TABLE 2 Comparison of performance of seven machine learning methods.

Model Accuracy Sensitivity Specificit
LightGBM 0.7946 0.5952 0.8920

LR 0.7967 0.5926 0.8963

MLP 0.7779 0.5689 0.8800

Naive bayes 0.7366 0.6772 0.7705

RF 0.7953 0.5874 0.8968

SVM 0.7933 0.5499 0.9121

XGBoost 0.7833 0.5849 0.8802
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distribution differences in age, SBP, WaWidth, FBG, and TG

between the two groups. Patients with CAP generally exhibit

higher values in these variables, suggesting a high correlation

between these variables and the formation of CAP.
3.2 Comparison of model performance

Table 2 presents a performance comparison of seven ML

models on the test set: LightGBM, LR, MLP, NBM, RF, SVM,

and XGBoost. Evaluation metrics included accuracy, sensitivity,

specificity, PPV, NPV, F1 score, and AUC, comparison of the

seven constructed ML models revealed that the LightGBM model

outperformed the other algorithms, with an AUC value of

0.8541. LR followed closely in terms of predictive accuracy with

an AUC of 0.8460. In contrast, the NBM showed the poorest

performance (AUC 0.7966). To statistically validate the observed

performance differentials between models, the Delong test was

employed—a methodology that rigorously compares the AUC

values of two ROC curves by assessing the null hypothesis that

both AUCs are equal. The derivation of p-values less than 0.05

across all pairwise comparisons of the models unambiguously

indicates that the performance disparities are statistically

significant. This outcome not only validates the relative ranking
and non-patients with carotid plaque. ****: p < 0.0001.

y PPV NPV F1 score AUC
0.7290 0.8168 0.6553 0.8541

0.7361 0.8184 0.6566 0.8460

0.6982 0.8070 0.6270 0.8310

0.5866 0.8258 0.6243 0.7966

0.7354 0.8166 0.6531 0.8428

0.7533 0.8059 0.6357 0.8291

0.7045 0.8128 0.6491 0.8341
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of model efficacy, as identified through AUC, but also reinforces

the importance of model selection based on empirical evidence

in the pursuit of optimal predictive performance.

Confucian matrices were generated to evaluate the

performance of the classification models (Figure 3). Each matrix

was a 2 × 2 table, with the rows representing the actual classes

and the columns representing the classes predicted by the model.

The cell in the top-left corner represented the number of TP,

indicating correct predictions of the positive class. The bottom-

right cell denoted the number of TN, suggesting the correct

predictions of the negative class. Conversely, the top-right cell

specified FP, and the bottom-left cell indicated FN, representing

types of incorrect predictions. These matrices provided a

foundation for calculating further performance metrics, such as

accuracy, precision, and recall.

Figure 4 contains ROC curves for various ML models on

training and test sets, illustrating their performance in classifying

TP and TN cases. The AUC values, ranging from 0.80 to 0.85,

indicated a high level of performance across all models.

Exclusively, the LightGBM and LR models exhibited the highest
FIGURE 3

The confusion matrix of the seven machine learning models, including (A–
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AUC of 0.85, suggesting that they had the best performance in

terms of sensitivity and specificity. The NBM had the lowest

AUC at 0.80. Figure 5 presents calibration curves for two

datasets, providing a visual assessment of the calibration of

different models. It can be observed that the LightGBM model’s

curves for both the training and test sets are close to the dashed

line, indicating that the predicted values of this model closely

match the actual outcomes, signifying good calibration. Figure 6

displays DCA curves for two datasets, showing that the

LightGBM algorithm performs superiorly across different

threshold levels. According to these results, the LightGBM

demonstrated the best overall performance.

Based on the LightGBM model’s performance, we calculated

each feature’s importance according to the absolute SHAP values,

with the negative and positive contributions of the feature

represented in blue and red, respectively. The position of the dot

on the horizontal axis indicated the SHAP value associated with

that feature for that particular data point. A higher SHAP value

on the chart suggested a greater impact of that feature on the

model’s prediction, increasing the predicted risk of carotid
G) LightGBM, LR, MLP, NBM, RF, SVM, and XGBoost, respectively.
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FIGURE 4

ROC curves of all models.

FIGURE 5

Calibration curve of all model.

Wei et al. 10.3389/fcvm.2024.1454642
plaque. Conversely, a lower SHAP value implied a smaller impact

on the prediction, decreasing the predicted risk. Figure 7 clearly

shows how the top fifteen features with the highest contribution

rates contribute to the model’s predictions, simplifying the

interpretation of complex model outputs and enhancing the

understanding of the relationship between features and outcomes.

Notably, age emerged as the paramount predictor in this study,

followed by SBP, gender, LDL-C and CHOL.
4 Discussion

In the public health domain, seaching for efficient screening

models for CAP is crucial. Han Z.et al discussed the significance of

using integrative bioinformatics approaches and machine learning

strategies to identify key genes and immune cell infiltration in the

progression of carotid atherosclerotic plaques. By analyzing gene

expression datasets and immune cell profiles, researchers can

discover genes and immune cells that play critical roles in plaque
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development and progression (21). Cheng B.et al constructed eight

models for predicting carotid plaques, with experimental results

showing that the XGBoost algorithm outperformed other machine

learning algorithms, achieving an AUC value of 0.808 (22). Cilla S

et al. developed a CT angiography-based radiomics and machine

learning model that effectively distinguished the vulnerability of

carotid plaques (5). In contrast to previous studies that focused

solely on genes, imaging, or clinical data, our research integrates

various routine clinical indicators, physical examination data, and

questionnaire results. This comprehensive approach allows for a

more thorough assessment of factors influencing CAP, thereby

enhancing the robustness and applicability of the model.

Furthermore, building on prior research, we increased the sample

size to over 19,000 participants. This large and diverse dataset

overcomes the limitations of smaller sample sizes in previous

studies, making the findings more reliable and generalizable.

Among the seven machine learning algorithms we constructed, the

LightGBM algorithm demonstrated the most outstanding

performance, achieving an AUC of 0.85 in the validation cohort.
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FIGURE 6

DCA curves of all model.
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This represents a significant improvement compared to other

benchmark algorithms, such as XGBoost reported in the literature,

highlighting the robustness and applicability of our machine

learning model based on 21 features. The model utilizes routine

physical examination data, making it highly practical in clinical

settings. This helps in the early identification of high-risk

populations and the timely implementation of preventive

interventions. The implementation of such models can guide

resource allocation in health policies and the development of

targeted screening programs. For model performance evaluation, we

employed ROC curves, calibration curves, and DCA curves,

ensuring high reliability and accuracy of predictions. This multi-

faceted evaluation method enhances the credibility of our findings

and supports the broad applicability of our model across different

population subsets. The results clearly indicate that the overall

performance of the LightGBM model is high. This increases the

credibility of the model’s predictions and expands the

generalizability of the research findings across the entire population.

Subsequently, by employing the SHAP algorithm, our study

provides a transparent and interpretable analysis of feature

importance. A subsequent analysis of feature importance within the

LightGBM framework revealed age as the quintessential

determinant and gender, SBP total CHOL, and LDL-C as significant

contributors to the model’s predictive acumen.

In the contemporary landscape of predictive analytics,MLmodels

stand at the forefront, eclipsing traditional statistical methods for their

capacity to forge accurate predictive models from datasets

characterized by limited size yet high-dimensional feature spaces.

Despite their advanced capabilities, these models frequently face

criticism for their lack of transparency, commonly referred to as the

‘black box’ issue, which obscures the understanding of their internal
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mechanisms (23). The deployment of the SHAP algorithm in this

study effectively pierced this veil, enhancing model transparency by

quantifying the influence of individual features on the predictive

outcome. The importance of age, gender, SBP total CHOL, and

LDL-C as pivotal determinants aligns with extant scholarly

discourse (25–33). The prognostic significance of these factors is

particularly salient in the context of carotid plaque, hypertension,

and cardiovascular pathologies, where early detection is

instrumental in risk mitigation. Age emerged as the preeminent

feature, echoing findings that link advancing age with diminished

vascular elasticity and a concomitant escalation in atherosclerotic

propensity (25). As early as 2016, a cross-sectional study first

reported the prevalence of CAP and its associated risk factors

among adults aged 45 and above in rural China, highlighting

significant gender differences. The study findings indicated that age,

hypertension, diabetes, LDL-C, and CHOL were notably associated

with the incidence of CAP. Importantly, it stressed that the

prevalence among males was significantly higher than in females.

This aligns with the findings of our research (26). Corroborating

literature from The Lancet Global Health by Song et al. delineates

an age-progressive increment in CAP incidence. Additionally,

the study accentuates the influence of gender on the prevalence

of carotid artery plaques, unequivocally indicating a higher

susceptibility among males (2). In one study involving patients with

type 2 diabetes, the prevalence of carotid atherosclerosis was

significantly higher in the older age group, and the odds ratio for

coronary heart disease (CHD) and stroke also increased with age.

Gender differences are also evident; Males generally exhibit a higher

prevalence of carotid atherosclerosis compared with females. In this

study, the prevalence of carotid atherosclerosis was 58.18% in men

and 51.54% in women, and the risk of coronary heart disease and
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FIGURE 7

SHAP summary chart of the important risk factors. Each dot represents a sample, with red denoting a high feature value and blue indicating a low
value. A higher SHAP value specifies a higher risk of incident carotid plaque.
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stroke was correspondingly higher in men (27). Hypertension,

specifically SBP—the arterial pressure during cardiac systole, is a

significant factor contributing to arteriosclerosis. Persistently

elevated SBP increases the pressure and tension on the vascular wall,

making individuals prone to endothelial damage and the formation

of arterial plaques. Long-term hypertension also leads to damage

and dysfunction of the vascular wall, thereby promoting

the development of arteriosclerosis (28). Arteriosclerosis, the

primary pathophysiological process in the formation of carotid

plaques, involves multiple mechanisms such as lipid deposition,

inflammatory responses, cellular proliferation, and fibrosis.

Hypertension accelerates this process by increasing the pressure

and tension on the vascular wall, leading to plaque formation and

growth. Additionally, hypertension can increase the risk of

thrombosis by affecting blood flow and promoting platelet

aggregation, further increasing the likelihood of severe complications

(such as stroke) caused by carotid plaques. Li et al. conducted a

population-based cross-sectional study that demonstrated

hypertension as an independent risk factor for arteriosclerosis.

Interestingly, when hypertension coexists with obesity, obesity

may reduce the risk of arteriosclerosis caused by hypertension (28).

The role of CHOL, particularly when present in excess, is
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well-documented in atherogenesis, with CHOL and LDL-C often

vilified as “bad cholesterol and implicated in plaque accrual within

critical vasculature” (24, 29–33). A previous study substantiates the

robust association between elevated LDL-C levels and carotid plaque

formation (24). Thus, this investigation confirmed the heightened

importance of age, gender, SBP, CHOL, and LDL-C as features

within the ML model, a conclusion supported by a wealth of

evidence-based medical research. As early as 2011, Fang et al.

evaluated age and plasma Oxidized Low-density Lipoprotein (ox-

LDL) levels as potential risk factors and biomarkers for carotid

plaque and stability based on carotid ultrasound results. The study

concluded that plasma ox-LDL levels and age are potential risk

factors for carotid plaque, with ox-LDL as a biomarker for screening

vulnerable carotid plaque in clinical practice (24). However, Fang

et al. lacked a comprehensive risk assessment compared to our

study, which utilized comprehensive physical examination data.

They did not account for all potential confounding variables

influencing the relationship between ox-LDL and carotid plaque.

MLmodels for predictingCAP could assist in both clinical practice

and health policy. Clinically, these models facilitate the early

identification of individuals at high risk, enabling timely

interventions that can lead to improved outcomes. In the realm of
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health policy, these models can guide the allocation of resources and

the development of targeted screening programs, thereby enhancing

healthcare efficiency and reducing the CVD burden. Furthermore,

they support the creation of evidence-based cardiovascular

guidelines and public health strategies aimed at mitigating risk

factors. These models represent a shift towards a more proactive and

personalized healthcare paradigm. The LightGBM machine learning

model developed in this study demonstrated strong predictive

performance, which carries significant public health implications. By

leveraging routine physical examination data, doctors can effectively

screen high-risk individuals for carotid plaque and implement

preventive measures to avert the progression into more dangerous

cardiovascular diseases. This approach not only enhances the

efficiency of early intervention but also underscores the potential of

utilizing big data technologies in public health.

Despite the encouraging findings, this study has certain

limitations. First, the study’s over 19,000 samples were all collected

from the MJ Health Checkup Center in Beijing, indicating that our

conclusions reflect only the characteristics of the local population.

Therefore, it is currently unclear whether the established machine

learning models can be generalized to the entire nation. To address

this, it is recommended that future models be trained using a more

extensive and diverse dataset. By incorporating data from various

geographical locations and ethnic backgrounds, the generalizability

and robustness of these models can be significantly improved.

Secondly, the sensitivity of all models is not particularly high, which

could result in some missed cases when used as screening tools. For

example, many individuals with the condition might not be

correctly diagnosed. We hope that future research can improve the

overall performance of predictive models by using more training

data and optimizing machine learning algorithms. This might

involve exploring more advanced machine learning techniques,

adjusting model parameters, or integrating novel data preprocessing

methods to enhance sensitivity and reduce the omission rate.

Furthermore, the generalizability of the models across different

ethnic groups remains uncertain, as their validation relied on a 30%

test set drawn from the pooled data rather than an independent

external dataset. Future research and practical applications of CAP

prediction models may encounter challenges that require

enhancements. One major challenge is increasing the model’s

generalizability. To tackle this, future studies should include a

broader and more diverse population sample from multiple regions

and ethnic groups. This will help evaluate the model’s performance

across various demographics and potentially improve its predictive

accuracy on a national scale. In summary, future research should

focus on enhancing the model’s generalizability and sensitivity.

Simultaneously, practical applications should ensure seamless

integration with healthcare systems, provide clear implementation

guidelines, and conduct impact assessments to guarantee the

model’s effectiveness and ethical usage.
5 Conclusions

Our study demonstrated that ensemble learning models,

particularly LightGBM, effectively predict the occurrence of
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CAP by analyzing factors such as gender, age, physical

assessments, and blood biochemical markers. These models

showcased high precision and consistent reliability, with

age, gender, and SBP emerging as the most influential predictors.

Utilizing these models, medical professionals can evaluate the

risk of CAP using standard health checkup data rather

than requiring ultrasound examinations. This advance

significantly enhances the primary prevention of CVD. Future

research should aim to improve the models’ performance

and generalizability by incorporating data from a more

diverse population.
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