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Atherogenic circulating
lipoproteins in ischemic stroke
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The fundamental role of qualitative alterations of lipoproteins in the early
development of atherosclerosis has been widely demonstrated. Modified low-
density lipoproteins (LDL), such as oxidized LDL (oxLDL), small dense LDL
(sdLDL), and electronegative LDL [LDL(-)], are capable of triggering the
atherogenic process, favoring the subendothelial accumulation of cholesterol
and promoting inflammatory, proliferative, and apoptotic processes
characteristic of atherosclerotic lesions. In contrast, high-density lipoprotein
(HDL) prevents and/or reverses these atherogenic effects. However, LDL’s
atherogenic and HDL’s anti-atherogenic actions may result altered in certain
pathological conditions. The molecular mechanisms underlying the impaired
effects of altered lipoproteins have been studied in numerous in vitro and in
vivo studies, and have been extensively analyzed in coronary atherosclerosis,
especially in the context of pathologies such as dyslipidemia, diabetes, obesity,
and metabolic syndrome. However, the corresponding studies are scarcer in
the field of ischemic stroke, despite carotid arteriosclerosis progression
underlies at least 20% of ischemic strokes. The present review relates
qualitative alterations of LDL and HDL with the development of carotid
arteriosclerosis and the occurrence of ischemic stroke.
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1 Atherosclerotic cardiovascular disease

Cardiovascular (CV) diseases, responsible for more than 17.5 million deaths per year

worldwide, represent a health and socioeconomic problem of huge magnitude. Increased

CV disease prevalence in recent decades is largely due to the higher incidence of CV risk-

associated pathologies, such as diabetes, dyslipidemia, obesity, and hypertension, with

population ageing, unhealthy eating habits, and sedentary lifestyles undoubtedly acting

as contributing factors (1).

Early development of atherosclerosis is a main underlying cause of CV disease,

resulting in a condition known as atherosclerotic CV disease (ASCVD). Atherosclerosis

is defined as a thickening and loss of elasticity in the arterial wall of large- and

medium-sized arteries, and particularly in zones of curvature or bifurcation with

turbulent flows, leading to a narrowing (stenosis) of the vascular lumen (2). Low-shear

stress zones are susceptible to atherosclerotic plaque development, with rupture

eventually leading to reduced blood flow and the onset of CV events (3). Vessels more

prone to developing atherosclerosis are the abdominal aorta, and peripheral, coronary,

and carotid arteries, leading, respectively, to the following forms of ASCVD: aortic

atherosclerotic disease, peripheral artery disease (claudication), coronary heart disease
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(myocardial infarction, angina pectoris), and cerebrovascular

disease (transient ischemic attack, ischemic stroke).

Atherosclerosis is a long-term process that is initially triggered

by lipoprotein entry and retention in the artery wall, leading to

intracellular and extracellular lipid accumulation in the

subendothelial space. The progressive and slow deposition of

lipids, occurring in parallel with an inflammatory response and

monocyte recruitment from circulating blood to the arterial

intima, together result in a narrowing of the artery wall, referred

to as atherosclerotic plaque (2).

Low-density lipoprotein (LDL) plays a major role in different

stages of the atherosclerotic plaque formation (Figure 1) (4).

LDL entry to the microenvironment of the subendothelial

space favors chemical modifications resulting from oxidative

stress and the actions of lipolytic and proteolytic enzymes.

Modified LDL, with the acquired pro-atherogenic properties,

favors subendothelial retention and induces endothelial

dysfunction, the recruitment of leukocytes with enhanced

inflammatory response, the differentiation of monocytes into

macrophages, the emergence of apoptotic processes, and the

formation of lipid-loaded foam cells (5–7). To attract

leukocytes to the lesioned area, modified LDL promotes the
FIGURE 1

Role of LDL and HDL in atherogenesis. LDL entry to the microenvironment o
oxidative stress and the actions of lipolytic and proteolytic enzymes. T
proteoglycans, facilitating its subendothelial retention. Retained modifie
leukocytes with enhanced inflammatory response, the differentiation of m
and the formation of lipid-loaded foam cells. Together, all of these events
effects of LDL are indicated with blue arrows. In contrast, HDL particles th
and display anti-inflammatory, antiproliferative and antiapoptotic properties
lipid-loaded foam cells and returning the excess of cholesterol to blood cir
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expression of adhesion molecules and chemokines by

endothelial cells. In monocyte-derived macrophages, modified

LDL promotes the release of more chemokines and cytokines,

such as tumor necrosis factor alpha (TNF-α) and interleukin-1

(IL-1β), in addition to growth factors. This response contributes to

the proliferation and activation of smooth muscle cells (SMCs),

which together with macrophages, uptake modified LDL becoming

lipid-loaded foam cells, a hallmark of atherosclerosis (8, 9).

Contrasting with LDL, high-density lipoprotein (HDL) is

considered athero-protective (Figure 1), owing to its capacity to

induce cholesterol efflux from tissues (10, 11) and to its anti-

oxidant and anti-inflammatory properties (12). Of note, HDL’s

effects include the inhibition of LDL modification and mitigation

of the atherogenic effects of modified LDL (12, 13).

The contribution of LDL cholesterol (LDL-C) to CV risk has

been extensively studied, given its role in progression of

atherosclerosis (14), which contrasts with the inverse association

with vascular risk of HDL cholesterol (HDL-C) (15). However,

the fact that therapies to regulate HDL-C or LDL-C levels do not

eliminate vascular risk would suggest that, over and above

concentration levels, the actual quality of lipoproteins is crucial

to determining susceptibility to CV disease development.
f the subendothelial space favors chemical modifications resulting from
hese modifications favor LDL aggregation and increased binding to
d LDL particles induce endothelial dysfunction, the recruitment of
onocytes into macrophages, the emergence of apoptotic processes,

lead to the development of the atherosclerotic plaque. The atherogenic
at enter in the arterial wall can prevent LDL oxidation and aggregation,
(brown arrows). In addition, HDL induces the efflux of cholesterol from
culation for its metabolization in the liver.
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2 Ischemic stroke and blood
lipoprotein levels

Stroke represents the third cause of mortality in western

countries and is a leading cause of disability and dementia

worldwide. Furthermore, its impact is aggravated by the fact that

around 20% of patients experience recurrence within 5 years of

follow-up, increasing the risk of severe disability (16). Around

80% of strokes are ischemic in origin (17), and in approximately

20% of those cases, the cause is large-vessel atherosclerosis (18),

referred to as atherothrombotic stroke (19). Plaques in the

internal carotid artery are most frequently involved in this

subtype (20), with stroke triggered by plaque rupture leading

to thrombus formation and subsequent distal embolism (3),

and/or by hemodynamic insufficiency, possibly attributable

to progressive vessel occlusion caused by atherosclerotic

plaque development (21).

The distribution of the modifiable vascular risk factors differs

according to the type of stroke and the patient’s sex and age

(22). Stroke incidence is higher in women than in men for those

younger than 30 years, whereas rates are higher in men during

midlife. In subjects older than 80 years the incidence is slightly

higher in women. Regarding carotid stenosis, women have a

higher degree of stenosis, but less carotid plaque area (23) and

less vulnerable plaques with lower risk than men (24, 25).

In atherothrombotic stroke, the recurrence risk of major

vascular events is much higher than for other stroke subtypes

(26), for which reason secondary prevention is essential. The

main therapeutic approach is carotid endarterectomy,

implemented according to the degree of stenosis (27). In

addition to luminal narrowing, the inflammatory state and lipid

content of the plaque are considered key factors in determining

carotid plaque vulnerability. As explained above, lipoproteins

play a key role in the progression of atherosclerosis, with LDL

—most particularly when modified in the arterial wall—acting

as a stimulus that strongly promotes inflammation and

lipid accumulation (5).

Although elevated serum lipids and lipoproteins have been

extensively associated with CV disease, there is little information

regarding cerebrovascular disease. However, coronary patients are

reported to have an increased risk of stroke (28), and the

relationship between lipids/lipoproteins and ischemic stroke, and

particularly atherothrombotic stroke, has been addressed in

several epidemiological studies.

High plasma levels of total cholesterol, and particularly of LDL-

C, have been associated with atherothrombotic stroke (29, 30) and

progressive carotid stenosis (31). In line with those findings, lipid-

lowering therapy to decrease total cholesterol and LDL-C levels has

been shown to mitigate the progression of carotid atherosclerosis

(32, 33). According to the SPARCL study (Stroke Prevention by

Aggressive Reduction in Cholesterol Levels), high-dose statins

reduce the overall occurrence of strokes and CV events, with

only a slight increase in the rate of hemorrhagic strokes (34).

Likewise, PCSK9 inhibitors have been reported to reduce the

incidence of stroke by 25% (35). Although some studies have

pointed to an association between aggressive LDL-C-lowering
Frontiers in Cardiovascular Medicine 03
therapies and an increased risk of hemorrhagic stroke, this

association has not been conclusively demonstrated (36).

Notably, Sniderman et al. (37) argued that actual quantification

of LDL particles or of apolipoprotein (apo) B was more important

than LDL-C plasma levels in coronary artery disease. For ischemic

stroke, the risk attributable to elevated apoB or non-HDL-C

has been reported to be higher than the risk attributable to

elevated LDL-C (38).

Elevated levels of lipoprotein(a) [Lp(a)] are postulated to

contribute to so-called residual CV risk, i.e., risk not directly

derived from elevated LDL-C (39, 40). Lp(a) consists of an LDL

molecule that also contains the apolipoprotein (a) [apo(a)],

covalently linked to apoB-100. Apo(a) is formed by multiple

repetitions of structures called kringles, and depending on the

number of repetitions differ in the CV risk, having small apo(a)

isoforms a greater CV risk compared to larger isoforms (41).

Higher Lp(a) concentrations are independently associated with

long-term ASCVD risk and may amplify CV risk when

concomitant with carotid plaque (42). Referring specifically to

ischemic stroke, Lp(a) may play an especially relevant role, since

its antifibrinolytic action may be determinant in the surge of

thrombotic processes leading to an ischemic event (43, 44).

Besides this antifibrinolytic action, the atherogenic effect of Lp(a)

seems to be related to its ability to bind highly inflammatory

oxidized phospholipids. These phospholipids include a soluble

fraction in the surface of the lipoprotein particle and a fraction

of these phospholipids covalently bound to apo(a) (45, 46).

Indeed, Lp(a) is the main plasma transporter of oxidized

phospholipids (47). Consequently, Lp(a) could play a role in the

oxidative stress associated with the development of

arteriosclerosis (48) and, therefore, be related to the oxidative

modifications of LDL described in the following sections, which

play a prominent role in the early appearance of ischemic events.

Elevated Lp(a) levels have been associated with a high incidence

of ischemic stroke in most (49–51)—but not all (52)—studies,

and have also been associated with a greater vascular event

recurrence risk in patients with acute first-ever ischemic stroke

(53) and with vulnerable carotid plaque and plaque development

(54, 55). The association of Lp(a) with carotid plaque

vulnerability is sex-specific, since it was associated with presence

of intraplaque hemorrhage in women and with stenosis degree in

men (54). A recent meta-analysis concluded that increased Lp(a)

concentrations could be considered a predictive marker for

identifying individuals at risk of developing ischemic stroke (56).

Triglycerides may be independently associated with the risk of

ischemic stroke (57), while elevated remnant cholesterol, i.e., the

cholesterol transported in triglyceride-rich lipoproteins, has

likewise been associated with a higher risk of ischemic stroke in

the general population (58). A recent genome-wide association

study (GWAS), using Mendelian randomization, has suggested

that remnant cholesterol is causally associated with large-artery

atherothrombotic stroke (59). Moreover, remnant cholesterol levels

in patients with ischemic stroke have been positively associated

with carotid artery intima-media thickness (60), with the

concentration of triglyceride-rich particles predicting the presence

of vulnerable carotid plaque independently of LDL-C (61, 62).
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Despite the well-known inverse association between HDL-C

levels and coronary heart disease, findings have not been so

consistent for stroke. HDL-C levels are weakly or not at all

associated with the incidence or prevalence of ischemic events,

and do not predict recovery from stroke. However, some studies

have shown an inverse association in the specific case of

atherothrombotic stroke (63, 64). As occurs with LDL, the HDL

particle count is a promising risk prediction parameter. While

most studies to date have been single-cohort studies assessing

only coronary disease or composite vascular outcomes, a study

by Singh et al. (65) has reported that HDL particles is a robust

marker for ischemic stroke in the overall population, and also

that it inversely correlates with both myocardial infarction and

stroke, albeit displaying racial disparities.

Conflicting results regarding the predictive power of lipid and

lipoprotein blood levels for stroke may be partly due to the time of

blood collection in patients, because, as already described in the

1980s (28), stroke itself exerts a lipid-lowering effect. Growing

evidence suggests that—in addition to lipoprotein quantitative

parameters—certain lipoprotein component concentrations and

functional alterations are relevant to the pathology of ischemic

stroke, and particularly to the atherothrombotic subtype.
3 Ischemic stroke and qualitative
lipoprotein changes

Despite the association between plasma lipoprotein levels and

ASCVD (including atherothrombotic stroke), mounting evidence

points to the fact that lipoprotein concentration is not always the

key, as the presence of atherosclerosis is not exclusively

determined by quantitative lipid parameters such as high LDL-C

levels (66). The importance of other lipoprotein-related factors is

suggested by subjects with normal LDL-C still having residual

CV risk and by a diminished association with LDL-C when

adjusting for other lipoproteins (67, 68). Those observations are

likely based on the fact that circulating lipoproteins comprise

subclasses that are heterogeneous in size, density, composition,

and function, and with different involvement in ASCVD.

Alterations in HDL and LDL particle size in ischemic stroke

occur parallel to changes in chemical composition, as reported in

several studies (69–74). Just beginning to be deciphered is the

specific lipid and protein composition of lipoproteins involved in

atherothrombotic stroke, with interesting preliminary data

obtained from lipidomic and proteomic studies of lipoproteins

isolated from ischemic patients. Lepedda et al. (72) showed

increased acute-phase serum amyloid A (SAA) levels in all

lipoprotein fractions obtained from the patients in their study,

while a proteomic study by Finamore et al. (71) revealed that

mainly LDL, but also HDL, showed a higher content of proteins

associated with inflammation, immunity, and coagulation, and

specific protein signatures for patients with hypoechoic plaques.

Regarding lipids, a preliminary lipidomic study in lipoproteins

isolated from patients who had undergone carotid

endarterectomy showed lipid alterations, particularly in specific

phospholipids in the LDL of patients with hypoechoic plaques
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(73). It is very feasible to consider that such physical and

chemical alterations in LDL might lead to a higher prevalence of

modified LDL particles in ischemic stroke. The role of modified

LDL and the influence of altered qualitative properties of HDL,

specifically in relation to atherothrombotic stroke, are discussed

in the following sections.
3.1 Qualitative LDL changes: modified LDL

The presence of modified LDL is pivotal to determine

susceptibility to atherosclerosis and vulnerable lesions. Alterations

in LDL catabolism or other chemical processes favor the LDL

modification and abnormal LDL particle formation in terms of

composition, size, and electric charge (Figure 2). Specifically

referring to atherothrombotic stroke patients, Yatsu et al. (75)

reported that their monocyte-derived macrophages displayed a

reduced ability to scavenge modified LDL. This fact, together

with increased levels of modified LDL forms and the impaired

protective effects of HDL, may contribute to rapid disease

progression. In this context, while the role of oxidized LDL

(oxLDL) in ischemic stroke has been extensively evaluated (76),

less studied is the importance of a modified form of LDL with a

negative charge, called electronegative LDL [LDL(-), also known

as L5], found in circulation (77). The roles played by modified

LDL in the form of oxLDL and LDL(-), and also by small dense

LDL (sdLDL), are discussed below.

3.1.1 Oxidized LDL
It is widely accepted that LDL can be modified by oxidation in

the subendothelial space, where it is exposed to free radicals and

oxidative enzymes released by environment cells. This has led to

thinking that oxLDL detected in plasma comes from the

subendothelial space after plaque rupture. Accordingly, most

studies analyzing oxLDL association with ischemic stroke have

reported that oxLDL levels in blood are higher in patients in the

acute ischemic phase than in healthy controls (78–81), and are

reduced by post-event statin therapy (80, 82). Moreover, for

patients with acute ischemic stroke, Wang et al. (83) found a

relationship between oxLDL plasma levels and the National

Institute of Health Stroke Scale score. Blood concentrations of

oxLDL are reported to be particularly increased in patients with

large-artery atherosclerosis compared with other stroke subtypes

(79, 80, 84), and have also been associated with lacunar stroke in

small vessels (85, 86). The concentration of oxLDL in plasma

and in the atherosclerotic plaque has been associated with the

vulnerability of carotid plaque (87), although no association was

found in a recent study (78).

Those studies carried out in the acute ischemic phase do not

clarify whether the elevated oxLDL levels are a consequence or

cause of the stroke. However, several prospective studies have

suggested that, as well as being associated with the acute stroke

phase, oxLDL plays a role in the future occurrence of vascular

events (88–91) and in 1-year recurrence (92), and is also

associated with poorer patient cognitive and functional evolution

(93, 94). In symptomatic patients, some studies have related
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FIGURE 2

LDL modification. Besides the modification of LDL in the arterial wall, LDL particles can also suffer different alterations in blood, leading to modified
LDL particles. Alterations in VLDL-IDL-LDL catabolic cascade or in the lipid transfer processes among lipoproteins can favor the formation of sdLDL or
LDL(-). Other processes, such as overload of non-esterified fatty acids or oxidative phenomena occurring in blood can also lead to the formation of
LDL(-) or oxLDL. All these modified LDL particles will contribute to the development of atherosclerosis. In turn, the rupture of the atherosclerotic
plaque after an ischemic event can release its content of modified lipoproteins, thereby contributing to the plasma pool of LDL(-) and oxLDL. For
its part, HDL plays an antiatherogenic role, preventing the formation of modified LDL, through its antioxidant capacity or the ability to capture
non-esterified fatty acids.
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oxLDL with transient ischemic attack (89, 95). High levels of

oxLDL and high-sensitivity C-reactive protein (CRP), when

combined, are associated with increased risk of recurrent stroke,

combined vascular events, and poor functional outcome in

patients with minor stroke or transient ischemic attack (94).

Taken together, those studies not only demonstrate a seemingly

solid relationship between elevated oxLDL levels and ischemic

stroke onset and recurrence, but also point to plasma oxLDL as a

putative predictor of stroke in asymptomatic cases.

3.1.2 Electronegative LDL
LDL(-), a heterogeneous entity that encompasses several LDL

forms modified by different mechanisms and having an increased

negative charge in common, is a minor plasma form of modified

LDL with atherogenic properties (96–100). Among other

atherogenic properties, LDL(-) has increased susceptibility to

aggregate and to bind to proteoglycans, inducing inflammation,

apoptosis, and cell proliferation in several arterial wall cell types

(101–103). LDL(-), which constitutes about 3%–5% of total LDL

in healthy subjects, is present in higher proportions in

pathologies associated with vascular risk, including dyslipidemia

and diabetes (104), and in subclinical atherosclerosis in

association with the degree of carotid stenosis (105, 106). In

metabolic syndrome, LDL(-) levels were higher in men than in

premenopausal women, which can contribute to their higher

predisposition to CV risk (107). LDL(-) is also increased during
Frontiers in Cardiovascular Medicine 05
the acute phase of vascular events such as myocardial infarction

(108) and ischemic stroke (78, 109).

Of 2 studies focused on LDL(-) in ischemic stroke, only one

was specifically conducted in patients with carotid atherosclerosis

(78). Despite a normal lipid profile, that population with recent

ischemic stroke showed higher blood levels of LDL(-) and oxLDL

than control subjects. The favorable lipid profile may be

attributable to the known drop in lipid levels and to the

administration of high-dose statins after the ischemic event.

Importantly, the proportion of LDL(-), but not of oxLDL, has

been associated with carotid plaque features ascribed to

vulnerability, particularly the degree of carotid stenosis,

hypoechogenicity, and diffuse intraplaque neovascularization

(78). This would suggest that LDL(-) may be a marker of plaque

vulnerability in ischemic stroke associated with carotid

atherosclerosis, as proposed by Shen et al. (109); in the latter

study, conducted in patients with acute ischemic stroke, higher

values of LDL(-) than in the study of Puig et al. (78) were

reported, presumably owing to differences in the population,

time of blood extraction, and the chromatographic method of

LDL(-) isolation. Interestingly, that study suggested that LDL(-)

triggers ischemic stroke by promoting thrombosis, through the

induction of platelet aggregation and hemostasis via lectin-like

oxidized LDL receptor-1 (LOX-1) and IκB kinase 2

(IKK2)/nuclear factor–κB (NF-κB) signaling (109). The authors

suggest that LDL(-)-induced platelet activation promotes their
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TABLE 1 Altered HDL features in patients with ischemic stroke.

Altered feature Phase Reference

Acute
<24 h

>24 h

Protein content
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aggregation and αβ amyloid peptide release, leading to increased

platelet reactivity and stroke complications.

Interestingly, the roles of LDL(-) and Lp(a) have recently been

compared in regard to ASCVD development in a study (110),

which indicates that both atherogenic lipoproteins contribute to

residual CV risk through different mechanisms.

↑ apoE, apoJ ↓ apoA-IV x x Plubell et al. (126)

↓ apo A-I x Ortiz-Muñoz et al. (69)

↑ Inflammatory molecules: SAA2
SAA1

x x
x

Plubell et al. (126)

Lepedda et al. (72)

↓ Paraoxonase-1 and other
alterations in enzymes and
proteins

x Ortiz-Muñoz et al. (69)

x Varela et al. (70)

x x Plubell et al. (126)

Size
Larger size x Ortiz-Muñoz et al. (69)

x x Plubell et al. (126)

Anti-atherogenic properties
↓ Cholesterol efflux x x Plubell et al. (126)

↓ Endothelial cell protection x Ortiz-Muñoz et al. (69)

↓ Anti-oxidant ability x Varela et al. (70)

x Damayanthi et al. (127)

↓Aanti-inflammatory properties x Ortiz-Muñoz et al. (69)

x Varela et al. (70)
3.1.3 Small dense LDL
As compared with large LDL particles, prevalence of sdLDL

particles is strongly associated with early development of CV

disease. While sdLDL, as generated by metabolic alterations in

subjects with hypertriglyceridemia (111), cannot be considered as

a modified form of LDL, it is closely related to modified LDLs

such as oxLDL, glycosylated LDL, and LDL(-) for 2 reasons.

First, sdLDL is prone to modification by oxidation or

glycosylation, favoring the formation of oxLDL and glycosylated

LDL (112, 113). And second, sdLDL has a slightly increased

electronegative charge compared with large and intermediate

LDL particles, so a part of LDL(-) is made up of sdLDL particles.

In fact, LDL(-) is smaller and more dense in normolipidemic and

hypertriglyceridemic subjects (114, 115).

In the field of stroke, several studies have associated the

prevalence of sdLDL particles with an increased risk of ischemic

stroke (74, 116, 117) and with neuroimaging markers of cerebral

small vessel disease (118), an association shown to be particularly

robust in a large prospective study conducted in the general

population (119). Moreover, a recent study has reported that

higher sdLDL cholesterol (sdLDL-C) levels are associated with an

increased risk of incident carotid plaques and especially

vulnerable plaques, even in patients with normal LDL-C values

(120). sdLDL has also been associated with poor prognosis after

stroke (121).
3.2 Qualitative HDL changes

While the inverse association between HDL-C and coronary

heart disease is widely accepted, the causal relation between HDL

and atherosclerosis has not yet been fully elucidated. Therapeutic

approaches to raising HDL-C have not been as effective as

expected in lowering CV risk (122). The hypothesis that HDL-C

concentration is the only factor determining the beneficial role of

HDL is now considered questionable, and is gradually being

replaced by the hypothesis that HDL functionality encompasses

several physiological functions beyond cholesterol efflux that are

essential to determining protection against atherosclerosis (123).

For pathological and inflammatory conditions, it is well

established that biochemical changes in HDL are associated with

dysfunctional HDL and the development of ASCVD (124, 125).

The main alterations in HDL qualitative properties described for

patients with ischemic stroke are summarized in Table 1. A

number of studies have described the presence of large HDL

particles in patients with ischemic stroke (69, 70, 126), with

some patients also showing biochemical HDL alterations leading

to impaired functionality at different levels: cholesterol efflux
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ability (126), endothelial cell protection (69), antioxidant capacity

(70, 127), and anti-inflammatory potential (70).

The loss of an anti-atherosclerotic function in HDL in ischemic

patients has been associated with alterations in the protein cargo,

which includes several apos, but also proteins that participate in

acute phase response and platelet activation, among them: apoE,

apoA-IV, apoJ, apoF, apoL1, apoM, apoC-IV, α-1-antitrypsin,

inter-α-trypsin inhibitor, paraoxonase-1, anthrax toxin receptor-

2, serpina1, prenylcysteine oxidase-1, and SAA (72, 126).

Decreased apoA-I in HDL from ischemic patients probably

accounts for loss of functionality, according to Ortiz-Munoz

et al. (69), who suggested that, in parallel with diminished apoA-

I content, HDL displays fewer protective actions on endothelial

cells. HDL particle size seems to impact on HDL function and

on stroke outcome, with large HDL particles associated with

both diminished anti-oxidant and anti-inflammatory properties

and unfavorable outcomes (70).

Other authors have found associations between HDL

subspecies and both specific apo content patterns (apoA-I, apoC-

III, ApoE, apoJ) and vascular brain injury, including both covert

and overt brain infarcts (128). HDL protein alterations in

ischemic stroke patients have been attributed to proteome

remodeling, owing to the existing inflammatory milieu in the

acute phase (126). This interesting study by Plubell et al.

describes that changes in HDL proteins in the early acute phase

are associated with stroke recovery.

Besides protein cargo, it is well stablished that lipid composition has

impact on the quality of HDL. For instance, the relative composition in

triglycerides and cholesterol esters of the lipid core affects the

conformation of apoA-I and the ensuing antioxidant activity of HDL

(129, 130). Regarding lipids in the surface of HDL, the content of

non-esterified cholesterol modulates the fluidity of lipoprotein

surface, which has a direct effect on the oxidizability of HDL (129).
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Also, phospholipids and their fatty acid composition have an impact

on anti-inflammatory activity of HDL (131). Sphingomyelin content

influences HDL’s efflux capacity (132). Ceramides, independently,

or as precursors of sphingosine 1 phosphate (S1P), also have a

relevant role in HDL function (133). S1P confers to HDL

atheroprotective properties, including its capacity against apoptosis

(134), inflammation (135) and vasodilatation (136, 137). However,

contrariwise to LDL, little is known about lipid alterations in HDL

in ischemic stroke, and further research is needed. Only the study

by Nieddu et al. (73) has analyzed HDL lipidomics in the context of

ischemic stroke, but the main differences were observed in LDL (as

discussed before), not in HDL.

As occurs with LDL, an increased negative electric charge of

HDL has also been also associated with HDL functionality (138),

with a number of studies reporting the presence of HDL with

increased negative charge, named H5 or HDL(-), in inflammation-

related diseases (139–141). These negative HDL particles have

been shown to impair cholesterol efflux and anti-inflammatory

and anti-apoptotic actions, and to even promote inflammation and

foam cell formation (140). An increased presence of oxidized HDL

(oxHDL) has also been reported in both atherosclerotic plaques

and blood circulation in several diseases, including acute

myocardial infarction (141, 142). Accordingly, any increase in H5

or oxHDL in ischemic stroke, and particularly in atherothrombotic

stroke, merits further investigation.
4 Lipoprotein-based therapies to
prevent ischemic stroke

The main lipid-related therapy to reduce ischemic stroke risk is

statin administration, whose main beneficial effects—derived from

their inhibition of HMG-CoA reductase—are to reduce cholesterol

biosynthesis and modulate lipid metabolism. Statins can also

improve the biological characteristics of lipoproteins, by changing

their chemical composition and decreasing oxLDL and LDL(-)

levels (143–145). The additional fact that statins exert pleiotropic

and anti-atherosclerotic effects, independently of their

hypolipidemic action, significantly contributes to reduce CV event

and mortality rates, with greater benefits in patients at high risk

(146). Regarding ischemic stroke, several studies [summarized in

(147)] have reported statins to reduce the ischemic stroke risk

without increasing the hemorrhagic stroke risk.

Other more recently developed lipid-lowering agents

demonstrate strong efficacy and are useful to prevent ASCVD.

For patients at very high or high CV risk who are not responsive

to or are intolerant of statins, ezetimibe, alone or in combination

with statins, and PCSK9 inhibitors may reduce stroke risk (148).

In the FOURIER study of patients with established

atherosclerosis, PCSK9 inhibition with evolocumab added to

statins reduced the risk of ischemic stroke (149). Bempedoic acid

is a new lipid-lowering medication for the prevention and

treatment of CV disease; currently in Phase III clinical trials

(150), its effect on ischemic stroke is still pending of evaluation.

Likewise, not yet tested for ischemic stroke is icosapent ethyl, an

omega-3 fatty acid with triglyceride-lowering action that has
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shown promising results in reducing plasma triglyceride levels

and major adverse CV events (151).

Given that lipoprotein function more than concentration plays

a key role in ischemic stroke, future studies should address the

qualitative properties of LDL and HDL and strategies to mitigate

the generation of oxLDL and LDL(-). In this regard, the ability

of statins to normalize alterations in lipoprotein composition and

size and to reduce elevated modified lipoprotein levels is well

known (152, 153). A recent study has reported that PCSK9

inhibition lowers LDL aggregation susceptibility, an LDL

modification associated with future CV-related death (154).

Antibodies against LDL(-) with athero-protective action have

been detected in human and murine model blood and

atherosclerotic plaques (155, 156), and based on one of those

antibodies, a peptide with inflammatory properties has been

designed that has potential to generate vaccines to immunize

against LDL(-) and prevent atherosclerosis (157).

In sum, further investigations focused on the qualitative

properties of lipoproteins and overcoming their impaired

functioning are essential to understanding and preventing ischemic

stroke, and particularly the atherothrombotic stroke subtype.
5 Conclusions

The particularities of ischemic stroke of atherothrombotic

origin make it necessary to further explore alterations in

lipoprotein functioning in stroke patients. In contrast with

coronary disease, where these alterations have been extensively

studied, for ischemic stroke, relatively few studies have explored

abnormal lipoprotein functioning. The fact that quantitative

alterations in the lipid profile are less frequent in patients with

ischemic stroke than in patients with coronary atherosclerosis

would suggest that in the former qualitative lipoprotein

alterations may play a key role. In this context, to decipher the

contribution of such alterations to this disease and to determine

the molecular mechanisms involved poses a challenge in terms of

designing new therapies addressed at preventing ischemic stroke.
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