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Introduction: The risk of mortality associated with cardiac arrhythmias is
considerable, and their diagnosis presents significant challenges, often
resulting in misdiagnosis. This situation highlights the necessity for an
automated, efficient, and real-time detection method aimed at enhancing
diagnostic accuracy and improving patient outcomes.
Methods: The present study is centered on the development of a portable deep
learning model for the detection of arrhythmias via electrocardiogram (ECG)
signals, referred to as CardioAttentionNet (CANet). CANet integrates Bi-
directional Long Short-Term Memory (BiLSTM) networks, Multi-head Attention
mechanisms, and Depthwise Separable Convolution, thereby facilitating its
application in portable devices for early diagnosis. The architecture of CANet
allows for effective processing of extended ECG patterns and detailed feature
extraction without a substantial increase in model size.
Results: Empirical results indicate that CANet outperformed traditional models in
terms of predictive performance and stability, as confirmed by comprehensive
cross-validation. The model demonstrated exceptional capabilities in detecting
cardiac arrhythmias, surpassing existing models in both cross-validation and
external testing scenarios. Specifically, CANet achieved high accuracy in
classifying various arrhythmic events, with the following accuracies reported
for different categories: Normal (97.37 ± 0.30%), Supraventricular (98.09 ±
0.25%), Ventricular (92.92 ± 0.09%), Atrial Fibrillation (99.07 ± 0.13%), and
Unclassified arrhythmias (99.68 ± 0.06%). In external evaluations, CANet
attained an average accuracy of 94.41%, with the area under the curve (AUC)
for each category exceeding 99%, thereby demonstrating its substantial clinical
applicability and significant advancements over traditional models.
Discussion: The deep learning model proposed in this study has the potential to
enhance the accuracy of early diagnosis for various types of arrhythmias.
Looking ahead, this technology is anticipated to provide improved medical
services for patients with heart disease through continuous, non-invasive
monitoring and timely intervention.
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1 Introduction

Cardiac arrhythmias, resulting from disruptions in the heart’s

electrical signals, frequently occur in clinical settings. Cardiac

arrhythmias, which manifest in multiple forms with varying

mechanisms and severities, are a major cause of morbidity and

mortality (1). The China Hypertension Survey conducted from

2012 to 2015 reported a prevalence rate of 0.7% for atrial

fibrillation in individuals aged 35 years and older, with 34.0% of

these cases being undetected by the patients themselves (2). In

the United States, most sudden cardiac deaths (SCDs) were due

to ventricular tachyarrhythmias, making up 80% of these

incidents (3). Bradyarrhythmias and conduction disorders can

precipitate syncope, sudden cardiac death, and symptoms

including fatigue and exercise intolerance due to intermittent

heart rate inadequacy. However, these conditions can be difficult

to identify (4).

Clinical screening for arrhythmia predominantly relies on

patients presenting to healthcare facilities after the onset of

symptoms. Under the supervision of specialized electro-

cardiographers or cardiologists, physicians are tasked with

diagnosing arrhythmias. Furthermore, some patients may be

identified as having various forms of arrhythmia during routine

physical examinations (5). However, both detection methods

necessitate a high degree of professionalism from healthcare

providers. A cross-sectional study indicated that primary care

physicians exhibited a misdiagnosis rate of 23% for abnormal

electrocardiograms (6). It is noteworthy that, despite their

expertise in cardiovascular medicine, the average diagnostic

accuracy for ventricular tachycardia is only 78.4% (7). The

large-scale training of specialized cardiologists is particularly

impractical in rural regions worldwide, especially in under-

developed countries. The advancement of artificial intelligence

technology has facilitated the increased application of deep

learning techniques for arrhythmia detection. Nonetheless, the

integration of AI and deep learning into electrocardiography

(ECG) detection poses distinct challenges due to the specialized

nature of ECG interpretation.

Frameworks for interpreting electrocardiograms (ECGs),

including parameters such as heart rate, rhythm, cardiac axis,

intervals, and ventricular activity, have been developed to classify

and identify various cardiac disorders in contemporary research.

For instance, Attia et al. introduced a novel algorithm utilizing

convolutional neural networks to predict paroxysmal atrial

fibrillation (AF) in patients, achieving an overall accuracy of

83.3% based on benign, normal sinus rhythm ECGs (8).

Similarly, Khurshid et al. (9). demonstrated that ECG P-waves

significantly impacted the predictions made by artificial

intelligence (AI) models during the training of convolutional

neural networks. Their study employed a combined analysis of

AI and clinical risk factor models for AF, which enhanced the

functionality and accuracy of ECG-AI systems. Despite the

relative robustness of these systems, the complex nature of the

cardiac conduction system results in numerous ECG graphs

exhibiting morphological characteristics that are not readily
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discernible to the human eye, complicating the identification of

local morphology and inter-beat relationships. Furthermore, there

remains a lack of comprehensive evaluation regarding the efficacy

of end-to-end deep learning methods in classifying a diverse

array of diagnoses from raw ECG data (7). Previous research has

focused on specific components of the ECG processing workflow,

such as localized noise reduction (10) and feature extraction (9),

or has been limited to diagnosing specific rhythms, primarily AF

and myocardial infarction (MI) (9, 11). This narrow focus

contributes to suboptimal accuracy rates in ECG-AI applications

and restricts the advancement of AI and deep learning

methodologies in this domain (12).

In this study, we address the evolving trends in deep learning

and the challenges associated with cardiac arrhythmia detection

by introducing the innovative CardioAttentionNet (CANet)

model. This model is specifically designed to facilitate portable

and accurate arrhythmia detection, thereby enabling early

discovery and diagnosis, which can significantly reduce potential

harm to patients. CANet is constructed upon the Long Short-

Term Memory (LSTM) network and incorporates the Multi-

Head Attention mechanism derived from the Transformer

model, as well as Depthwise Separable Convolution from

MobileNet. A comparative analysis with traditional models

indicates that the Bi-directional LSTM (BiLSTM) performs

effectively in arrhythmia detection due to its capability to process

and retain long-term sequential information, which is essential

for analyzing extended rhythm patterns and cyclic variations in

electrocardiogram (ECG) signals. However, BiLSTM is limited in

its ability to simultaneously focus on multiple features and

capture finer details. To overcome this limitation, we have

integrated Multi-Head Attention, which allows the model to

concentrate on various aspects of ECG signals, in conjunction

with Depthwise Separable Convolution for enhanced feature

extraction. When compared to baseline models, CANet exhibits

superior accuracy and predictive performance, effectively

identifying a range of cardiac arrhythmias. The workflow of this

study is depicted in Figure 1.
2 Methods

2.1 Data collection

In this study, we utilized the widely recognized MIT-BIH

Arrhythmia Database (13, 14) for our experimental analyses.

This database was particularly well-suited for training deep

neural networks due to its extensive collection of samples. It

consisted of 109,446 electrocardiogram (ECG) recordings, each

sampled at a frequency of 360 Hz, which includes both normal

heart rhythms and various arrhythmic conditions. Notably, the

database segmented these ECG signals into individual beats, each

representing a distinct cardiac cycle. Following the standard

clinical classification, the heartbeats were categorized into five

types: Normal beats (N), Fusion beats (F), Supraventricular

ectopic beats (S), Ventricular ectopic beats (V), and Unknown
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FIGURE 1

Workflow of this study.
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beats (Q). In our research, we adhered to this classification scheme

for the identification and analysis of arrhythmias within the

ECG signals.
2.2 Data preprocessing

Despite the pre-segmentation of electrocardiogram (ECG)

signals in the MIT-BIH Arrhythmia Database, these signals

continued to exhibit a considerable amount of noise, including

electromyographic interference, motion artifacts, and baseline

drift, among other factors. Such noise could negatively impact

the quality of heart rate signals, thereby hindering the precise

extraction of features. Consequently, the preprocessing of these

signals was imperative. In the domain of ECG signal

preprocessing, wavelet transform was a widely utilized method

(15). This technique facilitated the transformation of long-

duration time-domain signals into time-frequency representations,

thereby elucidating the frequency domain components at each

time point and capturing more localized features. During the

wavelet transform process, we primarily employed the Mallat

algorithm (16). This method systematically decomposed the

signal into “low-frequency approximations” and “high-frequency

details,” which allowed for the effective removal of frequencies

associated with electromyographic noise (20–5,000 Hz) and

baseline drift (1 Hz). Following the noise reduction and signal

restoration, we achieved ECG signals with improved accuracy and

clarity, thereby establishing a robust foundation for subsequent

data augmentation processes (17).

Recognizing the disparity in the MIT-BIH Arrhythmia

Database, with a significant predominance of normal heart rate

samples over those exhibiting arrhythmias, we employed data

augmentation methods in the preprocessing stage. This approach

ensured a balanced representation of all classes in the dataset

and bolstered the model’s ability to detect abnormal patterns,

thus enhancing its overall generalizability. Specifically, we

employed data augmentation methods such as time warping and

noise injection to create a balanced dataset. These techniques

markedly improved the performance of our model, effectively

addressing the challenges associated with data imbalance. The
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adjusted proportions of the different arrhythmia categories in the

dataset, both prior to and following data augmentation, were

depicted in Figure 2. Experimental results demonstrated that

these data augmentation strategies significantly bolstered the

model’s performance and successfully mitigated the issues related

to data imbalance.
2.3 Feature extraction

In this study, we selected segmented electrocardiogram (ECG)

signals as the primary input, supplemented by each heartbeat

interval (R-R interval, RRI) as a parallel input, to establish

comprehensive indicators that reflect the key characteristics of

cardiac arrhythmias. To enhance accuracy in subsequent deep

learning processes, we employed Gaussian filtering to improve

data contrast. Although Gaussian filters are predominantly

utilized in digital image processing, they are equally effective in

enhancing the signal-to-noise ratio, filtering out noise, and

ensuring smoother ECG signals (18). Given the waveform

deformations frequently observed in ECGs during arrhythmias,

we implemented R-wave detection to delineate each individual

heartbeat. In our methodology, the Pan-Tompkins algorithm (19,

20) was initially employed to detect R-waves in the denoised

ECG signals on a per-minute basis. Subsequently, we calculated

the intervals between adjacent R-waves, yielding RRI in

milliseconds as a parallel input to the ECG signals, thereby

providing a more intuitive representation of the characteristics of

cardiac arrhythmias.
2.4 Model construction

2.4.1 Cardioattentionnet (CANet)
The advancements in deep learning have significantly

enhanced its application in the detection of cardiac arrhythmias,

particularly through the utilization of models such as Long

Short-Term Memory (LSTM) networks and Recurrent Neural

Networks (RNN). These models, especially LSTM, have

demonstrated superior recognition accuracy compared to
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FIGURE 2

Data display before and after data augmentation. (a) before data augmentation. (b) after data augmentation.
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traditional methods (21). LSTM, which represented an

improvement over RNN, effectively addresses challenges

associated with gradient vanishing and long-term dependencies,

thereby enhancing the accuracy of deep learning applications.

The efficacy of RNN and LSTM in analyzing time-dependent

data was particularly noteworthy, as evidenced by the work of

Salloum, Ronald, and Kuo, C.-C. Jay, who reported elevated

arrhythmia detection rates using RNN without the necessity for

prior feature extraction (22). Furthermore, Hannun et al. (7)

introduced a Deep Neural Network (DNN) for classification

purposes, underscoring the high sensitivity and predictive

capabilities of DNNs. Nonetheless, concerns regarding the

accuracy of outputs generated without preprocessing input data

persist, highlighting the necessity for a careful balance between

accuracy and computational efficiency (21). RNN models retain

previous ECG information, influencing current inputs. LSTM

units loop information across time steps, creating internal

feedback that helps the network understand time and learn

temporal dynamics in the data. With these properties, Currently,

many models have been using RNN and LSTM models to

achieve demonstrated accuracy in arrhythmia detection, including

Sumanta et al.’s ELM-RNN model (ECG signal classification and

arrhythmia detection using ELM-RNN) and Shu Liu Oh’s CNN-

LSTM model (Automated diagnosis of arrhythmia using

combination of CNN and LSTM techniques with variable length

heart beats).

This study presents CANet, a hybrid deep learning model

developed for the detection of cardiac arrhythmias. CANet

integrates Bidirectional Long Short-Term Memory (BiLSTM),

Multihead Attention, and Depthwise Separable Convolution to

enhance generalization, predictive performance, and structural

robustness, while simultaneously minimizing bias and variance.

The design of the model leverages the strengths of various

machine learning techniques, amalgamating them into a cohesive

framework, as illustrated in Figure 3.
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CANet architecture initiates with Bidirectional Long Short-

Term Memory (BiLSTM) processing, which enhances temporal

dependencies by integrating both past and future data, thereby

rendering it appropriate for electrocardiogram (ECG) signal

analysis. This configuration facilitates the retention of long-term

dependencies, consequently improving classification accuracy.

Subsequently, the Multi-Head Attention layer, derived from

Transformer models and adapted for image and time series

applications, allocates attention to various features concurrently,

thereby mitigating the issue of feature neglect (23). This aspect

is particularly significant in ECG signal analysis, as it addresses

the challenges associated with feature focus in BiLSTM.

The model utilizes Depthwise Separable Convolution, which

demonstrates greater efficiency compared to standard

convolutions in terms of both parameter count and

computational workload, thereby improving training speed

(24). This architecture is particularly effective in extracting

local time-domain features from electrocardiogram (ECG)

signals, which is essential for the identification of abnormal

ECG characteristics.

Following comprehensive testing and validation, CANet

demonstrates considerable advantages in the detection of cardiac

arrhythmias, outperforming conventional models. The

architecture incorporates Bidirectional Long Short-Term Memory

(BiLSTM) networks, attention mechanisms, and convolutional

networks, thereby effectively capturing anomalies in electro-

cardiogram (ECG) signals from various perspectives. Cardio-

AttentionNet is specifically designed to perform efficiently in

data-scarce environments, where smaller datasets are often a

reality. Through its lightweight architecture and attention-based

feature selection, the model is capable of leveraging limited data

effectively, as demonstrated by its strong performance on the

MIT-BIH Arrhythmia Database. External evaluations and five-

fold cross-validation further substantiate CANet’s exceptional

performance in arrhythmia detection.
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FIGURE 3

The construction of CANet.
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2.4.2 Baseline models
To conduct an objective evaluation of the proposed CANet

model, this study established several baseline models for

comparative analysis to determine the efficacy and advantages of

CANet. The selected baseline models for comparison included

Recurrent Neural Networks (RNN), Convolutional Neural

Networks (CNN), Long Short-Term Memory networks (LSTM),

Bidirectional LSTM (BiLSTM), and Gated Recurrent Units

(GRU). These models were chosen due to their prevalent

application in deep learning and their significant contributions to

research in heart rate detection.

Convolutional Neural Networks (CNNs), a prevalent

architecture in deep learning, were recognized for their efficiency

in extracting signal features via convolutional operations. This

model has gained prominence in the domains of signal

classification and segmentation, particularly in the detection of

electrocardiogram (ECG) signals, where it has demonstrated a

significant impact (25, 26).

Recurrent Neural Networks (RNNs) were acknowledged for

their strong model fitting and predictive capabilities when

dealing with sequential data, and they have demonstrated

significant effectiveness in the detection of arrhythmias. In

contrast to conventional deep learning architectures, the hidden

layers of RNNs incorporated memory functions that facilitated

the retention and utilization of previous information. This

characteristic was particularly vital in the analysis of

electrocardiogram (ECG) signals (27, 28).

Long Short-Term Memory (LSTM), an extension of Recurrent

Neural Networks (RNN), integrates “gates” at each unit (29),

thereby enhancing the model’s memory capabilities and
Frontiers in Cardiovascular Medicine 05
providing significant advantages in the processing of longer

sequences. LSTM has become a widely utilized model in the

detection of arrhythmias (30).

The Gated Recurrent Unit (GRU), a variant of the Recurrent

Neural Network (RNN) developed to mitigate challenges

associated with long-term memory and gradient descent, features

a reduced number of “gates” in comparison to the Long

Short-Term Memory (LSTM) architecture, thereby improving

computational efficiency (31). Furthermore, the GRU has

demonstrated significant efficacy in the analysis of electro-

cardiogram (ECG) signals and related applications.

Bidirectional Long Short-Term Memory (BiLSTM), an

enhancement of Recurrent Neural Networks (RNN) and Long

Short-Term Memory (LSTM) networks, incorporates a mechanism

for the propagation of data in both forward and backward directions.

This capability allows BiLSTM to integrate information from both

temporal contexts, thereby improving its predictive performance

compared to traditional RNN and LSTM architectures (32).

Consequently, BiLSTM has attracted significant research interest

within the domain of electrocardiogram (ECG) analysis (33–35).
2.5 Model evaluation

In order to conduct a thorough and objective assessment of the

performance of the proposed CANet model, this study utilized

standard evaluation metrics, including Accuracy (ACC), Precision

(PRE), Recall (REC), F1-Score (F1), and the Receiver Operating

Characteristic (ROC) curve. These metrics were derived from the

values of True Positives (TP), True Negatives (TN), False
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Positives (FP), and False Negatives (FN). The specific formulas for

these metrics were outlined as follows:

ACC ¼ TPþ TN
TPþ FPþ TNþ FN

(1)

PRE ¼ TP
TPþ FP

(2)

REC ¼ TP
TPþ FN

(3)

F1 ¼ 2� PRE� REC
PREþ REC

(4)

where:

• ACC represents the ratio of correctly classified samples to the

total number of samples, providing a direct measure of

model performance.

• PRE reflects the proportion of actual positive samples that are

predicted as positive by the model, indicating the precision of

the model. High precision is crucial in applications such as

healthcare, where it denotes a lower rate of misclassification.

• REC indicates the proportion of actual positive samples

correctly identified by the model, representing the model’s

coverage. A high recall signifies that the model captures most

of the real positive cases.

• The F1 score, the harmonic mean of precision and recall, is an

integrated metric, especially important when there is an

imbalance between positive and negative samples.

Additionally, the ROC curve graphically represents the

performance of a binary classifier, showing the relationship

between the True Positive Rate (TPR) and False Positive Rate

(FPR) at various threshold settings. Ideally, the best classifier’s

ROC curve approaches the upper left corner of the graph. The

Area Under the Curve (AUC) measures the model’s overall

ability to distinguish between positive and negative samples. An

AUC value close to 1 indicates superior model performance.
3 Results

3.1 Experiment setup

In this study, comprehensive parameter tuning and

optimization were conducted on all developed models to ensure

the objectivity and accuracy of the results. To maintain

consistency, identical parameter settings were employed

throughout the five-fold cross-validation and external testing

processes. Iterative experimentation demonstrated that the

models converged effectively without overfitting when the

number of epochs was set to 30. Specifically, for our CANet

model, the learning rate and batch size were fixed at 0.0001,

while parameter adjustments were made based on gradient

thresholding to enhance model performance.
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All experiments were conducted on a platform running

Windows 11 Professional operating system, with Python 3.10.9 as

the runtime environment. Regarding software libraries, Pytorch

2.0.1 + cu117, Scikit-learn, Sklearn 0.0.post1, scipy 1.10.0, and

other mathematical libraries were utilized to support the

construction of the model structure and the validation of results.

The hardware configuration included an Intel Core i7 10750H

processor (base frequency of 2.6 GHz, turbo frequency up to

5 GHz, 6 cores/12 threads) and an NVIDIA GeForce GTX

1080Ti graphics card (8 GB memory capacity, 128-bit memory

bus width).
3.2 Result of five-fold cross-validation

To comprehensively and objectively evaluate the performance

of the proposed CANet model, this study utilized the five-fold

cross-validation method for dataset division and conducted

rigorous testing of the model. The mean values of the model test

results were used to reduce randomness and improve

generalization capability. After 10 training epochs, optimal

performance for CANet was observed with a learning rate of

0.0001, which helps to ensure that the model’s weights are

updated in small steps, preventing large oscillations or divergence

in the loss function. To provides a good balance between

accurate gradient estimation and computational efficiency, the

batch size is 64, without overfitting. The final training iteration

graph is depicted in Figure 4a.

During the five-fold cross-validation, CANet showed a

performance higher than all other models. In the accuracy scale,

this model shown a stable ability of prediction, which was the

only one that recognized all five heartbeats with a accuracy

higher than 95%. Moreover, it outperformed all baseline models

across all evaluation matrics (ACC, PRE, REC and F1),

showcasing exceptional predictive performance.

These results highlight CANet’s high accuracy in recognizing

five different types of heartbeats. The corresponding ROC curves

and confusion matrices are shown in Figures 4b,c.

Compared to the five baseline models, CANet showed more

favorable results in the cross-validation. The baseline models’

ACC, PRE, REC, and F1 scores were lower than CANet’s, which

is shown in the Supplementary Table S1.

Among them, the GRU model performed the best, which mean

ACC reached 97%, but its precision was significantly lower than

CANet. The BiLSTM model slightly trailed GRU in classification

accuracy. The performance of the remaining models declined

further across several metrics. Overall, traditional models fell

short in various metrics compared to CANet, which

demonstrated a clear advantage in the cross-validation. The ROC

curves for the baseline models are presented in Figures 4c–g.
3.3 Result of external validation

To evaluate the performance of the newly developed CANet

model, an external test using an unseen sample set was
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FIGURE 4

The result of five-fold cross-validation. (a) the training flow of CANet. (b) The ROC curve of CANet. (c–g) The ROC curve of BiLSTM, CNN, GRU, LSTM
and RNN.
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conducted to assess its capability in handling unseen data. The

results demonstrate that CANet performed exceptionally well,

with average ACC, PRE, REC, and F1 of 94.41%, 92.41%,

92.41%, and 79.02%, respectively. Notably, the model accurately

identified [S] and [Q] type, achieving precision rates of 99.26%

and 99.22%, respectively. For [N] type, CANet consistently

showed reliable performance across all metrics, with ACC, PRE,

REC, and F1 at 94.91%, 99.26%, 94.55%, and 96.85%,

respectively. Additionally, the model was trained and tested using

data prior to data augmentation, yielding average ACC and PRE

of 93.27% and 87.23%, respectively. Due to imbalances in the

dataset, a significant number of [Q] type predictions were

incorrectly classified as [N], markedly reducing precision. These

findings underscore the significant improvement in model

performance facilitated by data augmentation. Overall, CANet

maintained high accuracy and precision across different types of

heartbeats without significant performance variation. The

corresponding confusion matrix and ROC curve are presented

in Figures 5a,b.
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In external testing of baseline models, the GRU model

exhibited the highest accuracy, with mean ACC, PRE, REC, and

F1 of 93.76%, 73.06%, 93.14%, and 79.39%, respectively. Despite

its high recognition rate, GRU’s performance across all

evaluation metrics was inferior to CANet, especially in PRE and

F1. The performance of all models in the external test is detailed

in Supplementary Table S2.

Other baseline models demonstrated lower precision, accuracy,

recall, and F1-scores. Additionally, GRU showed lower precision in

recognizing [S] and [V] types, with rates of only 38.38% and

41.86%, respectively. The accuracy of BiLSTM was slightly lower

than GRU, at 91.74%, with a precision of only 67.43%. The

remaining models (LSTM, CNN, RNN) showed poorer

recognition results, with lower accuracy, precision, recall, and F1.

The results indicate that baseline models were inferior to CANet

in terms of accuracy and adaptability to the dataset, displaying a

clear imbalance in recognizing different types of heartbeats.

Additionally, the ROC curves of the baseline models are

illustrated in Figures 5b–g. Analysis of these curves reveals that
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FIGURE 5

The result of external validation. (a) the confusion matrix of CANet. (b) The ROC curve of CANet. (c–g) The ROC curve of BiLSTM, CNN, GRU, LSTM
and RNN.

He et al. 10.3389/fcvm.2024.1473482
the CANe model surpasses all baseline models in AUC values for

each classification. Apart from the [S] category, which has an

AUC of 97.47%, all other classifications have AUCs exceeding

99%, demonstrating exceptional clinical predictive value. These

results confirm the superior predictive performance of the CANe

model. Given its lightweight design, the model is poised for

widespread deployment in clinical electrocardiographic devices

and portable wearable devices, facilitating precise and real-time

detection of cardiac arrhythmias.

We measured the inference time for the model to process a

single ECG signal on a standard hardware platform (Intel Core

i7 CPU with 16 GB RAM). The average inference time was

found to be approximately 56.7 ms, which is well within the

typical requirement for real-time detection. This result is

consistent with the claim that the model can be used for

real-time arrhythmia detection. The model was found to

require approximately 30 MB of memory during inference. This

low memory footprint demonstrates the portability of
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CardioAttentionNet, making it feasible for deployment on

resource-constrained devices, such as wearable ECG monitors or

mobile health applications.
4 Discussion

In this study, we proposed an innovative fusion model referred

to as CANet, which integrates Bidirectional Long Short-Term

Memory (BiLSTM), Multihead Attention, and Depthwise

Separable Convolution. This model was specifically designed to

achieve high accuracy and robustness while maintaining a

lightweight architecture. CANet is employed for the classification

of electrocardiogram (ECG) signals, with the objective of

distinguishing abnormal heartbeats from normal cardiac

rhythms, thereby facilitating the detection of cardiac arrhythmias.

The results indicated that CANet exhibits remarkable recognition

capabilities for five clinically distinct types of heartbeats.
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During five-fold cross-validation, CANet achieved high average

precision, with 95% confidence intervals for the various heartbeat

types as follows: Normal (N) 97.92 ± 0.33%, Supraventricular (S)

98.58 ± 0.21%, Ventricular (V) 99.13 ± 0.13%, Fusion (F)

99.30 ± 0.17%, and QRS (Q) 99.74 ± 0.5%. In external testing,

CANet continued to demonstrate excellent performance,

attaining average accuracy (ACC), precision (PRE), recall (REC),

and F1 scores of 94.91%, 99.26%, 94.55%, and 96.85%, respectively.

Although the CANet model demonstrated superiority across

multiple tasks in this study, we also acknowledge that other models

retain advantages in specific scenarios. The GRU model, in particular,

excels in handling time-series data, especially in situations

characterized by strong short-term dependencies. Due to its

streamlined architecture and lower computational complexity, the

GRU may offer higher efficiency in environments with limited

resources or computing power. In contrast, while CANet boasts more

robust performance, its complexity may render it less suitable for

scenarios sensitive to computational speed or resource demands.

Moreover, despite CANet’s demonstrated higher accuracy and

robustness in our investigated tasks, lightweight models such as the

GRU might still be viable choices in tasks or with data features where

these characteristics are prominent. These models could have

advantages in applications requiring real-time responses or operating

under resource constraints. Therefore, the selection of models in

practical applications should consider the specific task requirements,

computational resources, and data characteristics comprehensively.

The exemplary performance of CANet can be attributed to the

synergistic combination of its architectural design and predictive

capabilities. The integration of LSTM, Multi-Head Attention, and

Depthwise Separative Convolution enables effective processing and

memory of long-term sequential data, identification of cyclic

patterns in ECG signals, and simultaneous focus on multiple

features. Additionally, the temporal nature of cardiac signals offers

an ideal setting for the BiLSTM component of the model, yielding

more precise and efficient recognition capabilities. Through this

optimized design, we have significantly enhanced the model’s

performance while minimizing its parameters, thus avoiding

excessive computational load on the hosting devices. As a result,

the model holds potential for future deployment in portable

devices for real-time and precise detection and classification of

cardiac arrhythmias. These combined elements contribute to the

outstanding performance of CANet, showing potential for

application in wearable devices and clinical practice for early

arrhythmia diagnosis, thereby mitigating its impact on health.

To illustrate the model’s feature extraction and effective

recognition of ECG signals, a heat activation map is presented as a

visualization of the model output in Figure 6. Specifically, for

Normal beats (N), the heatmap shows significant activation during

the QRS complex, indicating accurate identification of this critical

interval with reduced activation during the T wave, consistent with

normal electrophysiological characteristics. For Fusion beats (F),

the activation pattern is uniformly distributed during the QRS

complex and P wave, reflecting variations in cardiac signals in

these regions, corresponding to the clinically observed shortened

interval between the P wave and QRS complex. For

Supraventricular ectopic beats (S), the heatmap exhibits heightened
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activity at the onset of the QRS complex, suggesting the model’s

sensitivity to changes in QRS morphology typical of

supraventricular ectopy, aligning with the clinical presentation of

abnormal P waves and altered QRS morphology. For Ventricular

ectopic beats (V), the clinical presentation of wide and abnormal

QRS complexes without preceding P waves is mirrored by intense

activity throughout the QRS interval on the heatmap, consistent

with the characteristics of ventricular ectopy. For Unknown beats

(Q), significant activation is shown on the T wave following the

QRS complex, indicating that the model can effectively capture

features of abnormal waveforms when dealing with uncertain

categories. This visual representation demonstrates CANet’s ability

to differentiate between various heart rate variabilities, emphasizing

the model’s interpretability and potential to enhance trust among

medical professionals and patients.

The electrocardiogram (ECG) serves as an essential tool in the

routine practice of clinical medicine, with over 300 million ECGs

conducted worldwide each year (36). Arrhythmias are highly

prevalent; however, the challenges associated with monitoring

certain malignant arrhythmias contribute to elevated mortality

rates. The enhanced accuracy in diagnosing cardiac arrhythmias

is primarily attributed to the expertise of clinicians, a situation

that is increasingly untenable given the current global shortage of

specirealized cardiologists. For instance, China has only 4.8

cardiologists per 100,000 individuals (37), while Japan is reported

to have approximately 14,000 specialized cardiologists (38),

figures that are grossly insufficient relative to their large

populations. In response to these challenges, wearable devices

incorporating deep learning technologies are being increasingly

integrated into daily life (39). Research indicates that the Apple

Watch, the most widely utilized wearable device, exhibits a

sensitivity of only 25% for atrial flutter/atrial tachycardia

(AFL/AT) (40), while the Fitbit demonstrates even lower

accuracy in diagnosing atrial arrhythmias (41). The purpose of

this study is to develop an ECG-AI model that accurately detects

arrhythmia. Compared to traditional methods, this deep learning

approach eliminates the need for manual design and selection of

features, significantly reducing the expertise and time required

for arrhythmia diagnosis. Moreover, by diminishing the reliance

on specialized knowledge, the model can be deployed on

everyday wearable devices such as the Apple Watch to facilitate

routine monitoring of arrhythmias. This will assist clinicians in

obtaining more precise ECG diagnoses and providing technical

support for wearable and hospital devices.

In recent years, many studies have explored the application of

deep learning models in arrhythmia classification, some of

which focused on the problem of five categories of arrhythmias.

Although these studies have demonstrated the potential of AI

in arrhythmia detection, existing models vary significantly

in complexity, accuracy, and computational efficiency. Our

proposed CANet model significantly improves on traditional

methods, especially in terms of lightweight design, real-time

detection capabilities, and portability, which are critical for the

clinical application of wearable devices. For example, Attia et al.

(8) proposed an AI-assisted ECG algorithm for identifying atrial

fibrillation (AF) in sinus rhythm with an accuracy of 83.3%.
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1473482
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 6

The heat activation map of new model (From left to right, up and down are respectively normal beat, ventricular ectopic beat, fusion beat,
supraventricular ectopic beat, unknown beat).
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However, the study only focused on one type of arrhythmia, while

our model solves the problem of multi-class classification and can

distinguish between normal, atrial, ventricular, atrial fibrillation,

and unclassified arrhythmias, providing a more comprehensive

solution. In addition, CANet integrates a multi-head attention

mechanism that can simultaneously focus on multiple features of

the ECG signal, improving accuracy without increasing

computational complexity, which is also a limitation of many

existing models. Similarly, Faour et al. (11) studied a convolutional

neural network (CNN)-based AI model for detecting ST-segment

elevation myocardial infarction. Although the model was effective

in detecting specific types of arrhythmias, its high model

complexity limited its application on portable devices. In contrast,

CANet significantly reduced the number of parameters and

improved computational efficiency by using deep separable

convolutions, making it suitable for real-time arrhythmia detection

on wearable ECG devices. Finally, the deep neural network (DNN)

developed by Hannun et al. (7) showed high sensitivity and

specificity in classifying arrhythmias from raw ECG data. Although

this method performed strongly, its application in portable devices

was limited by its model complexity and large size. Our model

maintains high performance while adopting a lightweight design,

enabling real-time detection and making it more suitable for

deployment in resource-constrained environments. Compared with

these studies, CANet not only achieves competitive accuracy, but

also further improves performance without increasing

computational overhead by integrating an efficient architecture and
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attention mechanism to optimize feature extraction. This makes it

particularly suitable for clinical environments that require real-time

continuous monitoring and portability. In addition, CANet uses

data augmentation techniques such as time warping and noise

injection to enable it to perform well even with limited data, which

is a scenario that many existing models have difficulty handling.

Of course, there are some limitations to this study. Although the

model demonstrated superior accuracy compared to others during

validation, it still presents a risk of misdiagnosis, particularly in the

classification of ventricular ectopic beats and normal beats, where

accuracy is lower. This suggests that the model’s effectiveness in

arrhythmia detection may require further enhancement through

strategies such as data augmentation and balancing the dataset by

oversampling rare classes or undersampling common ones to

reduce bias towards specific patterns. As this study focuses on the

development of deep learning methodologies, and given the

limitations of dataset size and volume, comprehensive testing

across a broad spectrum of cardiac arrhythmia classifications was

not conducted. Consequently, the training and validation of this

study have certain limitations. Given the current model’s superior

classification performance, we plan to incorporate additional data

in future work and train the model to recognize a wider array of

arrhythmia types, thus broadening its applicability. Additionally,

the model’s external testing process has certain limitations: while

external validation typically requires testing across data from

diverse sources, this model’s external test was performed on a

held-out set from the MIT-BIH dataset, which introduces some
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bias and reduces the model’s robustness. Furthermore, this study was

not tested across extensive datasets, diverse populations, or complex

clinical settings. Therefore, it is necessary to further evaluate the

model’s performance using datasets with broader coverage.

Specifically, the current publicly available database used can only

detect the types of arrhythmias mentioned earlier, and in the

future, we plan to expand to include additional relevant types.

Additionally, there is a lack of external test data in this study, and

we may conduct a multi-center study to improve this in the

future. Lastly, the system has not been developed or deployed yet,

and further development is required for clinical translation.
5 Conclusions

In this endeavor, researchers have created an AI-powered ECG

model. The model has superior performance in both five-fold

cross-validation and external validation compared to other

models, indicating its greater feasibility and potential for reliably

detecting arrhythmias through a fusion deep learning model

featuring separable convolution. The principle aim of the study is

to facilitate the procurement of more precise ECG diagnoses

through technological advancement and to augment technical

support for wearable and clinical devices utilized in

clinical circumstances.
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