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Background: Remote patientmanagementmay improve prognosis in heart failure.
Daily review of transmitted data for early recognition of patients at risk requires
substantial resources that represent a major barrier to wide implementation. An
automated analysis of incoming data for detection of risk for imminent events
would allow focusing on patients requiring prompt medical intervention.
Methods: We analysed data of the Telemedical Interventional Management in
Heart Failure II (TIM-HF2) randomized trial that were collected during quarterly
in-patient visits and daily transmissions from non-invasive monitoring devices.
By application of machine learning, we developed and internally validated a
risk score for heart failure hospitalisation within seven days following data
transmission as estimate of short-term patient risk for adverse heart failure
events. Score performance was assessed by the area under the receiver-
operating characteristic (ROCAUC) and compared with a conventional
algorithm, a heuristic rule set originally applied in the randomized trial.
Results: The machine learning model significantly outperformed the conventional
algorithm (ROCAUC 0.855 vs. 0.727, p < 0.001). On average, the machine learning
risk score increased continuously in the three weeks preceding heart failure
hospitalisations, indicating potential for early detection of risk. In a simulated
one-year scenario, daily review of only the one third of patients with the
highest machine learning risk score would have led to detection of 95% of HF
hospitalisations occurring within the following seven days.
Conclusions: A machine learning model allowed automated analysis of
incoming remote monitoring data and reliable identification of patients at risk
of heart failure hospitalisation requiring immediate medical intervention. This
approach may significantly reduce the need for manual data review.
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Introduction

Heart failure (HF) is a major cause of mortality and morbidity

and poses a substantial burden for the health care system. After the

first HF related hospitalisation, the median survival is only 2.4

years (1), and every subsequent hospital admission further

worsens prognosis (1). Furthermore, HF related hospitalisations

are a main driver of health care related costs (2). Due to the

ageing of the population and the increasing rate of comorbidities,

HF related hospitalisations are expected to increase further. Thus,

prevention of HF exacerbations requiring in-patient or

emergency care management is a crucial aspect in

HF management.

Early detection of patients with worsening HF status allows

timely initiation of medical interventions that may prevent

hospitalisations. In particular, this has been demonstrated in the

setting of invasive hemodynamic monitoring by means of

pulmonary pressure sensors (3). However, the invasive character

of this monitoring combined with the high device costs are

barriers to wide implementation (3).

As demonstrated in several randomised trials, remote

monitoring of easily obtainable clinical parameters may also

trigger early medical interventions and reduce the number of HF

related hospitalisations and adverse events (4, 5). One of the

major obstacles of broad application of remote monitoring of HF

patients in clinical practice is the resource-intensive need for

manual review of the collected data by trained personnel (6, 7).

An automated assessment of incoming patient data regarding the

risk for imminent events would allow focussing on patients most

likely to benefit from medical contact and intervention, thus

reducing the burden for health care professionals and allowing a

much higher number of patients under such surveillance.

While numerous studies have made use of parameters routinely

recorded as part of usual HF care to automatically assess patients’

health status (8–16), the literature on automatic assessment of

frequently transmitted sensor data is much scarcer (17–24),

especially in the context of validated, operational remote

monitoring programs using non-invasive devices. Further, how

automatic assessments could be effectively utilized within such a

program, and how this affects the caregiver’s patient capacity are

currently open questions. With this work, we seek to lessen the

gap in this research area by developing and validating a machine

learning (ML) model for automated patient risk assessment by

analysis of data from the Telemedical Interventional

Management in Heart Failure II (TIM-HF2) randomised trial,

and quantifying the resulting effect on the patient capacity

through a simulation approach.
Methods

TIM-HF2 study design and participants

This analysis was conducted on the data of the TIM-HF2

trial, a randomised, multi-centre trial assessing the benefits of
Frontiers in Cardiovascular Medicine 02
a structured remote patient management (RPM) programme.

The design and main results of the trial have been reported

previously (25, 26). In brief, TIM-HF2 was conducted in

Germany between 2013 and 2018 and included 1,571 patients

with a history of HF, New York Heart Association (NYHA)

class II or III and a HF hospitalisation not longer than one

year prior to randomisation, regardless of the left ventricular

ejection fraction (LVEF). Patients were randomized to either

RPM + usual care or to usual care only, and followed for 12

months. All patients underwent quarterly out-patient visits

consisting of medical history, physical examination, collection

of blood samples for biomarkers and assessment of

concomitant treatments. Patients assigned to RPM were

equipped with and trained in the use of a home

telemonitoring system, which transmitted body weight, blood

pressure, heart rate, ECG recording, peripheral capillary

oxygen saturation, and self-rated well-being on a scale from

one through five to a telemedical centre (TMC) on a daily

basis. In the TMC, physicians and HF-nurses performed

reviews of all patients’ incoming data and initiated

interventions, if needed. The priority order for data review was

defined by a pre-specified, conventional algorithm based on a

set of heuristic rules (Supplementary Table 3) (25, 26).

For model development and validation in this current study, we

used all patients of the full analysis set as defined in the TIM-HF2

trial. The final dataset contained 773 patients assigned to usual

care, and 765 patients assigned to RPM + usual care.

All required ethics committee approvals, covering also the work

presented here, were obtained.
Outcome definition for the machine
learning analysis

Primary outcome of the current analysis was unplanned

HF hospitalisation occurring within seven days following

data transmission.
Candidate predictors

To account for the widely differing underlying baseline risk of

the patients, we first created a new candidate predictor variable

estimating the likelihood of all-cause death within one year based

on variables that were gathered during the baseline out-patient

visit prior to randomisation. For this purpose, 84 variables were

considered (Table 1). The resulting predictor expressing the

underlying baseline patient risk is hitherto referred to as baseline

risk variable. The methodology for creation of the baseline risk

variable was similar to the method applied for development of

the main ML risk model and is described below.

For development of the main ML model for prediction of

unplanned HF hospitalisation within 7 days following data

transmission, we considered 18 variables (5 binary, 13 numerical)

resulting from daily data transmissions, including ECG

characteristics, blood pressure, oxygen saturation, weight, and
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TABLE 1 Baseline characteristics of the TIM-HF2 trial population, split 3:1
into training and validation set.

Training set
1,153 patients

Validation set
385 patients

All-cause death within 12
months

112 (9.7) 38 (9.9)

Age (years) 73.0 [64.0, 78.0] 73.0 [65.0, 78.0]

Sex

Female 339 (29.4) 129 (33.5)

Male 814 (70.6) 256 (66.5)

Weight (kg) 85.0 [74.0, 99.0] 84.0 [73.0, 98.0]

Body-mass index (kg/m2) 29.0 [25.2, 33.3] 28.1 [25.2, 33.4]

Days since last HF hospitalisation

≤30 days 300 (26.0) 90 (23.4)

31–90 days 399 (34.6) 159 (41.3)

>90 days 454 (39.4) 136 (35.3)

Living alone 321 (27.8) 114 (29.6)

Living in rural area 678 (58.8) 237 (61.6)

Current or former smoker 551 (47.8) 173 (44.9)

Remote patient management 570 (49.4) 195 (50.6)

NYHA class

II 582 (50.5) 186 (48.3)

III 571 (49.5) 199 (51.7)

LVEF 40.0 [30.0, 50.0] 41.0 [30.0, 51.0]

Heart rate (1/min) 71.0 [62.0, 80.0] 70.0 [61.0, 81.0]

Blood pressure (mm Hg)

Systolic 123.0 [110.0, 140.0] 125.0 [110.0, 140.0]

Diastolic 74.0 [65.0, 80.0] 72.0 [65.0, 80.0]

Laboratory data
GFR (ml/min per 1.73 sqm
body surface area)

61.8 [44.4, 88.6] 63.0 [46.5, 86.1]

Haemoglobin (g/dl) 13.2 [12.1, 14.3] 13.4 [12.1, 14.5]

Hematocrit (%) 40.0 [37.0, 43.0] 40.0 [37.0, 43.0]

Leukocytes (1/µl) 7,600.0 [6,390.0,
9,100.0]

7,860.0 [6,427.5, 9,200.0]

Thrombocytes (1/nl) 209.5 [172.0, 250.0] 203.0 [164.2, 248.8]

Creatinine (mg/dl) 1.2 [1.0, 1.7] 1.2 [1.0, 1.6]

Sodium (mmol/L) 140.0 [137.0, 142.0] 140.0 [138.0, 142.0]

Potassium (mmol/L) 4.5 [4.2, 4.9] 4.5 [4.2, 4.9]

NT-proBNP (pg/ml) 1,438.5 [603.0, 3,223.8] 1,402.0 [628.4, 2,658.0]

MR-proADM (nmol/L) 1.1 [0.8, 1.5] 1.0 [0.8, 1.4]

MR-proANP (pmol/L) 257.9 [162.6, 389.2] 252.0 [166.4, 371.6]

Procalcitonin (µg/ml) 90.0 [70.0, 120.0] 90.0 [70.0, 120.0]

Pre-existing conditions
Coronary heart disease 664 (57.6) 229 (59.5)

Inflammatory heart disease 47 (4.1) 15 (3.9)

Myocardial infarction 324 (28.1) 95 (24.7)

Dilated cardiomyopathy 376 (32.6) 115 (29.9)

Arterial hypertension 934 (81.0)e 308 (80.0)

Heart valve disease 584 (50.7) 204 (53.0)

Hyperlipidemia 626 (54.3) 207 (53.8)

Kidney failure 584 (50.7) 197 (51.2)

Peripheral artery disease 123 (10.7) 42 (10.9)

Stroke 125 (10.8) 40 (10.4)

Hyperthyroidism 37 (3.2) 15 (3.9)

Hypothyroidism 121 (10.5) 46 (11.9)

Malignoma 80 (6.9) 26 (6.8)

Liver cirrhosis 20 (1.7) 13 (3.4)

Coronary revascularisation 421 (36.5) 139 (36.1)

Bypass surgery 203 (17.6) 76 (19.7)

Heart valve surgery 111 (9.6) 46 (11.9)

(Continued)

TABLE 1 Continued

Training set
1,153 patients

Validation set
385 patients

TAVR 39 (3.4) 14 (3.6)

Mitra clip 47 (4.1) 13 (3.4)

Ablation of pulmonary veins 85 (7.4) 38 (9.9)

Pacemaker

Single chamber 49 (4.2) 17 (4.4)

Dual chamber 116 (10.1) 26 (6.8)

Cardiac resynchronisation
therapy

184 (16.0) 56 (14.5)

Implantable cardioverter
defibrillator

354 (30.7) 102 (26.5)

Diabetes mellitus 522 (45.3) 180 (46.8)

COPD 207 (18.0) 67 (17.4)

Dyspnea

On exertion 1,054 (91.4) 349 (90.6)

While resting 55 (4.8) 20 (5.2)

Peripheral edema 430 (37.3) 129 (33.5)

Cervical vein congestion 117 (10.1) 47 (12.2)

Pulmonary rattling noise 58 (5.0) 22 (5.7)

Pacemaker rhythm 312 (27.1) 90 (23.4)

Atrial fibrillation 405 (35.1) 142 (36.9)

AV block

I 131 (11.4) 37 (9.6)

II 4 (0.3) 2 (0.5)

III 10 (0.9) 5 (1.3)

Left bundle branch block 276 (23.9) 75 (19.5)

Concomitant treatment
Limited fluid intake

≤2 L/day 190 (16.5) 89 (23.1)

≤1.5 L/day 531 (46.1) 158 (41.0)

≤1 L/day 8 (0.7) 3 (0.8)

ACEI 569 (49.3) 206 (53.5)

Statin 657 (57.0) 233 (60.5)

Allopurinol 221 (19.2) 68 (17.7)

β-blockers 1,048 (90.9) 348 (90.4)

ARB 408 (35.4) 127 (33.0)

Aldo blockers 604 (52.4) 188 (48.8)

Diuretics 1,106 (95.9) 366 (95.1)

Antiplatelet therapy 478 (41.5) 153 (39.7)

Anticoagulants 686 (59.5) 257 (66.8)

Calcium antagonists 242 (21.0) 90 (23.4)

Digitalis glycosides 182 (15.8) 58 (15.1)

Antiarrhythmic drugs 143 (12.4) 59 (15.3)

Nitrates 47 (4.1) 22 (5.7)

Ivabradine 37 (3.2) 17 (4.4)

Insulin 257 (22.3) 90 (23.4)

Oral antidiabetics 287 (24.9) 90 (23.4)

Data are median [lower quartile, upper quartile], or n (%). NYHA, New York Heart

Association; LVEF, Left ventricular ejection fraction; GFR, Glomerular filtration rate;
TAVR, Transcatheter aortic valve replacement; COPD, Chronic obstructive pulmonary

disease; ACEI, Angiotensin-converting-enzyme inhibitors; ARB, Angiotensin receptor

blockers; HF, Heart failure; NTproBNP, N-terminal prohormone brain natriuretic peptide;

MR-proADM, Mid-regional proadrenomedullin.
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self-rated well-being (Table 2). Additionally, we considered the

baseline risk variable, and whether a previous hospitalisation

due to HF occurred within 30 days prior to data transmission.

This resulted in a total of 20 candidate predictors that were

considered for the model.
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TABLE 2 Characteristics of the RPM population of the TIM-HF2 trial going into the main ML model.

Training set 183,070 individual patient data
transmissions from 570 patients

corresponding to 501.6 patient years

Validation set 61,640 individual patient data
transmissions from 195 patients

corresponding to 168.9 patient years
Days labelled as Hospitalisation
due to HF within 7 days

1,043 (0.6) 425 (0.7)

Baseline risk score 0.2 [0.1, 0.3] 0.2 [0.1, 0.3]

Days labelled as HF
hospitalisation discharge within
previous 30 days

4,205 (2.3) 1,526 (2.5)

Self-rated well-being (1 [very
good]–5 [very bad])

2.0 [2.0, 3.0] 2.0 [2.0, 3.0]

Weight (kg) 85.2 [74.3, 98.8] 86.4 [73.0, 102.5]

SpO2 (%) 96.3 [94.9, 97.6] 96.3 [94.9, 97.6]

Ventricular tachycardia events 343 (0.2) 145 (0.2)

Heart rate during ECG (1/min)

Minimum 64.0 [57.0, 71.0] 64.0 [57.0, 72.0]

Maximum 76.0 [66.0, 87.0] 76.0 [67.0, 87.0]

Average 69.0 [61.0, 78.0] 70.0 [62.0, 79.0]

Blood pressure (mm Hg)

Systolic 122.0 [110.0, 135.0] 123.0 [111.0, 136.0]

Diastolic 71.0 [64.0, 80.0] 72.0 [64.0, 81.0]

Average 97.0 [87.0, 108.0] 98.0 [88.0, 108.0]

Atrial fibrillation 61,501 (33.6) 23,191 (37.6)

AV block

I 26,561 (14.5) 8,035 (13.0)

II 100 (0.1) 15 (0.0)

III 20 (0.0) 3 (0.0)

PQ Interval (ms) 174.0 [148.0, 207.0] 172.0 [148.0, 203.0]

QRS Interval (ms) 113.0 [96.0, 145.0] 111.0 [94.0, 141.0]

QT Interval (ms) 420.0 [389.0, 453.0] 414.0 [381.0, 449.0]

QT Interval, Bazett formula (ms) 450.0 [422.0, 481.0] 447.0 [421.0, 481.0]

The split into training and validation set is derived from the 3:1 split of the entire TIM-HF2 population described above. The dataset for modelling the risk of imminent HF hospitalisation is

longitudinal. Each observation represents one day of transmitted data from one patient. Data are aggregated to median [lower quartile, upper quartile], or n (%) across all transmissions. HF,

Heart failure; SpO2, Peripheral capillary oxygen saturation.
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Missing values

Missing values, or values set as missing because they

exceeded plausible limits (Supplementary Tables 1 and 2) were

scarce throughout the dataset. Biomarkers, which were

collected quarterly during the study, contained up to 11.4%

missing values. All other predictors contained less than 5%

missing values. For daily transmitted variables, we used

forward-filling to impute missing values where previous

recordings were available, and backward-filling otherwise. For

variables contained in the baseline risk model, we used linear

regression imputation using up to four regressors chosen based

on highest correlation.
Model development

Model development and validation were performed in

accordance with the guidelines for transparent reporting of a

multivariable prediction model for individual prediction or

diagnosis (TRIPOD) (27).

We performed a randomised 3:1 split of patients into a training

set for model development, and a hold-out validation set. The split

was stratified for all-cause death within one year.
Frontiers in Cardiovascular Medicine 04
For development of the baseline risk variable, we used a

Random Forest classifier (28) trained on 1,153 patients from

both the RPM and the usual care group. The effect of RPM was

captured in a binary predictor.

The risk for HF hospitalisation within the 7 days following

data transmission was modelled via a Multilayer Perceptron

(MLP) (29) using the daily data transmissions of 570 patients

from the RPM group over a one-year study period. A

summary of the model development and validation strategy is

displayed in Figure 1.

We defined a space of potential model hyperparameters, over

which we performed a randomised search (30) and chose the

optimal values based on the highest area under the receiver

operating characteristic (ROCAUC) in fold-wise cross-validation

using only patients from the training set. With the optimal set of

hyperparameters, we trained the final model on the entire

training population. Implementation details are given in the

Supplementary Material.

We initially included all available predictors and ranked them

via repeated permutation importance (28) according to their

univariate impact on ROCAUC. For development of the baseline

risk variable, we eliminated an increasing number of low-ranked

predictors, performed hyperparameter tuning using only the

remaining ones, and settled for the combination of predictors
frontiersin.org
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FIGURE 1

Model development and validation strategy. RPM, Remote patient management; HF, Heart failure; SpO2, Peripheral capillary oxygen saturation.
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yielding the highest cross-validated ROCAUC. For the main model

with 20 initial predictors, we also calculated the permutation

importance of each feature and excluded those with a non-

positive importance.

All analyses were performed using Python, version 3.7 (31),

specifically (but not exclusively) the scikit-learn package, version

0.24.1 (32) for building the ML pipeline, and TensorFlow,

version 2.4.1 (33) for deep learning.
Model validation

The model for the baseline risk variable was validated in the

hold-out validation set of 385 patients. For reference, its

performance was compared to the established Seattle Heart

Failure Model (8).

The main ML model for prediction of unplanned HF

hospitalisation within the following seven days was validated in

the 195 RPM patients from the hold-out validation set. The

performance of the model was compared with the performance

of the conventional algorithm that was applied in the TIM-HF2

trial and that was based on a set of heuristic prioritisation rules

(Supplementary Table 3) (26).

For visual inspection of discriminatory performance, we plotted

the receiver operating characteristic (ROC) and precision recall (PR)

curves. The PR curve displays the relationship between the

sensitivity (also referred to as recall) and the precision (also referred

to as positive predictive value), and can be informative in

imbalanced classification problems, where the ROC can appear

overly optimistic (34). For both ROC and PR, we additionally
Frontiers in Cardiovascular Medicine 05
calculated the area under the curve (AUC). The 95% confidence

intervals for the AUCs, and p-values for AUC comparisons were

constructed using 10,000 bootstrap samples (35, 36).

We further visualized the trend of the score that was provided

by the model in the 60 days preceding unplanned

HF hospitalisations.
Simulation of daily ranking

We assessed the feasibility of a policy focusing on daily review

of transmitted data from high-risk patients only. For this purpose, a

one-year long telehealth setting containing all 195 RPM patients

from the validation set was emulated. The start date of RPM for

all patients was artificially shifted to the same day, and patients

were then continuously ranked on a daily basis based on their

estimated risk for unplanned HF hospitalisation within seven

days. We could thus estimate the proportion of HF

hospitalisations within seven days following data transmission

that would have been detected on a given day if only a certain

fixed fraction of top-ranked patients had been clinically evaluated

by the TMC staff.
Results

Baseline risk variable

For the baseline risk variable, the predictor elimination process

resulted in a final model of 27 predictors (Supplementary Table 4),
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FIGURE 2

Receiver operating characteristic (A) and precision recall curve (B) of the baseline risk variable. The Seattle heart failure model (SHFM) score is plotted
for reference. The SHFM score was calculated excluding information on uric acid, lymphocytes and cholesterol due to unavailability. AUC, area under
the curve. Values in square brackets indicate the 95% confidence interval.
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of which N-terminal prohormone brain natriuretic peptide (NT-

proBNP) stood out as the most impactful (Supplementary

Figure 1). ROC and precision recall curves for the baseline risk

variable and the SHFM are displayed in Figure 2. The baseline

risk score had an overall satisfactory performance significantly

outperforming the SHFM (AUC in ROC 0.793 vs. 0.677, p = 0.012;

AUC in PR 0.298 vs. 0.165, p = 0.014).
Prediction of unplanned HF hospitalisation
within 7 days following data transmission

For the main ML model for prediction of unplanned HF

hospitalisation occurring within the seven following days, the

predictor elimination process resulted in a final model of 14

predictors (Supplementary Table 4). Among these, the most

impactful was the baseline risk variable (Figure 6).

The model had a good performance with a ROCAUC of 0.855

and a PRAUC of 0.061, significantly outperforming the

conventional algorithm based on a heuristic rule set that was

used in the TIM-HF2 trial (ROCAUC 0.727, and PRAUC 0.018,

p < 0.001 for both comparisons, Figure 3).

Figure 4 shows how the ML based model and the conventional

algorithm evolved on average in the 60 days prior to an unplanned

HF hospitalisation. The median score of patients in stable condition

without HF hospitalisation approaching a randomly selected date

within their follow-up period is shown for comparison. The median

conventional algorithm score is highly volatile, and throughout the

observed 60-day window, the median score of patients in stable

condition is at times within the interquartile range of the score of
Frontiers in Cardiovascular Medicine 06
patients approaching an unplanned HF hospitalisation. In contrast,

the median ML-based score of patients approaching an unplanned

HF hospitalisation is clearly separated from the score of patients in

stable condition throughout the observed time window and exhibits

a continuous upward trajectory starting approximately three weeks

prior to a HF hospitalisation.

In an RPM scenario where on each day only a fraction of

patients would have received medical attention based on highest

estimated risk, the ML model performed better than the

conventional algorithm with regard to detection of imminent

unplanned HF hospitalisations (Figure 5). In this simulation, a

case was considered as detected if a particular patient belonged to

the fraction of top-ranked patients and would have thus received

medical attention at least once in the seven days preceding the event.

The superiority of the ML-based risk score becomes especially

obvious when the fraction of inspected top-ranked patients is low.

If prioritisation would have been made on the basis on the ML

model, evaluating only the 10% highest ranked patients would

have led to detection of 81.4% of unplanned HF hospitalisations

within the following seven days, an increase of 10 percentage

points over the conventional algorithm. To detect 95% of all

cases of imminent HF hospitalisations, only the top-ranked one

third of all patients would have had to be clinically evaluated on

a daily basis in this simulated scenario.
Discussion

Telemedical HF care has been transitioning from clinical trials

to real-life settings. While retrospective studies on its
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FIGURE 3

Receiver operating characteristic (A) and precision recall curve (B) of the ML-based risk score in comparison with the conventional algorithm based on
heuristic rules used in the TIM-HF2 trial. AUC, area under the curve. Values in square brackets indicate the 95% confidence interval.

FIGURE 4

ML-based score evolution (A) and conventional algorithm evolution (B) leading up to HF hospitalisations in comparison to the evolution leading up to
a random date for patients without HF hospitalisation. IQR, inter quartile range.
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implementation highlight the safety and benefits (37–40), its full

potential is far from unleashed (41). For the ongoing

implementation—driven by the ESC guidelines (42) and

accelerated by the COVID-19 pandemic (41, 43)—the upscaling

of capacities is a key issue for providers and patients. In
Frontiers in Cardiovascular Medicine 07
this study, we demonstrated a path towards optimising

the operational effectiveness of RPM in HF through

artificial intelligence.

We developed and validated an ML-based risk model that

considers both the patient’s daily condition based on parameters
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FIGURE 5

Fraction of HF hospitalisations detected within seven days prior to the event as a function of the fraction of top-ranked patients inspected per day
during a one-year RPM setting. A case is considered detected if a patient is among the top-ranked patients inspected at least once in the seven
days preceding hospitalisation. Repeated simulations (n= 100) were used for tie-breaking in the heuristic rules and for calculating a random
score’s (randomly allocated number between 0 and 1 per patient and day) performance.
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transmitted through non-invasive monitoring devices, as well as

the patient’s baseline risk described through parameters collected

during out-patient visits. The resulting model predicts unplanned

HF hospitalisations within seven days in patients undergoing

RPM, and out-performs a conventional rule-based algorithm that

had been used during the TIM-HF2 trial for priority ranking (26).

During ML modelling on the daily transmitted data, we faced

two key challenges: a severe imbalance between patients with and

without HF hospitalisations in the next seven days (training

prevalence 0.6%), and a lack of heterogeneity in the training set

due to the ∼180,000 data transmissions stemming from only 570

individuals. We sought to alleviate these challenges by using the

baseline risk variable as a-priori knowledge of the patient’s health

condition and passing it as a predictor into the ML model. In

the development of the baseline risk variable, we were able to
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make use of both study arms of the TIM-HF2 trial by explicitly

incorporating the information on RPM or usual care (the only

structural difference between the cohorts due to the randomized

design of the trial) in its development process, which

consequently doubled the sample size and increased its

robustness. Permutation importance computation confirms that

the ML model of unplanned HF hospitalisations relies heavily on

this information (Figure 6), and the model achieves high

discriminatory performance. This is highlighted both by the

ROCAUC of 0.855, and the clear separation between the median

scores of patients with and without upcoming HF hospitalisations.

The first key result of this study is the steady upward trajectory

of the median ML-based score as patients approach HF

hospitalisation starting as early as three weeks prior to the event

(Figure 4). This indicates that the model is sensitive to changes
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FIGURE 6

Impact of the 10 highest ranked predictors in the ML model. Impact measured by repeatedly permuting each predictor before making predictions and
measuring the resulting drop-off in ROCAUC.
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in the patients’ health status weeks before acute decompensation,

much earlier than the typical onset of acute symptoms like

dyspnoea or oedema (44). Sensitivity to changes this early in the

HF deterioration process has thus far only been achieved through

invasive hemodynamic monitoring (44). In contrast, the

developed risk score relies on a single data transmission of

multiple vital parameters per day through non-invasive sensors.

Thus, through its implementation in the RPM care concept, our

findings indicate the potential for timely intervention to reduce

the risk of HF hospitalisation.

The second key result is the high detection rate of HF

hospitalisation in a simulated one-year RPM scenario, where

patients were ranked daily depending on their estimated risk.

Ranking based on the ML-based score proved to be especially

beneficial when the fraction of top-ranked patients undergoing

review is small, and the theoretical gain in patient capacity

therefore large. Daily evaluation of the top-ranked 10% of the

patient population proved to be sufficient to review over 80%

of all cases of HF hospitalisations at least once in the seven

days preceding the event, and reviewing the top-ranked third

pushes this number to 95% (Figure 5). Thus, the integration of
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our ML-based risk score in a decision support system

(DSS) could fundamentally change the RPM caregiver’s

workflow by switching from a one-to-one correspondence

between data transmission and review to a risk-adjusted

review frequency. Reviewing per day a fixed fraction of top-

ranked patients could amount to multiplying the patient

capacity compared to the daily review of all patients, without

additional staff.

In practice, ranking patients solely based on an ML-based score

has downsides which need to be accounted for in the

implementation of the DSS. No patient, even if classified as

stable by the model, should exceed a pre-specified number of

days without clinical evaluation. Patients newly added to the

program, or recently released from the hospital require special

attention to ease the care transition (45), and should be

prioritised independent of risk score. Nevertheless, we were able

to show that implementing a risk-adjusted review frequency

might be a viable approach to increase the operational

effectiveness of RPM providers.

This study exhibits three key limitations. First, despite the

time series nature of the dataset, the implemented MLP makes
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little use of the development of predictors over time, except for

the inclusion of weight differences. More complex models

designed for sequential data could potentially uncover temporal

effects like the influence of onsetting or retreating atrial

fibrillation. Applying other types of models to this problem,

possibly including additional data sources like raw ECG or

voice recordings, remains a topic for future studies.

Second, although the TIM-HF2 trial included 765 patients

undergoing remote patient management, the validation of our

ML-based risk score was performed on a relatively small subset

of only 195 patients who were held out from the model

development process. This limited validation cohort was

necessary to allocate sufficient data for robust training of the ML

model. However, the small number of patients in the validation

set may limit the generalizability and may increase the

susceptibility to outliers. Third, our findings lack external

validation. Our findings rely on a retrospective analysis of the

TIM-HF2 dataset, including a retrospective simulation approach

to estimate fractions of detected cases of HF hospitalisation using

the ML-based risk score. A prospective study is needed to test

how our proposed approach of reviewing from all daily data

transmissions only a pre-selected fraction affects patients’

mortality and morbidity.
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