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Rethinking mechanical heart
valves in the aortic position: new
paradigms in design and testing
Sreyashi Chakraborty, Melinda G. Simon and
Alessandro Bellofiore*

Biomedical Engineering Department, San José State University, San Jose, CA, United States
Bileaflet mechanical heart valves (MHV) remain a viable option for aortic valve
replacement, particularly for younger patients and patients from low- and middle-
income countries and underserved communities. Despite their exceptional
durability, MHV recipients are at increased risk of thromboembolic complications.
As such, the development of the next generation of MHVs must prioritize
improved thromboresistance and aim for independence from anticoagulant
therapy. However, innovation in MHV design faces several challenges: strict
performance and biocompatibility requirements, limited understanding of the
mechanisms underlying MHV thrombosis, and a lack of effective testing
methodologies to assess how design variations impact both hemodynamic
performance and thrombogenicity of MHVs. This paper reviews the emerging
paradigms in MHV design, materials and surface modifications that may inspire the
development of a new generation of MHVs for aortic valve replacement. We also
discuss challenges and opportunities in developing experimental and numerical
approaches to achieve a more comprehensive understanding of MHV flow
features and the mechanisms of flow-induced blood clotting.
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1 Introduction

Aortic stenosis is a common heart valve disease in which an incomplete opening of the

valve reduces flow of oxygenated blood from the heart to the aorta. Figure 1 shows the

schematic of an aortic valve with three cusps, a common location for artificial heart

valve implantation. Aortic stenosis is more prevalent in elderly people, and is diagnosed

in about 12.4% of the US population older than 75 (1). Aortic valve replacement (AVR)

is the treatment of choice for severe aortic stenosis, since treatment with pharmaceutical

drugs has so far proven ineffective at curbing the progression of the disease (2).

Mechanical heart valves (MHV) (Figure 1) have been available for AVR since the

1960s. MHVs use pyrolytic carbon as the blood-contacting material (over a substrate in

stainless steel, graphite or titanium alloys), because it provides good resistance to blood

clotting (thromboresistance) (3, 4). A clinical and technological milestone was the

introduction of the St. Jude Medical (SJM) bileaflet MHV in 1979. That valve offered

exceptional durability combined with suitable hemodynamic performance and

thromboresistance. Over the past 20 years, bileaflet MHVs have been replaced as the

top choice for AVR by bioprosthetic heart valves (BHV), which can be implanted either

surgically or over a catheter. BHV have superior hemodynamic performance and

thromboresistance, and so they generally do not rely on lifelong anticoagulant therapy

to prevent blood clotting complications (5).
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FIGURE 1

Schematic of a native aortic valve and a bileaflet mechanical heart valve in open and closed positions.
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MHV are still clinically preferred, particularly for some groups of

patients, due to their superior durability. It is reported that 30% of

implanted BHV’s require replacement within 15 years, compared to

only about 10% of MHVs (6–8). For that reason, current guidelines

recommend implanting MHVs in people who are younger than 50

years and BHVs in patients with age more than 70 years (9). Recent

studies have suggested an advantage of MHVs in patients between

50 and 70 years (10, 11). In addition to the durability issues, BHVs

may cause clinical complications due to calcification (12, 13), and

even require anticoagulant therapy in some cases (14, 15). MHVs

are also the primary option for pediatric patients who are not

eligible for the complex Ross procedure (16, 17), since BHVs have a

history of poor outcomes in children and young adults (18, 19). At

present, BHVs are more expensive than MHVs and difficult to

access for lower-income patients (20). When BHVs fail, usually a

transcatheter heart valve is deployed to prevent an open-heart

surgery (21). Transcatheter valves have the same durability issues as

surgical BHVs, and in addition they are susceptible to stenosis and

prosthesis-patient mismatch (6, 22, 23).

Suboptimal thromboresistance of MHVs remains a major

concern, especially for those groups where BHVs are not a viable
Frontiers in Cardiovascular Medicine 02
option. Patients with an implanted MHV have an increasing risk of

thromboembolism, due to the blood clotting induced by the

prosthesis, as well as bleeding, which is a result of the anticoagulant

therapy. Several studies have attempted to understand the

mechanisms linking flow-induced clotting to specific factors

contributing to MHV thrombosis, such as valve designs (24–30),

size (31) and materials (32, 33). MHV design is one of the main

culprits, because it is significantly different from the naïve aortic

valve, thus producing non-physiological blood flow patterns

(34–37), which may activate platelets and trigger the clotting cascade.

The goal of this paper is to provide a critical review of the

current state and challenges of bileaflet MHVs in the aortic

position. Understanding the design and research challenges that

have slowed development and innovation for such an important

medical device is an essential step for any scientist or engineer

pursuing impactful research to pave the way for the next

generation of anticoagulant-independent MHVs. In Section 2, we

offer a primer on the main fluid-mechanic concepts underlying

MHVs, including flow features and metrics relevant to blood

clotting, as well as established design paradigms. In Section 3, we

review a selection of emerging design concepts, materials and
frontiersin.org
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surface treatments that could improve hemodynamic performance

and thromboresistance of future MHVs. In Section 4, we discuss

experimental and numerical methods that have been developed

to characterize MHV flow and flow-induced clotting, and the

challenges that so far have prevented a comprehensive

understanding of the mechanisms underlying MHV thrombosis.

To strike a balance between the breadth and depth of our

analysis, we chose to narrow the scope of this review to include

primarily bileaflet MHVs implanted in the aortic position.

Trileaflet MHVs are also briefly discussed in this review. Readers

seeking to learn more can look elsewhere for detailed reviews of

bioprosthetic valves (38, 39), transcatheter valves (23, 40, 41),

and prosthetic mitral valves (13, 42). Polymeric prosthetic valves

are an emerging area of research, and a comprehensive review of

materials and recent developments has been published recently

(43, 44). Finally, this review primarily focuses on the

hemodynamics and thromboresistance aspects of MHV. Valve

durability and wear are also important considerations, and are

covered in detail in other reviews (45, 46).
2 Bileaflet mechanical heart valves

2.1 Bileaflet valve flow features

Bileaflet MHVs in the aortic position exhibit distinct flow features

compared to naïve aortic valves, primarily due to their rigid leaflet

designs. During systole, blood flow creates three jets, through the

central orifice and two lateral orifices on the sides of the fully open

MHV, as illustrated in Figure 2A (side view) and 2C (top view).

These jets exhibit high velocity and larger velocity gradients than

naïve valves. In addition, depending on the shape and opening angle

of the leaflets, wake flow can create non-physiological flow

disturbances further downstream of the valve (35, 49). During

diastole, MHVs are designed to have some degree of regurgitation

(retrograde flow from the aorta back to the left ventricle).

Regurgitation is a feature shared with naïve valves, but with some

key differences. In bileaflet MHVs, it occurs as leakage flow through

the valve hinges and is intended to wash out any blood that may be

stagnating in the narrow hinge gaps. As a result, regurgitant flow in

MHVs exhibits high-speed jets with abnormally elevated velocity

gradients (much higher than in the forward three-jet flow during

systole), which have been linked with mechanical shearing of

platelets (35, 50, 51). Moreover, areas of flow recirculation can

develop behind in the hinge regions, increasing the residence time of

platelets and other blood cells, which may lead to thrombus

formation. As an example, Dasi et al. reviewed the retrograde flow

in the hinge gap of four commercially available valves (SJM

standard, CarboMedics, Medtronic Parallel and Medtronic

Advantage) and highlighted the recirculation zones that are trapped

in this hinge recess (35). The Medtronic Parallel valve hinge design

generated a highly convoluted flow compared to streamlined flows

in the hinge gaps of the other valves. Eventually, the Medtronic

Parallel MHV design was rejected after it showed severe blood

clot formation near the valve hinge in clinical trials (35, 52).

Figures 2B,D shows location of the hinge jets and flow recirculation
Frontiers in Cardiovascular Medicine 03
during diastole (side and top view, respectively). In the remainder of

this section, we will present some specific features of MHV flow that

have been linked with potential thrombogenicity. Increasing the

hinge gap size has been shown to improve washout of the stagnant

flow at the hinges but causes the high velocities of the bulk flow to

activate more platelets leading to increased thrombogenicity (50, 53).

It is important to point out that the flow features described

above have been qualitatively and quantitatively characterized for

fully-functioning, pristine MHVs, and so they are representative

of ideal valve performance in the early stages after implantation.

Leaflet malfunction, which may result in asymmetric leaflet

motion, may produce substantially different levels of shear stress

and flow stagnation or recirculation, thus accelerating MHV

thrombosis (54, 55). Perhaps more importantly, progressive

buildup of pannus and blood clots on the leaflets, hinges and

housing of the valve may lead to radical changes in the

hemodynamic performance of the MHV. Despite the clinical

evidence that tissue and clot growth on the valve may occur even

just months post implantation (56), in-vitro studies of non-

pristine MHVs are a notable absence in the scientific literature.

2.1.1 Flow separation, recirculation and stagnation
Fluid recirculation and stagnation resulting from flow through

MHVs is primarily localized in or near the hinge regions, and

occurs during diastole. Flow separation and low-shear zones have

been observed (48), promoting blood stasis in these regions.

These low-shear zones can activate platelets, significantly

increasing the chance of thrombosis. The challenge in designing

a MHV free of these issues lies in the nature of the flow’s

complex structure within the hinge, where small-scale turbulence

and stagnation coexist. Proper hinge design can reduce

thrombogenic potential but is difficult to optimize due to

competing constraints on valve performance and durability.

2.1.2 Vortex shedding
Flow separation has also been documented on the medial surface

of the leaflet, which leads to adverse pressure gradients and vortex

shedding in the wake of the valve. During flow acceleration at the

beginning of systole, a pair of counter-rotating vortices develop

downstream of the leaflet tip (57, 58). Eventually, these stationary

vortices are disrupted by the onset of oscillations, which results in

the alternating detaching of vortices from either side of the leaflet.

This phenomenon, referred to as vortex shedding, is illustrated in

the vorticity plot in Figure 2A. The wake of separated flow interacts

with the flow jets creating low pressure zones of separated, pulsatile

flow downstream of the leaflet. It has been suggested that platelets

that had been activated in high-shear jets may get trapped in the

vortices shed from the valve, potentially creating conditions

favorable to platelet aggregation and clotting (54, 59, 60).

2.1.3 Intermittent turbulent flow
As the flow decelerates and becomes more unstable during late

systole, shed vortices are prone to secondary instabilities that

transition into short-lived bursts of turbulent flow (61, 62).

Because of the pulsatile nature of the flow, the Reynolds number

drops from values above 6,000 at peak systole, to near zero
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FIGURE 2

Schematic of the flow features of a bileaflet MHV. (A) Side view of the main forward flow at peak systole. Velocity and vorticity scales are qualitative.
The vorticity map illustrates the shedding of pairs of counter-rotating vortices. The inset illustrates the flow separation region on the medial surface of
the leaflet. (B) Side view of the regurgitant jets that develop at the edges of the leaflets and in the hinge gaps during diastole. (C) Top view of the valve
during peak systolic flow. The fully open leaflets allow the development of three main jets. (D) Top view of the valve during diastole. The inset illustrates
the streamlines and flow separation in the hinge gap between the leaflet peg and the butterfly-shaped recess in the valve housing. To keep the
illustration simple, the hinge gap flow in the inset is seen from a different point of view than the top view image (right-to-left corresponds to the
aorta-to-ventricle orientation).
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during diastole. These conditions cannot sustain turbulence for the

whole heart cycle. The turbulence generates increased viscous

dissipation, contributing to higher energy losses. In particular,

the interaction between the high-velocity jets and slower

recirculating flows can drive flow instabilities, leading to intense

localized turbulence, which contrasts with the smoother, less

turbulent flow seen in naïve valves. Turbulent flow in MHVs

encompasses multiple length scales from ∼25 mm through the

valve orifice to ∼100 µm through the valve hinges (35, 63).

2.1.4 Cavitation
Cavitation is the formation of vapor bubbles in a liquid usually

at the interface of a moving solid body through the liquid (64, 65).

In bileaflet MHVs, cavitation bubbles have been observed after the
Frontiers in Cardiovascular Medicine 04
rapid closure of the valve at the end of systole. This large closing

velocity of the leaflets leads to sudden pressure drops (28, 66). If

liquid pressure locally drops below vapor pressure at body

temperature, the formation of bubbles is possible. These vapor

bubbles subsequently collapse, generating high-impact shock

waves that can erode the valve material and damage surrounding

blood cells (67, 68). Mohammadi et al. showed the acceleration

of crack propagation in SJM valve leaflets due to water hammer

pressure generated during cavitation (69). Due to rapid valve

closure dynamics, the leaflets of Edwards Duromedics valves

were subjected to cavitation leading to eventual fracture (70, 71).

The distribution of cavitation bubbles depends on the valve

geometry and kinematics (64, 68). Overall, the evidence available

suggests that controlling cavitation may be important for both
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reducing the risk of thromboembolism and extending MHV

durability (64).
2.2 Bileaflet valve flow metrics

Valve performance must be evaluated following ISO 5840-2,

which outlines rigorous requirements for various hemodynamic

and structural parameters for surgical valves (mechanical and

bioprosthetic) (72). Key metrics include the effective orifice area

(EOA) and total regurgitation fraction, which are crucial in

assessing the functional efficiency and safety of MHVs. Total

regurgitation fraction accounts for all backflow, including both

closing volume and leakage volume. While not strictly required

by ISO 5840, transvalvular pressure gradients and shear stresses

are commonly reported to characterize flow hemodynamic

performance and thrombogenic potential of MHVs.
2.2.1 Transvalvular pressure gradient (TPG)
The transvalvular pressure gradient (TPG) is the pressure drop

between the ventricular and aortic side of a MHV and represents a

measure of the loss of potential energy across the valve. Ideally,

TPG should be very low so that the valve does not considerably

impede the blood flow; however, ISO 5840-2 does not include a

specific requirement for the acceptable range of TPG in MHVs.

Compared to a native aortic valve, the rigid material of MHVs

create a smaller flow area that increases the pressure drop. Large

TPG values are highly undesirable because it means increasing

the pressure in the left ventricle during systole, which if

sustained may lead to conditions like ventricular hypertrophy

and even heart failure. Table 1 reports the TPGs for seven types

of commercial MHVs.
2.2.2 Effective orifice area (EOA)
During forward flow of blood through MHVs, the extent of

valve opening is measured by the Effective Orifice Area (EOA) as
TABLE 1 Typical values of flow parameters for popular MHVs.

Valve type Size
(mm)

TPG
(mmHg)

Peak RSS in a
cardiac cycle (Pa)

Time
pea

Medtronic parallel 25–27 22 (6) 200–800

ATS 18 15.3 (2.9)

Carbomedics 21 15.1 (2.1)

23 690

Sorin Bicarbon 19 10.4 (2.2) 551

SJM Standard 19 207

23 160–200

27 125

SJM Regent 19 8.7 (0.8) –

23 4.75 (0.05) 72, 133, 260

On-X 19 14.5 (4.3) –

23 4.15 (0.09) 95, 58.4

Apexa 25 – –

TPG, transvalvular pressure gradient; RSS, Reynolds’ shear stress; VSS, viscous shear stress; EOA
aThe Apex valve is a newly proposed design. Experiments are under progress.

Frontiers in Cardiovascular Medicine 05
defined by Equation 1:

EOA(cm2) ¼ Qrms(mL=s)

51:6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DP(mmHg)
r(g=cm3)

s (1)

where Qrms is the root mean square forward/systolic flow rate, ΔP is

the mean pressure across the valve during ejection, and ρ is the

density of the test fluid. EOA should be estimated from

measurements of pressure and flow in a pulse duplicator

simulating realistic physiological conditions. It is important to

use the units indicated in Equation 1, since the unit conversion

factors are already baked into the “51.6” coefficient (85). MHVs

should be designed to make EOA as large as possible, to

minimize the pressure drop across the valve for efficient valve

function. It is related to valve shape, size and closing mechanism

of leaflets. If we consider for example a MHV with nominal size

of 27 mm, ISO 5840-2 requires a minimum EOA of 1.70 cm2.
2.2.3 Total regurgitation volume
Total regurgitation volume is the total volume of blood that

backflows through the valve during one heart cycle, due to

retrograde flow during valve closing and reverse leakage flow

through the hinges. Total regurgitation is typically reported as a

percentage of the stroke volume. MHV design should seek to

minimize the regurgitant volume to maximize the heart’s

efficiency by maintaining the correct cardiac output of the body

(35, 36). For a MHV with nominal size of 27 mm, ISO 5840-2

requires a maximum total regurgitation fraction of 15%. In

Table 1, total regurgitation volumes for some commercial valves

have been reported as observed in few experiments.
2.2.4 Shear stresses
Shear stresses are important metrics of the hemodynamic

performance and thrombogenic potential of MHVs. They have

the dimensions of force per unit area (or energy per unit
averaged
k VSS (Pa)

EOA
(cm2)

Regurgitant volume
(ml/beat)

References

– 2.73–3.07 8.4–8.9 (36, 73, 74)

– 1.44 7.7 (1.1) (75, 76)

– 1.66, 1.45 3.4, 7.5 (0.5) (36, 75, 77)

– 2.28 6.51 (36, 77)

– 1.59 4.3 (0.9) (73, 75, 78)

– 1.21 6.8 (36, 78)

– 2.24 8.3 (36, 79)

60 4.09 10.8 (36, 80, 81)

48–60 1.78 8.6 (1.6) (75)

5–15 2.36 6.3–10.3 (37, 77, 82)

53–60 1.8 6.5 (1.3) (75)

106 2.61 6–7.8 (82, 83)

– – – (84)

, effective orifice area.
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volume), and are related to velocity gradients (velocity per unit

length) and fluid viscosity:

t ¼ m _g (2)

In Equation 2, _g is a generic shear rate, while µ is the apparent

viscosity of the fluid. For Newtonian behavior, there is a linear

relationship between shear stress τ and shear rate _g.

Historically, two distinct metrics of shear stress have been

reported, sometimes interchangeably even though they are

conceptually different. One kind of shear stress can be obtained as

in Equation 2, thus representing a measure of the local,

instantaneous viscous forces in the fluid (viscous shear stress, or

VSS). Alternatively, shear stress can be calculated from the

fluctuating components of fluid velocity in turbulent flows. This

second type of stress is referred to as Reynolds shear stress (RSS)

and represents a measure of the turbulent fluctuations in the

flow (82, 86). Both viscous shear stresses (VSS) and RSS

have been linked to hemodynamic efficiency and elevated VSS

and RSS have been found to contribute to thrombogenicity of

MHVs (37, 80, 87).

Hemodynamic efficiency of MHVs decreases when excessive

shear stresses develop in the flow. These high shear forces lead to

greater viscous energy dissipation, which negatively affects both

TPG and EOA. Elevated shear stresses in MHV flow can develop

in high-speed jets as well as intermittent bursts of turbulent flow

in the wake of the valve. These flow irregularities create

inefficiencies, increasing the workload on the heart and affecting

overall valve performance.

Shear stresses exceeding normal physiological levels are

responsible for platelet activation (an important precursor of

blood clotting) or even platelet lysis. The precise mechanisms

that relate abnormal shear stresses to clotting are still unclear

and have been a major focus of MHV research for decades. It

appears that important mechanical factors should include the

intensity and duration of platelet exposure to elevated VSS, as

well as the occurrence of turbulence.
TABLE 2 Design trends found in MHVs in commercial use or in development

Valve type State Opening
angle

Housing
shape

Housi
mater

Medtronic Parallel Discontinued from
clinical use.

60o Cylindrical Graphite +
Tungsten

ATS Commercially
available

85o Cylindrical Graphite +
Tungsten

Carbomedics Commercially
available

78o Cylindrical PyC

Sorin bicarbon Commercially
available

70o Cylindrical Titanium

SJM standard + SJM
Regent

Commercially
available

85o Cylindrical Graphite

On-X Commercially
available

90o Cylindrical Graphite

Apex bileaflet MHV Newly proposed
design

89o Saddle shaped PEEK

PyC, pyrolytic carbon; PEEK, polyetheretherketone.
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Experimental measurements of VSS done by various groups

with SJM Regent heart valves show a high variability as seen in

Table 2. Klusak et al. (80) showed that although mean VSS

is much lower (60 Pa) than the threshold for hemolysis

(400–800 Pa (35, 36) the instantaneous peak VSS (120 Pa) is

above the shear stress criterion for platelet activation (10–100 Pa

(35). A similar result was obtained from an earlier numerical

study (94). A precise threshold called Hellum’s criterion was

defined as the product of shear stress and the time duration.

Platelets will activate if this value is above 3.5 Pa (35). All these

critical values were obtained from in vitro measurements.

Peak RSS values in different types of MHV are shown in

Table 2, although there is some discrepancy in reported

measurements of RSS. Earlier studies reported peak RSS during

the valve closure mid-diastolic phase (260 Pa for 23 mm SJM

Regent valve) (95) while recent work shows peak RSS is observed

during peak systole for the same valve (72 Pa) (82).

Interestingly, exceedingly low levels of shear stress are also

detrimental, since they may signal the occurrence of regions of

flow recirculation or stagnation, where conditions may be

favorable to the aggregation (coagulation) of previously activated

platelets (96, 97).

Understanding the role of shear stresses in platelet activation

and controlling them through MHV design improvements is

crucial to achieving independence from anticoagulants. Current

MHV designs have been refined to minimize shear stresses, while

avoiding development of flow circulation and stagnation regions,

as will be discussed in the next section, but clearly there is still

much work to do to reduce shear stresses to levels comparable to

naïve and bioprosthetic valves.
2.3 Current bileaflet MHV designs

The design of bileaflet MHVs has been stagnant, with one of

the most popular models, the St. Jude Medical (SJM) Regent

valve being only an incremental refinement of the original model
.

ng
ial

Hinge Leaflet
shape

Leaflet
material

Refs

20% Sudden expansion and
contraction in circular hinge

Straight Graphite + PyC +
20% Tungsten

(35, 88)

20% Open Pivot Hinge Straight Graphite + PyC +
20% Tungsten

(75, 88,
89)

Male portion of butterfly
hinge on the leaflet.

Straight Graphite coated
with PyC

(90)

Chamfered butterfly hinge
recess so that leaflets can roll
instead of slide.

Curved PyC (75, 91)

Male portion of the butterfly
hinge on the leaflet.

Straight Graphite with
PyC

(75, 92)

Male portion of butterfly
hinge on the leaflet. Smaller
recess than SJM.

Straight Graphite + 10%
tungsten

(82, 93)

Female portion of the hinge is
on the leaflets.

Curved PEEK (84)
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introduced in 1979. Since then, bileaflet MHVs have essentially

supplanted all the other mechanical designs (namely ball-and-

cage and tilting disc valves). At the same time, their adoption

rate has decreased due to the hemodynamically superior

bioprosthetic and—more recently—transcatheter tissue valves.

Table 2 summarizes the main design features of selected

bileaflet MHVs. The criteria for inclusion in the table were the

availability of detailed information on valve design and

performance from the open literature and the historical or

potential significance of their design. Apart from the Medtronic

Parallel valve (discontinued in the 1990s due to unacceptably

high levels of clotting in the hinges) and Apex valve (still in

development), all the valves in Table 2 are still being implanted

in new patients. We did not include any ball-and-cage and tilting

disc valves, although they may still be encountered in long-term

follow-up patients.

The basic design of bileaflet MHVs features two leaflets

(usually D-shaped) hinged to a one-piece housing fitted with an

outer suture ring for implantation in the aortic root (98). The

SJM Regent valve, a popular version of this design, is illustrated

in Figure 3 as an example. It is an incremental evolution than

earlier versions of the SJM bileaflet valve, which are now referred

to as Masters and Masters HP valve. The main design change

from Standard/Masters to Masters HP to Regent was the

repositioning of cuff and sewing ring, which helped increase the
FIGURE 3

Simplified sketch of the SJM bileaflet valve. In subsequent iterations
(from the original Masters design to Masters HP and finally to
Regent), the sewing cuff has been shrunk and mover from intra-
annular to supra-annular position, resulting in an increase of the
orifice-to-annulus diameter ratio. The ratio values reported in the
figure are specific to the 19mm version of the SJM valve.
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orifice-to-annulus ratio from 56% (Standard valve) to 72%

(Masters HP valve) to 84% (Regent valve), resulting in improved

EOA and TPG (99). The hinges follow a peg-and-recess design,

with the recess usually located in pockets within the housing,

and they allow for the leaflets to open to a maximum angle

(relative to the annulus plane) between 60° and 90°. Most MHVs

are designed for adult patients, with nominal dimensions

between 19 and 31 mm. The only MHV approved for pediatric

patients is the 15-mm SJM Masters HP valve.

The Sorin Bicarbon MHVs featured curved leaflets, which was

a major departure from the flat design of the SJM valves. In

addition, the hinges of the Sorin valves were designed to roll

instead of slide (91). Overall, the performance of the two valves

was similar, with the Sorin exhibiting higher EOA and smaller

regurgitation (73, 75, 78).

The hinge designs of most MHVs include a butterfly shaped

recess with the male configuration (Table 2) where the leaflet

moves within the hinge recess. The On-X has a smaller recess

than the SJM valves. The hinges with the female configuration

where the protrusions from the hinge attach to the leaflets offer

superior hemodynamics as shown by the newly proposed Apex/

iValve design (84, 100).

For most MHVs, the surfaces in contact with blood are made

from pyrolytic carbon, a synthetic material developed in the

1950s that exhibits low friction and wear and remarkably good

thromboresistance. In most cases, pyrolytic carbon is used as a

coating to the more durable materials used for the bulk of

leaflets and housing, such as graphite and titanium alloys.

Exceptions to these materials are the recent On-X valve, which

uses tungsten, and the still-in-development Apex valve, whose

prototypes were made either from aluminum or PEEK. PEEK is

a rigid polymeric material that has recently been investigated for

its good durability and thromboresistance (4, 101).
3 Recent trends in MHV design

The incremental evolution of the popular SJM bileaflet MHV

design is illustrative of the limited innovation over the past 50

years. To the best of our understanding, that is partly due to the

research challenges that have hampered a better understanding of

the mechanisms of flow-induced blood clotting in MHVs (as

discussed section 4), and partly due to the rise of alternative

bioprosthetic valves (first surgical, and then transcatheter ones),

which for a time were expected to completely supplant MHVs

for aortic valve replacement. However, MHVs are still the

preferred option for specific populations (20, 53, 102), and recent

efforts to innovate design, materials and surface treatment of

MHVs have revived the hope that they may achieve

independence from anticoagulants.

Hinge design, number and curvature of the leaflets and closing

dynamics have been the focus of recent research. The On-X aortic

bileaflet MHV (Figure 4A) was approved by the US FDA in the

early 2000s and marketed with an emphasis on the reduced need

for anticoagulation therapy (103). In many ways, the On-X valve

represented a departure from the traditional MHV design. The
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FIGURE 4

Bileaflet valves in open position (A) On-X valve design. Reproduced with permission from “0n-X@ Aortic Heart Valve” by Artivion, Inc. Used with the
Permission of Artivion, Inc. (B) Newly proposed iValve design. Adapted with permission from “Rendered isometric views of the iValve are shown in the
A) closed and B) open positions. Both the housing and leaflets are identifiable” by Dylan Goode, Lawrence Scotten, Rolland Siegel and Hadi
Mohammadi, licensed under CC BY-NC 4.0.
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length-to-diameter ratio is closer to a naïve aortic valve. A leaflet

opening angle of 90° was the largest yet (Table 2), and combined

with a tapered housing inlet, an actuated pivot and leaflet contact

at two points, it improved valve hemodynamics and reduced

thrombogenicity (93) compared to existing MHVs. One major

drawback of the On-X valve is the occurrence of leaflet migration

(104–106), which has rarely been observed in other types of MHV.

More recently, a new valve design was proposed with the

promise to significantly reduce thrombus formation due to

stagnant blood in the hinge region (84). An earlier version of

this design, dubbed Apex, (Table 2) featured saddle shaped

housing, female portion of butterfly hinges on the leaflet instead

of the male portion, and a one-point contact between the leaflets

and the housing (84). Subsequently, Mohamadi et al. introduced

the iValve MHV as an evolution of their Apex valve (100). The

iValve housing has a saddle shape that pushes blood flow

towards the hinge ensuring proper washout. The hinge design is

different from the Apex design, since the butterfly shaped

appendage has been replaced by placing a pie shaped appendage

on the housing with a C-shaped open socket on the leaflets.

The curved leaflets of the iValve (Figure 4B) effectively eliminate

the lateral jets of traditional bileaflet valves, resulting in a single central

jet (107). Based on the limited results reported so far, this major

design change may improve hemodynamics and increase the

effective orifice area (100). For instance, the closing time and

volume of the iValve are improved compared with SJM Regent and

ON-X valves (107). The backflow velocity was lower with no

fluctuations. The TPG of the iValve is also better compared to the

SJM and ON-X valves. While still in development, the Apex/iValve

design is an example of innovation that may pave the way for

significantly better MHVs.
3.1 Trileaflet MHVs

The concept of a trileaflet mechanical valve is not particularly

novel (24–26, 29, 30, 108), but some recent studies have rekindled
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the interest in this design (109–111). Trileaflet MHVs feature a

main central jet, plus three relatively smaller side jets, which

reportedly results in smaller velocity gradients compared to

bileaflet MHVs (28, 112). The closing mechanism of a trileaflet

MHV also appears to create smaller velocity gradients and prevent

cavitation, as the swirling vortices during decelerating phase of

forward flow initiate closing earlier than bileaflet MHVs (113).

Trileaflet MHVs have been investigated extensively in vitro (27,

109, 110, 113), in silico (28, 114–116) and in animal studies (24–26,

30, 108, 111, 117). Although preclinical trials showed promising

results in terms of blood compatibility, no trileaflet MHV has

been approved yet for clinical use. Several research groups tested

the hemodynamic performance of the Lapeyre-Triflo MHV,

manufactured by Triflo Medical Switzerland. The leaflet opening

angle of the Lapeyre-Triflo valve is 90 degrees, which matches

that of the On-X bileaflet valve and is higher than most

commercial MHVs. Reportedly, the increased opening angle

reduces disturbance in the forward flow by increasing the EOA

for the same valve size (53). In preclinical studies, the

thrombogenic potential of the Lapeyre-Triflo valve in calves was

comparable to bileaflet MHVs (108, 111). A recent in vivo

implantation of a novel 21-mm Lapeyre-Triflo valve in sheep

showed promising preliminary results when monitored over

1 year post surgery (117). TPGs were low, regurgitation was

minimal, no hemolysis was detected and thrombogenicity was

low even without anticoagulation therapy.
3.2 Surface materials, coatings and
treatment

Pyrolytic carbon has been the blood-contacting material of

choice for MHVs for decades, and is used in many MHVs due

to its superior hemocompatibility and favorable mechanical

properties (118). For instance, valves made using titanium alloy

with a pyrolytic carbon coating provide excellent structural

stability as well as decreased thrombogenicity (91).
frontiersin.org

https://artivion.com/
https://www.sciencedirect.com/science/article/pii/S0021929024003488
https://www.sciencedirect.com/science/article/pii/S0021929024003488
https://creativecommons.org/licenses/by-nc/4.0/deed.en
https://doi.org/10.3389/fcvm.2024.1458809
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Chakraborty et al. 10.3389/fcvm.2024.1458809
Unfortunately, even the level of thromboresistance provided by

pyrolytic carbon is not sufficient to prevent blood clotting.

Table 2 lists the materials used for housing, leaflets and coating

for few commercially available bileaflet MHVs.

Blood-contacting materials alternative to pyrolytic carbon have

been explored. Tetrahedral carbon and ultra nano crystalline

diamond have shown the potential to improve wear resistance

and chemical resistance (4). Ceramics commonly used for

orthopedic and dental implants may provide benefits as a coating

material for MHVs, due to their wear resistance and stability

(53). Without compromising structural integrity, their use may

help reduce leaflet thickness, with a concomitant potential to

increase EOA. Carbon-ceramic materials have also been tested,

and it has been suggested that they may achieve biocompatibility

equivalent to pyrolytic carbon, even with substantially thinner

coatings (119, 120).

Other studies have proposed coatings to be added to the

pyrolytic carbon surfaces, to further improve thromboresistance

(121). Heparin coatings can provide additional protection to

clotting, but only in the short term, until the drug is completely

eluted into the bloodstream (122–124). Attempts to modify the

surface chemical composition by applying a dense titanium oxide

coating on pyrolytic carbon (125) or by implanting nitrogen ions

to the surface (126) have shown only marginal benefits. Research

on the addition of superhydrophobic coatings to pyrolytic carbon

has shown some potential. Superhydrophobic coatings trap thin

layers of air on valves and thereby decrease the contact area

between solid and liquid (127). The small contact areas decrease

blood cell adhesion and friction to the pyrolytic carbon surface

(32, 127–130). Unfortunately, experimental work has shown

mixed results with regard to the efficacy of these coating

materials in reducing the likelihood of platelet damage and

activation. Bark et al. reported that for a contact angle of 160°, a

superhydrophobic spray on a pyrolytic carbon surface eliminated

adhesion of platelets and leukocytes. The performance index (PI)

of the coated valve improved by 2.5% compared to an uncoated

valve (32). Hatoum et al. further investigated the hemodynamic

parameters like RSS and instantaneous VSS for a 3D-printed

MHV with superhydrophobic coating. The flow metrics that are

correlated with platelet damage did not change showing that

superhydrophobicity does not improve valve hemodynamics (131).

Finally, various kinds of surface treatment have been proposed

to modify its topology to make it more thromboresistant (4).

Laser ablation is a cost-effective, environment-friendly, precise

and quick technique to create superhydrophobic surfaces on

different materials, as the surface roughness can be switched

from nanoscale to microscale conveniently (132–134). Laser

etching of the pyrolytic carbon of SJM valves (127) (135)

produced an increase in the contact angles, which may be

conducive to improved hemodynamics, via reduced flow

resistance, and thromboresistance. Both hemolysis rate and flow

pressure drop reduced further when the superhydrophobic

surfaces were laser processed on PyC. The non-equilibrium

surface tension in a gradient hydrophobic surface drives droplet

movement that can potentially reduce turbulence, mitigating

thrombus formation (136).
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3.3 Vortex generators

The surface of MHV can be altered by the addition of passive

flow control elements, referred to as vortex generators (VGs). VGs

are placed on the MHV leaflet surface (137) to delay flow

separation and reduce turbulent shear stresses (33). It has been

reported that VGs can mitigate the thrombogenic potential of the

turbulent jet that develops in the narrowing gap between the two

leaflets during closing (138). One downside is the drag penalty

associated with VGs (33, 139). PIV and CFD studies have

investigated the effect of shape, height, spacing and configuration

of VGs, to maximize the hemodynamic benefits while

minimizing the excess drag (33, 58, 137, 139, 140). Hatoum et al.

showed that a co-rotating equally spaced configuration of

rectangular shaped VGs on a 23-mm 3D-printed MHV

(Figure 5) offered the optimal performance with improved EOA,

minimum TPG and turbulence during pulsatile flow conditions

in a mock circulation loop (33, 139). Computational studies by

the same author showed that a co-rotating VG configuration can

reduce blood cell damage by 4.7% in comparison to a valve

without VGs (139). The same study showed that counter-rotating

configurations proved to be detrimental as it increased the blood

damage by 3.7%. Recent computational studies by Salleh et al.

investigated different configurations of triangular shaped VGs on

rigid valve leaflets under steady state conditions (141). The

authors reported that the inclusion of VGs may have a negative

impact on the EOA. In a follow-up study, they used Large Eddy

Simulation (LES) to compare the effect of using triangular VGs

on an axisymmetric aorta and an anatomic aorta. The anatomic

design was found to be more susceptible to thrombosis due to

higher peak velocity (2.03 m/s) and WSS (69 Pa) during peak

flow phase compared to the axisymmetric one (140).

The experimental studies with VGs conducted so far have not

been able to characterize the local flow between VGs, due to limited

spatial resolution. Computational studies are able to resolve those

flow features, but the computational cost of time- and space-

resolved FSI simulations including non-Newtonian effects of

blood near the VGs represents a challenge. In addition, more

research is needed to investigate additional combinations of the

VG shapes and configurations with moving MHV leaflets, which

may also help clarify the effect of VGs on the EOA (141).
4 Research challenges

4.1 Flow characterization techniques

An important aspect of the research on MHVs is the detailed

characterization of the flow in the proximity of the valve, especially

because MHV flow exhibits abnormal features that are distinct

from naïve valve flow. The flow dynamics in the proximity of the

valve are crucial to understanding the hemodynamic performance

of MHVs, as well as the potential complications that may arise

post-implantation, such as thrombosis, hemolysis, or structural

valve deterioration. First, MHV flow characterization can be used

to identify abnormal features during systole, when abnormal flow
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FIGURE 5

Time-averaged streamwise velocity contours in the monitor plane: (a) control: without VGs; (b) with co-rotating VGs; and (c) with counter-rotating
VGs. Reprinted with permission from “Time-averaged streamwise velocity contours in the monitor plane: (a) control: without VGs; (b) with co-rotating
VGs; and (c) with counter-rotating VGs” by Zhenyu Wang, Lakshmi Prasad Dasi and Hoda Hatoum, licensed under CC-BY.
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patterns such as turbulent jets, flow separation, or regions of high

shear stress may develop, and diastole, when regions of stagnation,

vortex formation, and reverse flow can emerge. Additionally, MHV

flow characterization allows one to directly or indirectly estimate

the valve performance metrics discussed in Section 2. These

metrics are typically characterized in controlled laboratory

environments using mock circulation loops (MCL), also known as

pulse duplicators, capable of replicating physiological flow near a

test MHV. To assess valve performance according to ISO 5840-2,

most MCLs are equipped with pressure and flow sensors, which

can capture pointwise or area-averaged data with sufficiently high

temporal resolution.

To understand the underlying mechanisms of MHV

thrombosis and test the effect of design changes, a more detailed

characterization of the flow aims at measuring the velocity field

within the flow. Eulerian velocity maps with sufficiently high

spatial and temporal resolution can be used to estimate

important features, such as local and convective accelerations,

shear rates, vorticity, Lagrangian trajectories and coherent

structures (47, 55, 142). In addition, if assumptions are made on

the mechanical response of the fluid to shearing (e.g., if

Newtonian flow behavior is assumed), one can estimate viscous

shear stresses and Reynolds shear stresses, as well as the time-

dependent mechanical loading experienced by a platelet along a

Lagrangian trajectories (143, 144). These estimates have been

used in combination with blood damage index (BDI) models to

quantify the total damage potentially experienced by a platelet

during a single pass through the MHV. There is some evidence

that accumulated damage (even below lethal thresholds) may

lead to platelet activation and coagulation (145, 146).
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Since fluid velocity data are so critical, researchers have used

experimental and numerical techniques to measure it. Particle

Image Velocimetry (PIV) includes several techniques, all based

on the same foundational principles, illustrated in Figure 6. The

flow is seeded with neutrally-buoyant scattering or fluorescent

particles, a slice or volume of the flow is illuminated (typically

with a laser source), images of the illuminated particles are

collected in pairs, each pair of images is divided into small

interrogation windows and analyzed with cross-correlation

algorithms to estimate the particle displacement vector Δx for

each interrogation window. The calculated vector Δx/Δt (where

Δt is the temporal separation between the two images) represents

the velocity of the flow at a specific position in the flow

(associated with an interrogation window). PIV is commonly

used for the flow characterization of cardiovascular devices, as it

allows for time- and space-resolved velocity data. Depending on

the specific PIV technique, it is possible to measure 2 or 3

components of fluid velocity either in a planar or a volumetric

domain of the flow.

Planar two-component (2D-2C) PIV has been extensively used

to non-invasively investigate the MHV flow features during in

vitro experiments. The recommendations for effectively using PIV

to calculate important metrics like residence time, flow velocity

and shear stress have been compiled by Raghav et al. (147). 2D-

2C PIV was used to quantify velocity fields near valve leaflets

under both steady (29, 148) and pulsatile flow conditions (55, 137,

149, 150). Experimental studies with PIV have shed light on the

characteristics and relative strength of the three jet-flow observed

during systole, when the valve is fully open (55), as well as the

role of flow instability developing in the decelerating flow during
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FIGURE 6

Principles of 2D-2C PIV. A high-speed camera captures images of
the seeding particles in the plane illuminated by a thin laser sheet
(pulsed). Each image is divided into a grid of interrogation
windows. Pairs of single-exposure images (delayed by Δt) are
analyzed using cross-correlation algorithms to determine the
particle displacement Δx (in the plane of the laser sheet) for each
interrogation window. The result is a vector map of the two
components of the fluid velocity in the plane of the laser sheet.
The delay Δt affects the temporal resolution of the velocity maps,
while the distance between the center points of the interrogation
window affects the spatial resolution.
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late systole, which may trigger short burst of turbulent flow in the

ascending aorta (47). 2D-2C PIV has also helped characterize the

high-speed jets that develop in the narrow gaps of the valve hinges

during diastole, when the valve is fully closed (80, 151). All valve

designs include some level of hinge clearance, for washout

purposes, but hinge flow during diastole is prone to high shear

rates, which may lead to platelet activation or even damage.

Because 2D-2C PIV can only measure two components of the

velocity in one plane, most studies have focused exclusively on the

in-plane velocity in the midplane perpendicular to the rotation axis

of the leaflets. Several studies have used more advanced PIV

configurations than 2D-2C PIV to overcome the inability to resolve

the out-of-plane velocity components (152). Stereoscopic PIV

(planar domain, three components of velocity) has allowed for

three-dimensional reconstruction of turbulent kinetic energy and

vortical structures downstream of MHVs, which for instance has

demonstrated the importance of valve orientation when the valve is

used in the mitral position (153). Hinge jets with high three-

dimensional velocity and turbulence were accurately captured with

mechanical and bioprosthetic heart valves in multiple studies
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exhibiting steady (154) as well as pulsatile flows (152, 155, 156).

The limitation of stereo-PIV technique is that the volume of

interest is reconstructed from different 2D measurement planes.

This requires complex setups to move the PIV system, time-

consuming calibration, and post-processing techniques. The

introduction of tomographic (157) and holographic PIV

(volumetric domain, three components of velocity) enabled

capturing all three velocity components simultaneously over a

volume of interest. 3D PIV studies investigated the flow topology

behind bioprosthetic valves (158) and trileaflet MHVs (159). A

recent tomographic PIV study with a MHV in the mitral position

analyzed the complete evolution of the vortical structures during a

heart cycle and reported lower turbulent kinetic energy levels

during mid-diastole and systole compared to tilting-disc valves (160).

Ongoing developments in PIV data processing algorithms, along

with the introduction of higher-speed higher-resolution cameras,

will lead to even more detailed characterizations of MHV flow

dynamics, against which numerical models and clinical data can

be compared. However, PIV suffers from some major limitations

which are particularly relevant to MHV studies. First and

foremost, PIV requires a transparent fluid, which prevents the use

of whole blood in this kind of study. Moreover, the need for

adequate optical access to the fluid domain under investigation

makes it difficult to measure flow near the valve (e.g., hinge flow).

To overcome this limitation, researchers must use optically clear

models of the aortic root, and in some cases even clear models of

the MHV. Glass, acrylic, polycarbonate and silicone elastomers

have been used in combination with either water or blood

analogues, typically a 40:60 mixture of water and glycerol to

replicate blood viscosity (xanthan gum can be added to better

model the non-Newtonian behavior of blood). Unfortunately,

every combination of solid and fluid listed above results in a

mismatch of their refractive index, which creates optical distortion

and reduces the accuracy of velocity measurements from PIV

(161–163). Another limitation of PIV is that, even with the most

advanced cameras and laser sources currently available, resolution

may fall short of resolving all the relevant temporal and spatial

scales of MHV flow (37, 47).

While PIV is the most common in vitro flow measurement

technique for MHV, some earlier studies adopted Laser Doppler

Velocimetry (LDV), which is a well-established velocity

measurement technique that allows to collect high-quality data

from a single point in the fluid domain (51, 164). LDV has some

advantages over PIV, namely higher accuracy and temporal

resolution, no need for flow seeding, and lower sensitivity to

refractive index mismatch (165). However, PIV is superior

because of its ability to visualize entire flow fields simultaneously,

which makes it possible to capture flow patterns and structures.

As briefly mentioned above, in vitro flow characterization

studies commonly rely on test fluids exhibiting Newtonian

behavior (water-glycerol mixtures, or just water). These fluids at

best replicate the viscosity of whole blood (about 3.5 cP at high

shear rates, where the stress-shear rate curve becomes

approximately linear), but they fail to replicate both the nature of

whole blood (a concentrated suspension of cells) and its non-

Newtonian behavior. While it is generally accepted that the
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1458809
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Chakraborty et al. 10.3389/fcvm.2024.1458809
rheological behavior of blood in the aorta is largely Newtonian, as

shear rates are above 100 s−1, there is some evidence that studies

with Newtonian fluids may underestimate the extent of blood

cell damage associated with MHV flow (166).

Because of their reliance on laser illumination, PIV and LDV

can only be used in in vitro studies. These techniques require

precise optical access to the flow field, making them unsuitable

for direct use in living organisms, where such access is typically

obstructed by biological tissues. However, in the context of this

review it is worth mentioning two techniques that can be

employed both in vitro and in vivo, providing crucial insights

into the hemodynamic performance of MHVs in clinical and

research settings: phase-contrast magnetic resonance imaging

(PC-MRI), and echocardiography particle image velocimetry

(Echo-PIV). PC-MRI is a non-invasive imaging technique that

can be used to visualize and quantify blood flow, providing time-

resolved three-component velocity data (also known as 4D flow

MRI), making it suitable for capturing complex flow patterns and

turbulence downstream of MHVs (167, 168). Echo-PIV is an

emerging technique that combines the principles of traditional

PIV with ultrasound imaging to measure flow velocities in vivo

and in vitro (169). In Echo-PIV, microbubbles or contrast agents

are introduced into the bloodstream to act as tracer particles, and

their motion is tracked using high-frame-rate ultrasound

imaging. By analyzing the movement of these particles, Echo-PIV

can generate detailed velocity fields similar to those produced by

PIV, but in a non-invasive, in vivo context. Echo-PIV is still a

relatively new technique, but it holds great promise for bridging

the gap between in vitro and in vivo studies of valve

performance. In addition, it has the potential to be used for

monitoring patients with implanted MHV (170).
4.2 Numerical approaches

Computational fluid dynamics (CFD) have been extensively

used to simulate the three-dimensional hemodynamics of MHVs

to obtain reproducible, faster, cost-effective insight into the flow

physics (50, 171–173). Some of the simpler models simulate

MHV flow with fixed leaflets combined with either steady or

pulsatile flow conditions, to investigate the triple jet MHV flow

dynamics when the leaflets are fully open (36, 171, 174). More

refined approaches may prescribe leaflet motion, as derived from

experiments, to better simulate MHV flow features with moving

leaflets (55, 174).

More comprehensive approaches employ coupled fluid-

structure interaction (FSI) algorithms, where leaflet motion is not

prescribed but calculated by the model simultaneously with the

pulsatile flow. A review by Sotiropulos et al. describes the

detailed findings from FSI simulations that investigates the

vorticity dynamics, asymmetrical leaflet motion and the effect of

implanted valve orientation on MHV hemodynamics (95).

Recent advancements in the coupling methods of the fluid and

structural domains and developments in individual fluid-

structure solvers have enabled numerical simulations of patient-

specific hemodynamics across heart valves (175). Abu Bakar
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et al. (176) validated a FSI model from PIV data to compare

velocity and vorticity in a MHV flow domain. Fully coupled two-

way FSI studies are ideal for investigating MHV dynamics where

fluid and structural domains are solved in parallel (177). Mutual

interactions between valve leaflets were accounted for through

implicit coupling methods (178, 179). These studies are

frequently done using high performance computing (HPC)

clusters depending on the model complexity and variability of

model parameters.

Grid based methods with fixed grid, moving grid or a

combination of both are conventionally used in these solvers.

The k-ω shear stress transport (SST) model numerically solves

the flow equations and calculates turbulent kinetic energy,

turbulent dissipation in addition to velocity and shear stress

fields (180, 181).

In a different approach, termed the particle approach, the fluid

phase is modeled by the lattice Boltzmann method (LBM) as a

distribution of fictitious fluid particles. Results from this

approach can be used for Lagrangian tracking of platelet

activation or observing the influence of hematocrit on MHV

hemodynamics (94, 182, 183). The standard bounce back (SBB)

method added to the LBM improves numerical stability for

retrieving accurate MHV flow parameters while the external

boundary force (EBF) technique of the LBM considers platelets

as points with no volume and can help accurately predict platelet

activation and blood damage (175).

Overall, alternative computational methods like smooth

particle hydrodynamics have shown promise in investigating

native heart valves (184, 185) that can extend to study of MHVs.

The recent advent of physics-informed neural networks (PINNs)

can enable future studies of patient specific MHV hemodynamics

and integrate them with multi-modality data to provide a

comprehensive model.

PINNs can personalize in-silico models obtained from 4D-MRI

cardiac images based on the anatomy and the microdetails of the

vasculature (186). The strength of this method is its flexibility to

define all flow variables as approximate functions of space and

time that can approximately match the boundary conditions and

measurement data. PINN studies enable wall shear stress

calculation with sparse data where inflow and outflow boundary

conditions were not well defined (187). Recent work employed

PINN algorithms to investigate flow through a transcatheter

aortic valve (188), abdominal aorta (189) and the left ventricle

(186). Future implementation of PINN in predicting non-

invasive hemodynamic measurements can accelerate patient

specific treatment and diagnosis.
4.3 Blood clotting studies

MHV flow characterization in MCLs with transparent blood

analogues is useful for comparative studies, as it can provide

indirect evidence of thrombogenicity such as shear stresses,

residence times and blood damage indices. However, this kind of

study alone is not sufficient to investigate all the factors involved

in the complex mechanisms of platelet activation and clotting.
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To establish a link between abnormal MHV flow features and clot

formation, whole blood should be used (5, 14, 186).

Early studies of flow-induced blood clotting focused on

exposing whole blood to controlled flow conditions. Those

studies demonstrated that prolonged exposure of cells to

abnormally high-shear stress is responsible for both hemolysis

(187, 188), platelet lysis and activation (189). Experiments in

steady mean flow have shown that hemolysis levels are

significantly higher in turbulent flow than in laminar flow at the

same mean shear stress (190). Importantly, those early studies

helped identify reference threshold values of viscous shear stress

for platelet lysis and activation, and contributed to the idea of

sublethal damage accumulation, which may activate platelets over

multiple passings through the MHV, eventually leading to

coagulation. These findings have been included into empirical

models that predict platelet damage from shear stress and

residence time data (143, 145, 191). It is important to point out

that early studies of flow-induced blood clotting relied on

simplified flow systems, such as cone-and-plate rheometers, and

thus could not replicate realistic MHV flow.

Some studies have attempted to characterize MHV flow-induced

clotting using enzyme-activated milk as the test fluid. This approach

is based on some analogies between the mechanisms of clotting of

enzyme-activated milk and whole blood (110, 192, 193). Even

fewer studies have exposed MHVs to whole blood. One example is

the small-volume, biocompatible pulse duplicator developed at

Georgia Tech (194). The system was designed to require only

150 ml of whole blood, which could be obtained from a single

donor. Results included tests with a 23-mm St. Jude Medical

Regent valve in the aortic position. The same system was used for

both MHV flow characterization, with PIV and a transparent

blood analogue, and coagulation studies, with freshly drawn

human blood. Another example is the THIA (Thrombosis Tester

Helmholtz Institute), a platform that has gone through several

iterations. The latest generation (THIA 3) is a pulse duplicator

suitable for evaluating initial clot formation in MHV under

realistic anatomic and hemodynamic conditions (195). The ability

of THIA 3 to compare the thrombogenic potential of MHVs was

validated using a 23-mm St. Jude Medical Regent valve and a test

valve (made from polycarbonate urethane) with geometrical and

surface features designed to make it highly thrombogenic.
4.4 The need for novel experimental
approaches

There are only a few in vitro studies where mechanical heart

valves are tested with whole blood under realistic hemodynamic

conditions. The main reason is the incompatibility of the

commonly used laser-based techniques (PIV, LDV) with opaque

fluids such as whole blood. In addition, it is challenging to

design a pulse duplicator where the thrombogenic effect of MHV

flow can be isolated from other potential sources of blood

clotting, such as other foreign surfaces in the loop or mechanical

loading caused by other parts such as pumps or resistance valves.

One promising solution has been recently proposed by Devos
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et al. (102). Their MarioHeart system is based on a 155-ml

circular loop, housing a MHV, which is accelerated alternately

clockwise and counterclockwise. In one phase, the relative

motion between the MHV and blood opens the valve, simulating

systole; in the other phase, the flow closes the valve, mimicking

diastole. This design makes it possible to replicate MHV flow in

whole blood while eliminating surface and mechanical elements

that could confound the analysis and interpretation of clotting

results. The systems just described (102, 194, 195) represent

promising solutions to the challenge of in vitro testing of MHVs,

and hopefully will inspire more investigators to shed light on the

link between MHV detailed flow features and blood clotting.
5 Future directions

The next generation of MHVs needs to deliver on the promise of

mitigating thrombogenic risk for the many patients who still receive

this kind of valve. This ambitious goal requires innovation in valve

design, materials and surface modifications. The review of recent

research involving MHVs underscores some of the recent progress

made in the last decade, for instance trileaflet MHVs, valve

designs with a single central jet like the Apex/iValve concept, or

the potential of PEEK as an alternative to pyrolytic carbon. These

ideas show that MHVs superior to the traditional bileaflet MHV

design are possible. Current developments in 3D printing and

rapid prototyping technologies can be used to fabricate and test

multiple design variations of bileaflet and trileaflet MHVs.

However, prototyping valves coated with pyrolytic carbon (for

direct comparison with commercial MHVs in thrombogenicity

tests) remains a challenge for many academic laboratories.

The future of MHV thrombosis research also encompasses

innovation in testing, across in vitro, in-silico and preclinical

platforms. This will allow more accurate, comprehensive and

reproducible solutions to investigate flow-induced clotting

mechanisms and the effect of novel design paradigms on

MHV thromboresistance.

While traditional laser-based techniques such as PIV and LDV

provide valuable insights into valve flow dynamics, their limitations

with opaque fluids like blood have hindered testing with whole

blood. Innovation in in vitro testing means overcoming those

limitations and achieving a tighter integration of flow

characterization and thrombogenicity testing systems. Currently,

the closest integration attainable in vitro is a pulse duplicator

that can be run with a clear blood analogue, for detailed flow

characterization, and whole blood to study the onset and growth

of blood clots. One such example is the MarioHeart system,

which promises the ability to simulate realistic conditions with

whole blood as the test fluid, although it remains to be proven

that it can isolate the thrombogenic potential of MHVs from

other confounding factors present in the pulse duplicator.

Whereas a dual-fluid platform suitable for either a clear fluid or

whole blood may prove challenging, the second best option would

be a twin system with separate clear-fluid MCL and whole-blood

thrombogenicity tester. This is a viable approach, provided that

the two testers produce matching flow profiles, so the detailed
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1458809
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Chakraborty et al. 10.3389/fcvm.2024.1458809
flow data from PIV or LDV can be combined with the clotting data

from the whole blood tests.

An alternative approach to experimental research on MHV

thrombosis may rely on non-laser-based flow characterization

techniques, such as PC-MRI and echo PIV. Because neither

method requires optical access to the flow, they can be used with

whole blood, allowing to collect detailed flow and clotting data

simultaneously. While PC-MRI is only available in few research

facilities and the resolution of echo PIV is still limited compared

to laser-based PIV, the potential of these techniques for in vitro,

preclinical and clinical studies of MHV thrombosis cannot be

overstated.

CFD will play an increasingly pivotal role, because it allows for

the efficient and systematic exploration of design variations, to

identify the most promising features to be subsequently tested in

more focused in vitro studies. To accomplish that, there is a need

to increase the resolution of multiscale FSI models, while keeping

the computational cost reasonably low. Looking further ahead,

future numerical approaches will have to go beyond pure fluid

dynamics, by integrating mechanochemical models of flow-

induced blood clotting (196).
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