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2McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston,
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Background: Effective management of dual antiplatelet therapy (DAPT)
following drug-eluting stent (DES) implantation is crucial for preventing
adverse events. Traditional prognostic tools, such as rule-based methods or
Cox regression, despite their widespread use and ease, tend to yield moderate
predictive accuracy within predetermined timeframes. This study introduces a
new contrastive learning-based approach to enhance prediction efficacy over
multiple time intervals.
Methods: We utilized retrospective, real-world data from the
OneFlorida + Clinical Research Consortium. Our study focused on two primary
endpoints: ischemic and bleeding events, with prediction windows of 1, 2, 3,
6, and 12 months post-DES implantation. Our approach first utilized an auto-
encoder to compress patient features into a more manageable, condensed
representation. Following this, we integrated a Transformer architecture with
multi-head attention mechanisms to focus on and amplify the most salient
features, optimizing the representation for better predictive accuracy. Then,
we applied contrastive learning to enable the model to further refine its
predictive capabilities by maximizing intra-class similarities and distinguishing
inter-class differences. Meanwhile, the model was holistically optimized using
multiple loss functions, to ensure the predicted results closely align with the
ground-truth values from various perspectives. We benchmarked model
performance against three cutting-edge deep learning-based survival models,
i.e., DeepSurv, DeepHit, and SurvTrace.
Results: The final cohort comprised 19,713 adult patients who underwent DES
implantation with more than 1 month of records after coronary stenting. Our
approach demonstrated superior predictive performance for both ischemic
and bleeding events across prediction windows of 1, 2, 3, 6, and 12 months,
with time-dependent concordance (Ctd) index values ranging from 0.88 to
0.80 and 0.82 to 0.77, respectively. It consistently outperformed the baseline
models, including DeepSurv, DeepHit, and SurvTrace, with statistically
significant improvement in the Ctd-index values for most evaluated scenarios.
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Conclusion: The robust performance of our contrastive learning-based model
underscores its potential to enhance DAPT management significantly. By
delivering precise predictive insights at multiple time points, our method meets
the current need for adaptive, personalized therapeutic strategies in cardiology,
thereby offering substantial value in improving patient outcomes.

KEYWORDS

dual antiplatelet therapy, contrastive learning, transformer, predictive modeling, adverse
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1 Introduction

Coronary artery disease (CAD), the leading cause of death

globally, affects around 200 million people worldwide and results

in around nine million fatalities annually (1). It remains the

most common prevalent heart condition in both the United

States and worldwide (2, 3). In 2019, CAD was identified as the

single largest contributor to global mortality, highlighting its

critical impact on population health (4). Patients with CAD can

significantly improve their prognosis through early

revascularization, primarily percutaneous coronary intervention

(PCI), with drug-eluting stent (DES) implantation as its core

part. Following PCI, current guidelines recommend patients

receive dual antiplatelet therapy (DAPT), a regimen combining

aspirin and a P2Y12 receptor inhibitor, to reduce risks of

myocardial infarction (MI) and stent thrombosis. However, the

management of DAPT poses a great challenge as shorter

durations may fail to prevent the recurrence of ischemic

conditions, whereas prolonged usage can heighten the bleeding

risk. Hence, DAPT remains one of the most intensively

investigated interventions in cardiovascular medicine (5). The

decision-making process regarding the treatment duration

requires a thoughtful evaluation of the trade-offs between

ischemic and bleeding risks (6).

To support clinical decision-making, the cardiovascular

community has developed various risk-predictive scores.

Notably, the DAPT score (7, 8) and the PRECISE-DAPT score

(9, 10) are prominent tools derived from clinical trials,

designed to aid in determining the optimal duration of DAPT.

The DAPT score focuses on the benefits of extending DAPT

beyond 1 year (12–30 months), whereas the PRECISE-

DAPT assesses the risks and benefits of long (12–24 months)

vs. short (3–6 months) DAPT durations. Both scores utilize a

manageable number of predictors, providing convenience in

assisting clinical practice. However, their performance is

relatively modest, with c-scores around 0.70 for risk

stratifications (7, 9). Additionally, the clinical trial-based

derivation source poses some restrictions, applicable only to a

fixed time window and a predefined medication regimen. As

treatment strategies evolve, there has been a shift towards

more personalized and flexible DAPT regimens, such as

de-escalation or abbreviation (11, 12), facilitated by the

adoption of newer-generation stents and more effective

antiplatelet medications. Concurrently, the availability of extensive

healthcare data has paved the way for AI-based innovations in
02
risk assessment (13, 14). Numerous studies have utilized

machine learning techniques, such as XGBoost and Random

Forest, to predict the risks of adverse events following PCI or

acute coronary syndrome (ACS) (15–18). However, among

these studies, very few focused specifically on DAPT

management. To address this gap, we previously developed

AI-DAPT (19), an approach using the Light Gradient Boosting

Machine (LGBM) classifier (20) to dynamically forecast

adverse outcomes post-PCI with various DAPT durations.

While this model demonstrated strong performance, it

represents an earlier generation of machine learning methods

that primarily depend on structured decision trees.

In pursuit of further advancement, our current research has

turned to the transformative capabilities of transformer-based

models, which are revolutionizing various fields with their

superior ability to handle complex patterns and data

relationships. Transformer, popularized by their application in

natural language processing (NLP) through models like the

generative pre-trained transformer (GPT), operates on the

principle of self-attention mechanisms that process input data

in parallel. This allows for significantly improved efficiency

and depth in modeling the temporal dynamics and

interactions, which are critical for accurate survival analysis in

clinical settings. In this study, we introduce a cutting-edge

approach by combining transformer architecture with

contrastive learning—a technique that enhances learning

efficiency by contrasting pairs of similar and dissimilar data

points (21). The Contrastive learning process involves

minimizing a contrastive loss function that decreases the

distance between similar data points while increasing the

distance between dissimilar data points (21). It has been

explored in biomedical research recently. Chen et al. proposed

a deep multi-view contrastive learning model using multi-

omics data for cancer subtype identification (22). Park et al.

utilized deep contrastive learning for efficient molecular

property prediction (23). Kokilepersaud et al. developed a

contrastive learning-based model to classify the biomarkers in

optical coherence tomography scans (24). The contrastive

element allows the model to focus on critical features that

differentiate outcomes (25, 26), making it especially adept at

handling the complexities of post-PCI risk assessment. By

leveraging the advanced AI framework, we aim to substantially

enhance the accuracy, reliability, and flexibility of risk

prediction after DES implantation, facilitating effective,

personalized DAPT duration management in CAD patients.
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2 Materials and methods

2.1 Data source and study cohort

We utilized the real-world clinical data from the

OneFlorida+ Clinical Research Consortium, an integral part of

the national PCORnet effort (27, 28). The dataset encompasses

longitudinal EHRs for approximately 16.8 million individuals in

Florida dating back to 2012 and provides a broad spectrum of

patient information, encapsulating demographics, diagnoses,

medications, procedures, and lab tests, among others. Our study

was approved by the University of Florida Institutional Review

Board (IRB) under IRB202000875 and the Mayo Clinic IRB

under ID24-001183.

A total of 66,870 adult patients who underwent DES

implantation between 2012 and 2020 were identified as potential

inclusion for this study. The index date was designated as the

date when a patient received the first DES implantation, labeled

as time 0. Patients were excluded if they met any of the following

criteria: (1) age >95 years at the index date; (2) absence of essential

data such as gender or race among their whole records, or missing

diagnosis or medication record after the index date; (3) absence of

P2Y12 inhibitor record after the index date; (4) follow-up less than

1 month after the index date (Figure 1).
2.2 Endpoints and characteristics

This study primarily focused on two endpoints: ischemia

and bleeding. The primary ischemic endpoint was a composite
FIGURE 1

Study cohort selection.
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of acute ischemic heart disease, ischemic stroke, and coronary

revascularization. The primary bleeding endpoint consisted of

a spectrum from minor to severe spontaneous bleeding as well

as blood transfusion. The details of definitions and validation

of the phenotyping algorithms could refer to our previous

study (19).

Following the approach of the PRECISE-DAPT score, we

excluded endpoints occurring during the hospital stay, which

were largely related to invasive procedures. Regarding 7 days

being the upper limit of current hospitalization trends in patients

with ACS, we started event prediction on the 8th day after the

initial invasive procedure (the index visit). DAPT exposure was

defined as the combinational antiplatelet therapy with aspirin

and a P2Y12 receptor inhibitor (clopidogrel, prasugrel, or

ticagrelor). Due to the over-the-counter availability, aspirin may

not necessarily be included as a prescription in the EHR data.

Regarding this, we assumed that all patients were on aspirin

regardless of whether the aspirin information was captured in

their records or not.

This study examined patient characteristics potentially

associated with the development of the adverse endpoints,

comprising: (1) sociodemographic information, including the age

at the index visit, sex, and race/ethnicity; (2) medical history and

risk factors, encompassing a range of factors such as prior

incidents (bleeding, myocardial infarction [MI], stroke, coronary

artery bypass graft surgery [CABG]), lifestyle factors (alcohol

abuse, smoking), health conditions (anemia, atrial fibrillation,

cancer, chronic kidney disease [CKD], congestive heart failure

[CHF], diabetes mellitus, dyslipidemia, hypertension, liver

disease, peripheral vascular disease [PVD], and venous

thromboembolism [VTE]); (3) concomitant medications,
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including angiotensin-converting enzyme inhibitors (ACEIs),

angiotensin receptor blockers (ARBs), beta-blockers, calcium

antagonists, non-steroidal anti-inflammatory drugs (NSAIDs),

and statins. The definitions of the comorbidities and generic

name sets of the medications were mainly based on the

Elixhauser Comorbidity Index, Epocrates Web Drugs, and related

studies. The standard terminologies referenced in this study

included the International Classification of Diseases, Ninth and

Tenth Revision, Clinical Modification (ICD-9-CM, ICD-10-CM)

for diagnoses, the ICD procedure coding system (ICD-9-PCS and

ICD-10-PCS), Current Procedural Terminology, 4th Edition

(CPT-4), and the Healthcare Common Procedure Coding System

(HCPCS) for procedures.
2.3 Predictive modeling

2.3.1 Contrastive learning with transformer
In this work, we proposed a unified framework for adverse

endpoint prediction for patients on DAPT post-PCI. Our

approach began with a lower-level auto-encoder (encoder-

decoder) model which extracted compressed features from the

embedding matrix to reduce dimensionality, which served as

input to the multi-head attentional transformer. We performed

contrastive learning on the transformer for the improvement of

discriminative power and robustness in the parameter space.

Specifically, we performed simultaneous optimization for both

the event classification and cumulative risk prediction tasks.

Given the inherent variability of patient data from different

subjects, leverage of the heterogeneous prediction tasks

enhances the model’s generalization ability towards the noise

and variance in the data. The model parameters are optimized
FIGURE 2

Study framework. DAPT, dual antiplatelet therapy; MSE, mean square error;
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with contrastive triplet loss, which seeks to minimize the

distance between pairs of samples with the same label and, at

the same time maximize the distance between paired samples of

different classes. Optimization of this multi-task contrastive

target encourages the model to extract meaningful

representations that are versatile across the different prediction

tasks. Specifically, our model comprises modules of input,

autoencoder, transformer encoder, contrastive learning network,

and multi-task learning for output. The architecture overview is

depicted in Figure 2.

1. Input Module. We used the one-hot encoding method to

create an embedding lookup table for all codes, then

converted values of categorical variables (such as gender and

disease) to high-dimensional vectors. We performed

standardization transformation for numerical variables (such as

age) to achieve a mean of 0 and standard deviation of 1 and

then initialized them with a random embedding. As a result,

each feature will have an embedding vector with the same size.

After that, we concatenated both types of embedding vectors to

construct a complete embedding matrix. Each patient’s

embedding is a 2-dimensional array with an M×N shape,

where M is the number of features and N is the embedding

size. This embedding matrix was the output of this Input Module.

2. Autoencoder Module. Autoencoder is an unsupervised

artificial neural network that learns efficient representations

of data by compressing input into a lower-dimensional latent

space and then reconstructing the original input from this

representation. The autoencoder has three parts: an encoder,

a bottleneck, and a decoder.

• Encoder: Learns the hidden features of the input data and

then compresses it into a smaller dimension.
PCH, piecewise constant hazard.
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• Bottleneck: Stores the learned representation. It is usually

used for further model training and prediction.

• Decoder: Reconstructs the compressed data to the original

dimension. It outputs a synthetic embedding matrix that

should be as similar as the input data.

We used mean squared error (MSE) loss (LMSE) to optimize the

loss between the input and the reconstructed data:

LMSE ¼ 1
N

X
(hi � h0i)

2

Where N is the total number of samples, hi is the i
th input and h0i is

the ith reconstructed data. The output of this module is the learned

representation from the bottleneck.

3. Transformer Encoder Module. Transformer is a popular deep-

learning model introduced by Vaswani et al. in 2017 (29). The

encoder from the transformer is the pivotal component within

the transformer architecture that has emerged as a cornerstone

in various machine-learning tasks. It employs an attention

mechanism to let the network focus on relevant parts of the

input sequence, enhancing its ability to capture long-range

dependencies and contextual information. Therefore, the learned

representation from the attentive encoder is calculated by:

Attention (Q, K , V) ¼ softmax
QKTffiffiffiffiffi
dk

p
� �

V

Where Q is the matrix of all query vectors, K is the matrix of all key

vectors, V is the matrix of all value vectors, and dk is the dimension

of the key vectors. All query, key, and value matrices are

transformed from the input embedding. The softmax
�
QKTffiffiffiffi

dk
p
�

calculates the normalized attention scores matrix (or relevant

scores matrix) between each feature. The higher attention scores

imply greater relevance and force the model to focus on certain

parts of the input sequence while generating each output

element. As a result, the learned representation is obtained by

multiplying the attention score matrix with the value matrix.

4. Contrastive Learning Module. Contrastive learning is a self-

supervised technique that learns representations by contrasting

similar and dissimilar samples. Maximizing agreement between

positive pairs (samples from the same class) and minimizing

agreement between negative pairs (samples from different

classes) enhances the model’s ability to discriminate samples

from different classes. In this project, we used the triplet loss

(Ltriplet) to minimize the distance between the embedding of

positive pairs while maximizing the distance between the

embedding of negative pairs. We modified the Ltriplet below:

Ltriplet ¼
X

max(jj f (xti )� f (xþi )jj22 þ b�jjf (xti )� f (x�i )jj2,02 )

Where f (xti ) is the embedding of the ith random selected target

sample, f (xþi ) and f (x�i ) represent the averages of embeddings
Frontiers in Cardiovascular Medicine 05
from either the same or different classes of the target sample,

respectively.

5. Output Module—Cumulative Risk Prediction. We utilized

the shared representation learning network to perform

multiple tasks using a shared feature representation. This

strategy allows the model to learn new knowledge from

different tasks and hence improve model performance. In this

project, we designed two distinct tasks: event classification

and cumulative risk prediction. The event classification is

optimized by the binary cross entropy loss (LBCE) and the

risk prediction is updated by the piecewise constant hazard

loss function (Lpc) (30).

LBCE ¼ � 1
N

XN
i¼1

yilog( p(yi))þ (1� yi)log(1� p(yi))

LPC ¼ � 1
N

XN
i¼1

diloglk(ti)(xi)� lk(ti)(xi)r(ti)�
Xk(ti)�1

j¼1

lj(xi)

 !

The goal of the piecewise constant hazard loss function Lpc is to

evaluate and minimize the discrepancy between the predicted

hazard rates (the model’s estimate of the risk at any given time)

and the actual observed data, including both event occurrences

and censored observations. By minimizing this hazard loss, the

model learns to predict the risk of events over time while

appropriately handling censored data for robust and accurate

survival predictions. The loss function consists of three key parts:

(1) Maximizing the likelihood of actual events: diloglk(ti)(xi):

This term accounts for the likelihood of observing the event at

time ti. If the event is observed (i.e., di = 1), this term contributes

positively to the likelihood of the predicted hazard rate; (2)

Penalizing for survival time predictions: lk(ti)(xi)r(ti): This term

penalizes the model for incorrect predictions of survival times.

The duration of the interval r(ti) scales the predicted hazard

rate, reflecting the fact that the event’s timing is influenced by

how long an individual survives; (3) Penalizing for cumulative

risks from earlier intervals:
Pk(ti)�1

j¼1
lj(xi)rj: This sum represents

the cumulative hazard over previous intervals, accounting for the

risk an individual faces in earlier time periods. It helps to adjust

for the fact that hazard rates earlier in the study period influence

the probability of survival at later times. In this context, ti is the

observed time for the i-th subject; di is event indicator for the

i-th subject, specifically, di ¼ 1 if the event occurred at time ti,

di ¼ 0 if the data is censored (i.e., the event didn’t happen by

time ti); k(ti) is the index of the time interval containing ti;

lk(ti)(xi) is the predicted hazard rate for the i-th subject in the

interval k(ti), based on the covariates xi and it represents the

instantaneous risk at time ti; r(ti) is duration of the interval that

contains ti; lj(xi) is the predicted hazard rate for earlier intervals

(where j , k(ti)).

As a result, the final loss function Ltotal is defined as:

Ltotal ¼ aLMSE þ bLBCE þ cLpc
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Where a, b, and c are learned coefficients to balance between each

loss function.

2.3.2 Baseline models
We chose three cutting-edge deep learning-based survival

models as our baselines: DeepSurv, DeepHit, and SurvTRACE.

The LGBM was selected as the backbone model in our previous

research (19). Since it is a classification model and does not align

with the regression nature of the survival analysis, it was not

included as a baseline in this study.

DeepSurv is a modern implementation of the Cox proportional

hazards (CPH) model using a deep neural network architecture

(31). It uses a multi-layer perceptron architecture to handle

survival data, capturing both linear and nonlinear effects from

features, and modeling the relationship between covariates and

the hazard function. The model takes baseline data as input,

processing it through several hidden layers with weights θ. Each

layer consists of fully connected nodes with nonlinear activation

functions, followed by dropout for regularization. The final layer

is a single node that performs a linear combination of the hidden

features. The network’s output is the predicted log-risk function

ĥθ(x) (31). A limitation of this model is that it is based on the

proportional hazards assumption, which means that the ratio of

hazards between individuals is constant over time.

DeepHit is another advanced deep-learning survival model that

directly learns the distribution of first-hitting times (32, 33). It

comprises a single shared sub-network and a family of cause-

specific sub-networks enabling the prediction of a joint

distribution of survival times and events. This structure allows it

to seamlessly handle multiple competing events using the same

features. DeepHit does not assume proportional hazards but it is

more complex than DeepSurv and may require more

computational resources and data.

SurvTRACE is a state-of-the-art deep learning survival model

that leverages a transformer-based architecture to handle

complex relationships in the data better to improve model

performance (34). Transformer architecture’s attention

mechanism helps engineer automatic feature learning and

increase interpretability. It can handle competing events and

multi-task learning through a shared representation network.

2.3.3 Evaluation metrics
We utilized the time-dependent concordance (Ctd) index

(34, 35) to measure the performance of cumulative bleeding risk

prediction. The traditional concordance index (C-index)

evaluates a model’s capability to rank the survival times of

different individuals accurately. It is determined by the

proportion of all possible pairs of individuals for which

the model’s predictions and the actual outcomes are concordant.

The Ctd-index extends this concept by considering survival status

at various time points. More specifically, the Ctd-index assesses

the model’s ability to predict the order of survival times over

time by accounting for the censored nature of survival data. In

addition to ignoring the bias introduced by the distribution of

censoring times, we adapt the inverse probability of censoring

weights to obtain a more reliable and robust measure of a
Frontiers in Cardiovascular Medicine 06
model’s predictive performance in the presence of censored data.

As a result, a meaningful Ctd-index typically ranges from 0.5 to

1.0. A higher value indicates better model performance in

ranking survival time or time-to-event outcomes.

We also applied the bootstrapping method to generate a new

sampling distribution for model performance evaluation.

Specifically, we performed 500 trials to select samples with

replacements from the testing set randomly. In each trial, the

sample size matched the original testing set size, and the

Ctd-index was calculated. The 95% confidence interval (CI) for

the Ctd-index was determined using the 2.5th and 97.5th

percentiles of the 500 Ctd-index values. To evaluate the

significance of the differences between our proposed model and

the baselines, we employed Welch’s t-test (assuming unequal

variance) to compare the Ctd-index values derived from the

bootstrap samples between our model and baselines.

2.3.4 Model calibration
To assess the predictive reliability of our model, we plotted

calibration curves and calculated the Brier scores. A well-

calibrated model demonstrates that its predicted probability

closely aligns with the actual likelihood of the event happening.

The Brier score is a metric commonly used to evaluate the

calibration of probabilistic forecasts, by calculating the mean

squared difference between the predicted probabilities of an event

and the actual outcomes. A lower Brier score indicates better

accuracy, with 0 being a perfect score.
2.4 Statistical analysis

For descriptive analysis of demographic and clinical

characteristics, categorical variables are reported as count (%)

and continuous variables as mean (standard deviation, SD). We

used the chi-square test for categorical variables and the Kruskal-

Wallis test for continuous variables to assess the differences

between patients who experienced events and those who did not

within 1–24 months. A two-sided p≤ 0.05 was considered

statistically significant. Welch’s t-test was applied to compare

model performance, as detailed in the Evaluation metrics section.
3 Results

3.1 Baseline characteristics

A total of 19,713 adult patients, who underwent DES

implantation with more than 1-month records after coronary

stenting, were identified as the final cohort from OneFlorida+. Of

them, 5,088 (26.5%) experienced ischemic events and 3,150 (16.4%)

encountered bleeding events within the first year post-DES

implantation. The average age of the cohort was 60.4 years with a

standard deviation of 11.8. Among them, 12,036 (61.6%) were males.

Regarding the ischemic event, as shown in Table 1, patients

with the event were younger than those without the event (59.4

vs. 63.0, p < 0.0001). Most clinical characteristics were
frontiersin.org
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TABLE 1 Baseline characteristics for patients with vs without events (ischemic and bleeding) from 0 to 12 months in the selected cohort of oneFlorida
dataset (N = 19,713).

Characteristics Ischemic event Bleeding event

Event
(n = 5,088,
26.5%)

No event
(n = 14,085,

73.5%)

p-value Event
(n= 3,150,
16.4%)

No event
(n= 16,023,

83.6%)

p-value

Age, year, mean (SD) 59.4 (11.9) 63.0 (12.0) <0.0001* 62.9 (12.5) 61.9 (12.0) 0.0001*

Male, n (%) 2,984 (58.6) 9,052 (64.3) <0.0001* 1,788 (56.8) 10,248 (64.0) <0.0001*

Ethnicity, n (%) Hispanic 1,159 (22.8) 3,082 (21.9) <0.0001* 750 (23.8) 3,491 (21.8) <0.0001*

NHB 1,050 (20.6) 1,962 (13.9) 594 (18.9) 2,418 (15.1)

NHW 2,726 (53.6) 8,185 (58.1) 1,684 (53.5) 9,227 (57.6)

Other 153 (3.0) 856 (6.1) 122 (3.9) 887 (5.5)

Presentation, n (%) Acute ischemic
heart disease

3,378 (66.4) 3,932 (27.9) <0.001* 1,356 (43.0) 5,954 (37.2) <0.0001*

History, n (%) Prior bleeding 946 (18.6) 1,633 (11.6) <0.0001* 943 (29.9) 1,636 (10.2) <0.0001*

Prior ischemic
heart disease

3,734 (73.4) 9,973 (70.8) <0.0001* 2,512 (79.7) 11,195 (69.9) <0.0001*

Prior stroke 919 (18.1) 896 (6.4) <0.0001* 476 (15.1) 1,339 (8.4) <0.0001*

Prior CABG 68 (1.3) 148 (1.1) 0.11 39 (1.2) 177 (1.1) 0.58

Comorbidities and
risk factors, n (%)

Anemia 2,348 (46.1) 4,151 (29.5) <0.0001* 2,043 (64.9) 4,456 (27.8) <0.0001*

Atrial fibrillation 1,045 (20.5) 2,277 (16.2) <0.0001* 852 (27.0) 2,470 (15.4) <0.0001*

Cancer 735 (14.4) 2,015 (14.3) 0.83 703 (22.3) 2,047 (12.8) <0.0001*

CHF 2,920 (57.4) 5,011 (35.6) <0.0001* 1,863 (59.1) 6,068 (37.9) <0.0001*

CKD 1,669 (32.8) 3,207 (22.8) <0.0001* 1,371 (43.5) 3,505 (21.9) <0.0001*

Diabetes 3,175 (62.4) 7,192 (51.1) <0.0001* 2,031 (64.5) 8,336 (52.0) <0.0001*

Dyslipidemia 4,749 (93.3) 12,176 (86.4) <0.0001* 2,913 (92.5) 14,012 (87.4) <0.0001*

Hypertension 4,708 (92.5) 12,334 (87.6) <0.0001* 2,920 (92.7) 14,122 (88.1) <0.0001*

Liver disease 910 (17.9) 1,276 (9.1) <0.0001* 621 (19.7) 1,565 (9.8) <0.0001*

PVD 2,407 (47.3) 4,324 (30.7) <0.0001* 1,644 (52.2) 5,087 (31.7) <0.0001*

VTE 416 (8.2) 463 (3.3) <0.0001* 283 (9.0) 596 (3.7) <0.0001*

Alcohol abuse 546 (10.7) 982 (7.0) <0.0001* 357 (11.3) 1,171 (7.3) <0.0001*

Smoking 2,361 (46.4) 4,808 (34.1) <0.0001* 1,462 (46.4) 5,707 (35.6) <0.0001*

Medications, n (%) ACEIs use 1,926 (37.9) 5,703 (40.5) <0.0001* 1,253 (39.8) 6,376 (39.8) 1.00

ARBs use 783 (15.4) 1,966 (14) 0.01* 548 (17.4) 2,201 (13.7) <0.0001*

Beta-blockers use 2,698 (53.0) 7,551 (53.6) 0.48 1,808 (57.4) 8,441 (52.7) <0.0001*

Calcium
antagonists use

1,326 (26.1) 4,146 (29.4) <0.0001* 1,057 (33.6) 4,415 (27.6) <0.0001*

NSAIDs use 1,000 (19.7) 2,111 (15) <0.0001* 682 (21.7) 2,429 (15.2) <0.0001*

PPIs use 1,545 (30.4) 6,066 (43.1) <0.0001* 1,260 (40.0) 6,351 (39.6) 0.72

Statins use 2,518 (49.5) 7,156 (50.8) 0.11 1,656 (52.6) 8,018 (50.0) 0.01*

ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin receptor blockers; CABG, coronary bypass artery graft surgery; CHF, congestive heart failure; CKD, chronic kidney disease;

NSAIDs, non-steroidal anti-inflammatory drugs; PPIs, proton pump inhibitors; PVD, peripheral vascular disease; VTE, venous thromboembolism.

p-values were estimated by the chi-square test for categorical variables and the Kruskal-Wallis test for continuous variables.

*p ≤ 0.05 is regarded as significant.
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significantly more prevalent in patients with ischemic events than

the non-event group. Notably, 66.4% of patients in the ischemic

event group presented with acute ischemic heart disease,

compared to only 27.9% in the non-event group (p < 0.0001). In

terms of medical history, prior conditions like bleeding, ischemic

heart disease, and stroke, were more prevalent in the ischemic

event group, all showing statistical significance (p < 0.05). For

comorbidities and risk factors, there was higher prevalence in the

ischemic group for conditions like hypertension (92.5% vs.

87.6%), diabetes (62.4% vs. 51.1%), dyslipidemia (93.3% vs.

86.4%), chronic heart failure (CHF) (57.4% vs. 35.6%), anemia

(46.1% vs. 29.5%), atrial fibrillation (20.5% vs. 16.2%), smoking

(46.4% vs. 34.1%), and alcohol use (10.7% vs. 7.0%) than the

non-ischemic group. Interestingly, the prevalence of cancer did

not differ significantly (14.4% vs. 14.3%, p = 0.83) between the
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two groups. For medication use, only beta-blockers and statins

showed no significant difference while other medications,

including the use of ACEI, ARB, calcium antagonists, NSAIDs,

and PPIs demonstrated significant differences.

Regarding bleeding events, patients who experienced a bleeding

event were older than those who did not (62.9 vs. 61.9, p = 0.0001).

Similar to the ischemic event findings, most diagnostic

characteristics were more prevalent in patients with bleeding

events, except for prior CABG, which showed no significant

difference. For medication use in the context of bleeding events,

except for ACEIs and PPIs, which showed no significant

difference between the event and non-event groups, there is a

significantly higher usage of ACEIs, beta-blockers, calcium

antagonists, NSAID, and statin drugs in the event group vs. non-

event group.
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3.2 Model performance

We assessed the performance of our proposed model against

several baselines using the Ctd-index at multiple time intervals

post-PCI, specifically in 1, 2, 3, 6, and 12 months.

For the ischemic event prediction, our model consistently

outperformed the baseline models (DeepSurv, DeepHit, and

SurvTRACE) (as shown in Table 2). Initially, in the first month, the

Ctd-index for our model was 0.88, higher than DeepSurv (0.84),

DeepHit (0.87), and SurvTRACE (0.87). This trend continued with

Ctd-index scores in the second month (0.85), third month (0.84),

sixth month (0.83), and 12th month (0.80), consistently surpassing

the corresponding baseline values. Notably, the performance

advantage was more pronounced in shorter prediction windows.

For the bleeding event prediction, similarly, our model

demonstrated superior performance (as shown in Table 3). In 1

month, our model achieved a Ctd-index of 0.82, surpassing

DeepSurv (0.79), DeepHit (0.81), and SurvTRACE (0.80). This

superiority persisted through the 2nd-month (0.81), 3rd-month

(0.82), 6th-month (0.82), and 12th-month (0.77) evaluations,

generally outperforming all baselines. For both ischemic and

bleeding event predictions, the superiority of our model was

statistically significant with most p-values less than 0.001.

The weights assigned to the loss function are as follows: For

ischemic event prediction, the weights are 0.3 for LMSE, 0.14 for

LBCE, and 0.95 for LPC; For bleeding event prediction, the weights

are 0.9 for LMSE, 0.14 for LBCE, and 0.89 for LPC. More hyper-

parameters of the model are detailed in Supplementary Table S1.
TABLE 2 Model performance (with 95% CI) across different prediction interv

Models Predict

1-month 2-month 3

Ctd-index p-value Ctd-index p-value Ctd-ind
DeepSurv 0.84 (0.83, 0.86) <0.001* 0.83 (0.82, 0.84) <0.01* 0.82 (0.81,

DeepHit 0.87 (0.86, 0.88) <0.05* 0.84 (0.83, 0.85) <0.05* 0.82 (0.81,

SurvTrace 0.87 (0.86, 0.88) <0.05* 0.84 (0.83, 0.85) <0.05* 0.83 (0.82,

Ours 0.88 (0.87, 0.89) Reference 0.85 (0.84, 0.86) Reference 0.84 (0.83,

Ctd-index, time-dependent concordance index.
aThe model performance (in Ctd-index) was calculated by employing bootstrapping on the test d

unequal variance).

*p ≤ 0.05 is regarded as significant.

TABLE 3 Model performance (with 95% CI) across different prediction interv

Models Predict

1-month 2-month 3

Ctd-index p-value Ctd-index p-value Ctd-ind
DeepSurv 0.79 (0.75, 0.82) <0.01* 0.78 (0.76, 0.81) <0.01* 0.79 (0.77,

DeepHit 0.81 (0.78, 0.84) <0.05* 0.81 (0.80, 0.83) 0.12 0.81 (0.79,

SurvTrace 0.80 (0.76, 0.84) <0.01* 0.80 (0.77, 0.82) <0.05* 0.80 (0.77,

Ours 0.82 (0.79, 0.85) Reference 0.81 (0.79, 0.84) Reference 0.82 (0.79,

Ctd-index, time-dependent concordance index.
aThe model performance (in Ctd-index) was calculated by employing bootstrapping on the test d

unequal variance).

*p≤ 0.05 is regarded as significant.
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3.3 Calibration curves

We plotted the model calibration curve to assess how well the

predicted probabilities of the endpoints align with the actual

observed frequencies at the end of 12 months. In Figure 3, the

line chart (top) shows the ratio of actual positives in each

interval of predicted probabilities, while the histogram (bottom)

depicts the relative frequency of predicted probabilities.

Figure 3A demonstrates that the predicted probability of

ischemic events accurately reflects the actual likelihood, as the

predicted probability (red solid line) closely follows the actual

likelihood (blue dashed line). The predicted probability for

ischemic events ranges from 0 to 1, with a descending frequency.

Figure 3B shows the calibration curve for bleeding events, with

predicted probabilities mostly between 0.1 and 0.5.
4 Discussion

Our study demonstrates significant advancements in the field

of post-PCI risk assessment for DAPT duration management.

The transformer-based architecture coupled with auto-encoder

and contrastive learning is adept at processing complex, large-

scale datasets while capturing intricate patterns that are often

missed by traditional machine learning models. This capability is

crucial for understanding the complex dynamics of patient data

post-PCI, allowing for a more accurate analysis of adverse

endpoint risks. Moreover, our model performance is bolstered by
als for the ischemic eventa.

ion windows

-month 6-month 12-month

ex p-value Ctd-index p-value Ctd-index p-value
0.84) <0.01* 0.82 (0.81, 0.83) <0.05* 0.80 (0.79, 0.81) 0.78

0.84) <0.01* 0.79 (0.78, 0.80) <0.01* 0.77 (0.75, 0.78) <0.01*

0.84) <0.05* 0.81 (0.80, 0.83) <0.01* 0.79 (0.78, 0.80) <0.05*

0.85) Reference 0.83 (0.81, 0.84) Reference 0.80 (0.79, 0.81) Reference

ataset, and statistical significance (p-values) was determined using Welch’s t-test (assuming

als for the bleeding eventa.

ion windows

-month 6-month 12-month

ex p-value Ctd-index p-value Ctd-index p-value
0.82) <0.01* 0.80 (0.78, 0.81) <0.01* 0.76 (0.74, 0.78) <0.05*

0.83) <0.05* 0.81 (0.79, 0.82) <0.05* 0.76 (0.74, 0.78) <0.05*

0.82) <0.01* 0.80 (0.78, 0.82) <0.01* 0.77 (0.75, 0.78) 0.36

0.84) Reference 0.82 (0.80, 0.83) Reference 0.77 (0.75, 0.79) Reference

ataset, and statistical significance (p-values) was determined using Welch’s t-test (assuming
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FIGURE 3

Calibration curves. (A) Calibration curve for ischemic event prediction at the end of 12 months; (B) calibration curve for bleeding event prediction at the
end of 12 months.
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the use of multiple loss functions that concurrently optimize

different aspects of the prediction task. This multi-objective

approach allows for a more balanced model that does not overly

prioritize one predictive goal over another, thus maintaining a

holistic view of the patient’s risk profile.

By integrating the survival analysis mechanism, our model

allows flexibility in risk assessment at any specific time point

within the first year after PCI. This feature is particularly

beneficial as it supports dynamic risk evaluation, adapting to the

evolving clinical status of patients over time. Our model not only

forecasts the probability of adverse events on the index date but

also adjusts these predictions as new data becomes available,

offering a robust tool for continuous patient monitoring.

The practicality of our model in clinical environments is

facilitated by its requirement for a limited number of input

features. These features, encompassing patients’ demographics,

clinical presentations, medical history, and concurrent

medications, have been carefully chosen to balance

comprehensiveness with easy data collection. This selectivity

ensures that the model remains both user-friendly and efficient,

minimizing the burden on healthcare providers while still

capturing the necessary data to assess patient risk accurately. The

ability of our model to provide timely and tailored risk
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assessments holds promise to enhance personalized treatment

strategies. For instance, by identifying patients at higher risk of

complications at any point within the year post-PCI, clinicians

can tailor the duration of DAPT and other therapeutic

interventions. This approach not only aims to optimize patient

outcomes by preventing over or under-treatment but also

contributes to the broader goals of personalized medicine, where

treatment plans are customized to individual patient needs.

The strengths of our predictive model are multifaceted:

(1) Excellent Predictive Accuracy. Our model consistently

outperforms the state-of-art deep learning-based survival models,

as demonstrated in Tables 2, 3, where most p-values are <0.05.

Specifically, the model achieves C-index ranging from 0.88 to

0.80 for ischemic prediction and 0.82–0.77 for bleeding

prediction across different prediction intervals. In comparison,

the DAPT score achieves a C-index of 0.70 for ischemia and 0.68

for bleeding (7), indicating our model improves predictive

accuracy by over 10%. (2) Enhanced Flexibility and Dynamic

Prediction Capability: Unlike clinical trial-derived scores which

often lack adaptability, our model is built on real-world data,

enabling it to accommodate patients’ evolving clinical status over

time. Leveraging a deep survival infrastructure supported by the

piecewise constant hazard loss, the model allows for dynamic
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risk evaluation at any specific time point within the prediction

window following PCI. As new evidence emerges and clinical

guidelines evolve, encompassing considerations for shorter DAPT

duration, treatment de-escalation, and monotherapy (11, 36–39),

there is an increasing need for more granular and personalized

predictions. Our AI-driven approach, trained on large-scale data,

captures the subtle nuances and delivers precise, individualized

risk assessments, making it well-suited for addressing these

emerging clinical demands.

The calibration curve serves as an essential diagnostic tool for

understanding our predictive model’s performance. Specifically, the

calibration curve for predicting ischemic events (Figure 3A, red

line) closely aligns with the ideal line (Figure 3A, blue dashed

line) across much of the predicted probability spectrum,

indicating that our model is well-calibrated for predicting

ischemic events over a broad range of probabilities. Conversely,

for bleeding event predictions, the calibration curve deviates from

the ideal scenario at lower probabilities (approximately 0.1–0.2),

where the red line lies below the ideal line (Figure 3B),

suggesting that the model tends to underestimate the risk of

bleeding events at these lower probability values. As the

predicted probabilities increase to about 0.3, the calibration curve

approaches the ideal line, indicating an improvement in

predictive accuracy. However, at higher probabilities, the curve

extends above the ideal line, implying that the model

overestimates the risk of bleeding events at these higher

probabilities. The accompanying histogram shows that the

predicted probabilities for bleeding events are predominantly

clustered within the 0.1–0.4 range. This clustering suggests a

conservative prediction behavior by the model, likely cautious

about assigning higher probabilities for bleeding events. This

pattern could be attributed to an inherent class imbalance in our

dataset, with the ratio of the event to the non-event being

approximately 5.25 in our study cohort. To enhance model

calibration and performance, especially in different probability

bins, it is beneficial to address the class imbalance issue.

Techniques such as the Synthetic Minority Over-sampling

Technique (SMOTE) (40) or adjusting the dataset to a more

balanced distribution could potentially refine the model’s

accuracy across the full range of predicted probabilities.

Despite several strengths, our study has some limitations.

A primary challenge derives from the quality of the EHR data,

which is inherently prone to the issues of incompleteness and

missingness. Specifically, crucial information such as stent

characteristics, the severity of bleeding, and stent thrombosis

were not available from the structured EHR data alone. Future

research would benefit from incorporating information extracted

from clinical notes, to enhance the robustness of our model.

Another limitation relates to the loss of follow-up information.

Some patients returned for follow-up long after their initial visit,

potentially due to the prescriptions being auto-filled for several

months or because they received care at other hospitals. To

manage this, we implemented a 6-month window threshold. If

DAPT medications were prescribed within this timeframe,

patients were assumed to have continued their DAPT regimen.

This assumption requires further validation, either through
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additional patient data or confirmation by clinical expertise.

Furthermore, our study primarily utilized ICD codes to define

features and outcomes. Although these codes were carefully

selected based on previous research and reviewed by our clinician

collaborators, continuous verification of the reliability of these

codes is necessary to strengthen the conclusions drawn from our

findings. In addition, this study utilizes the multi-institution,

diverse dataset from the OneFlorida+ Clinical Research

Consortium, which encompasses approximately 16 million

patients across the Southeast—including Florida, Georgia, and

Alabama (27, 28)—serving as a robust and representative

resource for model development, given its scale, diversity, and

regional significance. While we believe this dataset currently

satisfies the needs for developing and evaluating the proposed

algorithm, we plan to pursue external validation using other

high-quality datasets if available in the future, to further test the

model’s generalizability across broader populations.

For future efforts, first, we will leverage all medical codes, instead

of the selected features, as another version of the input, seeking to

further enhance the model performance. Our model is inherently

designed to handle complex and high-dimensional data and is

well-suited to learn from the intricacies presented in raw medical

codes. Second, given the limitations of structured data, we plan to

incorporate higher-quality, multimodal data, such as clinical notes

and medical imaging, to augment input information. Clinical

notes often contain rich, contextual information that can

complement structured data, while medical imaging can provide

crucial insights into a patient’s condition that are not captured in

traditional data formats. By integrating these diverse data sources,

we aim to create a more comprehensive and accurate

representation of patient profiles. Third, to effectively harness

these multimodal data, we will upgrade our model to support

multimodality learning (41). This approach will enable the model

to simultaneously process and learn from different types of data,

improving its predictive capabilities and robustness. Fourth, in

addition to focusing on data and model improvements, we will

align our research goals more closely with the evolving clinical

needs. Beyond optimization of treatment durations, we also plan

to explore dual-single antiplatelet succession strategies, which

involve investigating the effectiveness of transitioning patients

between different treatment regimens, potentially improving

outcomes by tailoring strategies to individual needs and responses.

By pursuing these future efforts, we hope to develop more

powerful and versatile AI solutions that can provide valuable

insights to clinicians, thus facilitating better patient care and

outcomes. Fifth, the focus of this current paper is to develop and

evaluate the AI model. To enhance its accessibility and maximize

its utility to the wider community, we plan to create a user-

friendly website, which allows for both manual input of the

commonly available clinical variables and the upload of

comprehensive patient records, to enable efficient and accurate

risk calculations. Furthermore, to demonstrate the model’s

functionality and strengths—such as accommodating dynamic

input and delivering flexible predictions—the model can be

potentially embedded as an API into our EHR systems to evaluate

its usability and real-world performance.
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5 Conclusion

In this study, we introduce a new, effective method for

predicting risks in patients receiving DAPT following PCI. Our

transformer-based model, enhanced by contrastive learning,

consistently outperforms existing deep survival models. This

model enhances flexibility in prediction, substantially aiding the

clinical decision-making process. Moving forward, it is essential

to prioritize the enhancement of data quality and modality to

boost both the accuracy and clinical applicability of AI models.

Our methodology provides a robust foundation for developing

more precise and personalized antiplatelet therapy strategies,

offering significant potential to improve patient outcomes and

save lives.
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