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Introduction: The risk of mortality associated with cardiac arrhythmias is
considerable, and their diagnosis presents significant challenges, often
resulting in misdiagnosis. This situation highlights the necessity for an
automated, efficient, and real-time detection method aimed at enhancing
diagnostic accuracy and improving patient outcomes.

Methods: The present study is centered on the development of a portable deep
learning model for the detection of arrhythmias via electrocardiogram (ECG)
signals, referred to as CardioAttentionNet (CANet). CANet integrates Bi-
directional Long Short-Term Memory (BiLSTM) networks, Multi-head Attention
mechanisms, and Depthwise Separable Convolution, thereby facilitating its
application in portable devices for early diagnosis. The architecture of CANet
allows for effective processing of extended ECG patterns and detailed feature
extraction without a substantial increase in model size.

Results: Empirical results indicate that CANet outperformed traditional models in
terms of predictive performance and stability, as confirmed by comprehensive
cross-validation. The model demonstrated exceptional capabilities in detecting
cardiac arrhythmias, surpassing existing models in both cross-validation and
external testing scenarios. Specifically, CANet achieved high accuracy in
classifying various arrhythmic events, with the following accuracies reported
for different categories: Normal (97.37 + 0.30%), Supraventricular (98.09 +
0.25%), Ventricular (92.92 + 0.09%), Atrial Fibrillation (99.07 + 0.13%), and
Unclassified arrhythmias (99.68 + 0.06%). In external evaluations, CANet
attained an average accuracy of 94.41%, with the area under the curve (AUC)
for each category exceeding 99%, thereby demonstrating its substantial clinical
applicability and significant advancements over traditional models.

Discussion: The deep learning model proposed in this study has the potential to
enhance the accuracy of early diagnosis for various types of arrhythmias.
Looking ahead, this technology is anticipated to provide improved medical
services for patients with heart disease through continuous, non-invasive
monitoring and timely intervention.

KEYWORDS

cardiac arrhythmias, electrocardiogram, portable deep learning model, transformer
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1 Introduction

Cardiac arrhythmias, resulting from disruptions in the heart’s
electrical signals, frequently occur in clinical settings. Cardiac
arrhythmias, which manifest in multiple forms with varying
mechanisms and severities, are a major cause of morbidity and
mortality (1). The China Hypertension Survey conducted from
2012 to 2015 reported a prevalence rate of 0.7% for atrial
fibrillation in individuals aged 35 years and older, with 34.0% of
these cases being undetected by the patients themselves (2). In
the United States, most sudden cardiac deaths (SCDs) were due
to ventricular tachyarrhythmias, making up 80% of these
incidents (3). Bradyarrhythmias and conduction disorders can
precipitate syncope, sudden cardiac death, and symptoms
including fatigue and exercise intolerance due to intermittent
heart rate inadequacy. However, these conditions can be difficult
to identify (4).

Clinical screening for arrhythmia predominantly relies on
patients presenting to healthcare facilities after the onset of
Under the

cardiographers or cardiologists, physicians are tasked with

symptoms. supervision of specialized electro-
diagnosing arrhythmias. Furthermore, some patients may be
identified as having various forms of arrhythmia during routine
physical examinations (5). However, both detection methods
necessitate a high degree of professionalism from healthcare
providers. A cross-sectional study indicated that primary care
physicians exhibited a misdiagnosis rate of 23% for abnormal
electrocardiograms (6). It is noteworthy that, despite their
expertise in cardiovascular medicine, the average diagnostic
accuracy for ventricular tachycardia is only 78.4% (7). The
large-scale training of specialized cardiologists is particularly
impractical in rural regions worldwide, especially in under-
developed countries. The advancement of artificial intelligence
technology has facilitated the increased application of deep
learning techniques for arrhythmia detection. Nonetheless, the
integration of AI and deep learning into electrocardiography
(ECG) detection poses distinct challenges due to the specialized
nature of ECG interpretation.

Frameworks for interpreting -electrocardiograms (ECGs),
including parameters such as heart rate, rhythm, cardiac axis,
intervals, and ventricular activity, have been developed to classify
and identify various cardiac disorders in contemporary research.
For instance, Attia et al. introduced a novel algorithm utilizing
convolutional neural networks to predict paroxysmal atrial
fibrillation (AF) in patients, achieving an overall accuracy of
83.3% based on benign, normal sinus rhythm ECGs (8).
Similarly, Khurshid et al. (9). demonstrated that ECG P-waves
significantly impacted the predictions made by artificial
intelligence (AI) models during the training of convolutional
neural networks. Their study employed a combined analysis of
Al and clinical risk factor models for AF, which enhanced the
functionality and accuracy of ECG-AI systems. Despite the
relative robustness of these systems, the complex nature of the
cardiac conduction system results in numerous ECG graphs

exhibiting morphological characteristics that are not readily
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discernible to the human eye, complicating the identification of
local morphology and inter-beat relationships. Furthermore, there
remains a lack of comprehensive evaluation regarding the efficacy
of end-to-end deep learning methods in classifying a diverse
array of diagnoses from raw ECG data (7). Previous research has
focused on specific components of the ECG processing workflow,
such as localized noise reduction (10) and feature extraction (9),
or has been limited to diagnosing specific rhythms, primarily AF
and myocardial infarction (MI) (9, 11). This narrow focus
contributes to suboptimal accuracy rates in ECG-AI applications
and restricts the advancement of AI and deep learning
methodologies in this domain (12).

In this study, we address the evolving trends in deep learning
and the challenges associated with cardiac arrhythmia detection
by introducing the innovative CardioAttentionNet (CANet)
model. This model is specifically designed to facilitate portable
and accurate arrhythmia detection, thereby enabling early
discovery and diagnosis, which can significantly reduce potential
harm to patients. CANet is constructed upon the Long Short-
Term Memory (LSTM) network and incorporates the Multi-
Head Attention mechanism derived from the Transformer
model, as well as Depthwise Separable Convolution from
MobileNet. A comparative analysis with traditional models
indicates that the Bi-directional LSTM (BiLSTM) performs
effectively in arrhythmia detection due to its capability to process
and retain long-term sequential information, which is essential
for analyzing extended rhythm patterns and cyclic variations in
electrocardiogram (ECG) signals. However, BiLSTM is limited in
its ability to simultaneously focus on multiple features and
capture finer details. To overcome this limitation, we have
integrated Multi-Head Attention, which allows the model to
concentrate on various aspects of ECG signals, in conjunction
with Depthwise Separable Convolution for enhanced feature
extraction. When compared to baseline models, CANet exhibits
superior accuracy and predictive performance, effectively
identifying a range of cardiac arrhythmias. The workflow of this

study is depicted in Figure 1.

2 Methods
2.1 Data collection
In this study, we utilized the widely recognized MIT-BIH

Arrhythmia Database (13,
This database was particularly well-suited for training deep

14) for our experimental analyses.

neural networks due to its extensive collection of samples. It
consisted of 109,446 electrocardiogram (ECG) recordings, each
sampled at a frequency of 360 Hz, which includes both normal
heart rhythms and various arrhythmic conditions. Notably, the
database segmented these ECG signals into individual beats, each
representing a distinct cardiac cycle. Following the standard
clinical classification, the heartbeats were categorized into five
types: Normal beats (N), Fusion beats (F), Supraventricular
ectopic beats (S), Ventricular ectopic beats (V), and Unknown
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FIGURE 1
Workflow of this study.

beats (Q). In our research, we adhered to this classification scheme
for the identification and analysis of arrhythmias within the
ECG signals.

2.2 Data preprocessing

Despite the pre-segmentation of electrocardiogram (ECG)
signals in the MIT-BIH Arrhythmia Database, these signals
continued to exhibit a considerable amount of noise, including
electromyographic interference, motion artifacts, and baseline
drift, among other factors. Such noise could negatively impact
the quality of heart rate signals, thereby hindering the precise
extraction of features. Consequently, the preprocessing of these
In the domain of ECG
preprocessing, wavelet transform was a widely utilized method

signals was imperative. signal
(15). This technique facilitated the transformation of long-
duration time-domain signals into time-frequency representations,
thereby elucidating the frequency domain components at each
time point and capturing more localized features. During the
wavelet transform process, we primarily employed the Mallat
algorithm (16). This method systematically decomposed the
signal into “low-frequency approximations” and “high-frequency
details,” which allowed for the effective removal of frequencies
associated with electromyographic noise (20-5,000 Hz) and
baseline drift (1 Hz). Following the noise reduction and signal
restoration, we achieved ECG signals with improved accuracy and
clarity, thereby establishing a robust foundation for subsequent
data augmentation processes (17).

Recognizing the disparity in the MIT-BIH Arrhythmia
Database, with a significant predominance of normal heart rate
samples over those exhibiting arrhythmias, we employed data
augmentation methods in the preprocessing stage. This approach
ensured a balanced representation of all classes in the dataset
and bolstered the model’s ability to detect abnormal patterns,
thus enhancing its overall generalizability. Specifically, we
employed data augmentation methods such as time warping and
noise injection to create a balanced dataset. These techniques
markedly improved the performance of our model, effectively
addressing the challenges associated with data imbalance. The
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adjusted proportions of the different arrhythmia categories in the
dataset, both prior to and following data augmentation, were
depicted in Figure 2. Experimental results demonstrated that
these data augmentation strategies significantly bolstered the
model’s performance and successfully mitigated the issues related
to data imbalance.

2.3 Feature extraction

In this study, we selected segmented electrocardiogram (ECG)
signals as the primary input, supplemented by each heartbeat
interval (R-R interval, RRI) as a parallel input, to establish
comprehensive indicators that reflect the key characteristics of
cardiac arrhythmias. To enhance accuracy in subsequent deep
learning processes, we employed Gaussian filtering to improve
data contrast. Although Gaussian filters are predominantly
utilized in digital image processing, they are equally effective in
enhancing the signal-to-noise ratio, filtering out noise, and
ensuring smoother ECG signals (18). Given the waveform
deformations frequently observed in ECGs during arrhythmias,
we implemented R-wave detection to delineate each individual
heartbeat. In our methodology, the Pan-Tompkins algorithm (19,
20) was initially employed to detect R-waves in the denoised
ECG signals on a per-minute basis. Subsequently, we calculated
the intervals between adjacent R-waves, yielding RRI in
milliseconds as a parallel input to the ECG signals, thereby
providing a more intuitive representation of the characteristics of
cardiac arrhythmias.

2.4 Model construction

2.4.1 Cardioattentionnet (CANet)

The advancements in deep learning have significantly
enhanced its application in the detection of cardiac arrhythmias,
particularly through the utilization of models such as Long
Short-Term Memory (LSTM) networks and Recurrent Neural
Networks (RNN). These
demonstrated recognition

models, especially LSTM, have

superior accuracy compared to
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traditional methods (21).
RNN,
associated with gradient vanishing and long-term dependencies,
thereby enhancing the accuracy of deep learning applications.
The efficacy of RNN and LSTM in analyzing time-dependent

data was particularly noteworthy, as evidenced by the work of

LSTM, which
effectively

represented an

improvement over addresses  challenges

Salloum, Ronald, and Kuo, C.-C. Jay, who reported elevated
arrhythmia detection rates using RNN without the necessity for
prior feature extraction (22). Furthermore, Hannun et al. (7)
introduced a Deep Neural Network (DNN) for classification
purposes, underscoring the high sensitivity and predictive
capabilities of DNNs. Nonetheless, concerns regarding the
accuracy of outputs generated without preprocessing input data
persist, highlighting the necessity for a careful balance between
accuracy and computational efficiency (21). RNN models retain
previous ECG information, influencing current inputs. LSTM
units loop information across time steps, creating internal
feedback that helps the network understand time and learn
temporal dynamics in the data. With these properties, Currently,
many models have been using RNN and LSTM models to
achieve demonstrated accuracy in arrhythmia detection, including
Sumanta et al’s ELM-RNN model (ECG signal classification and
arrhythmia detection using ELM-RNN) and Shu Liu Oh’s CNN-
LSTM model (Automated diagnosis of arrhythmia using
combination of CNN and LSTM techniques with variable length
heart beats).

This study presents CANet, a hybrid deep learning model
developed for the detection of cardiac arrhythmias. CANet
integrates Bidirectional Long Short-Term Memory (BiLSTM),
Multihead Attention, and Depthwise Separable Convolution to
enhance generalization, predictive performance, and structural
robustness, while simultaneously minimizing bias and variance.
The design of the model leverages the strengths of various
machine learning techniques, amalgamating them into a cohesive
framework, as illustrated in Figure 3.

Frontiers in Cardiovascular Medicine

CANet architecture initiates with Bidirectional Long Short-
Term Memory (BiLSTM) processing, which enhances temporal
dependencies by integrating both past and future data, thereby
rendering it appropriate for electrocardiogram (ECG) signal
analysis. This configuration facilitates the retention of long-term
dependencies, consequently improving classification accuracy.
Subsequently, the Multi-Head Attention layer, derived from
Transformer models and adapted for image and time series
applications, allocates attention to various features concurrently,
thereby mitigating the issue of feature neglect (23). This aspect
is particularly significant in ECG signal analysis, as it addresses
the challenges associated with feature focus in BiLSTM.

The model utilizes Depthwise Separable Convolution, which
demonstrates  greater standard

efficiency compared to

convolutions in terms of both parameter count and
computational workload, thereby improving training speed
(24). This architecture is particularly effective in extracting
local time-domain features from electrocardiogram (ECG)
signals, which is essential for the identification of abnormal
ECG characteristics.

Following comprehensive testing and validation, CANet
demonstrates considerable advantages in the detection of cardiac
arrhythmias, The

architecture incorporates Bidirectional Long Short-Term Memory

outperforming  conventional — models.
(BiLSTM) networks, attention mechanisms, and convolutional
networks, thereby effectively capturing anomalies in electro-
cardiogram (ECG) signals from various perspectives. Cardio-
AttentionNet is specifically designed to perform efficiently in
data-scarce environments, where smaller datasets are often a
reality. Through its lightweight architecture and attention-based
feature selection, the model is capable of leveraging limited data
effectively, as demonstrated by its strong performance on the
MIT-BIH Arrhythmia Database. External evaluations and five-
fold cross-validation further substantiate CANet’s exceptional
performance in arrhythmia detection.
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FIGURE 3
The construction of CANet.

2.4.2 Baseline models

To conduct an objective evaluation of the proposed CANet
model, this study established several baseline models for
comparative analysis to determine the efficacy and advantages of
CANet. The selected baseline models for comparison included
Recurrent Neural Networks (RNN), Convolutional Neural
Networks (CNN), Long Short-Term Memory networks (LSTM),
Bidirectional LSTM (BiLSTM), and Gated Recurrent Units
(GRU). These models were chosen due to their prevalent
application in deep learning and their significant contributions to
research in heart rate detection.
(CNNs), a
architecture in deep learning, were recognized for their efficiency

Convolutional Neural Networks prevalent
in extracting signal features via convolutional operations. This
model has gained prominence in the domains of signal
classification and segmentation, particularly in the detection of
electrocardiogram (ECG) signals, where it has demonstrated a
significant impact (25, 26).

Recurrent Neural Networks (RNNs) were acknowledged for
their strong model fitting and predictive capabilities when
dealing with sequential data, and they have demonstrated
significant effectiveness in the detection of arrhythmias. In
contrast to conventional deep learning architectures, the hidden
layers of RNNs incorporated memory functions that facilitated
the retention and utilization of previous information. This
characteristic = was
electrocardiogram (ECG) signals (27, 28).

particularly vital in the analysis of

Long Short-Term Memory (LSTM), an extension of Recurrent
Neural Networks (RNN), integrates “gates” at each unit (29),
model’s

thereby enhancing the memory capabilities and
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providing significant advantages in the processing of longer
sequences. LSTM has become a widely utilized model in the
detection of arrhythmias (30).

The Gated Recurrent Unit (GRU), a variant of the Recurrent
Neural Network (RNN) developed to mitigate challenges
associated with long-term memory and gradient descent, features
a reduced number of “gates” in comparison to the Long
Short-Term Memory (LSTM) architecture, thereby improving
GRU has

demonstrated significant efficacy in the analysis of electro-

computational efficiency (31). Furthermore, the
cardiogram (ECG) signals and related applications.
Bidirectional Long Short-Term Memory (BiLSTM), an
enhancement of Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM) networks, incorporates a mechanism
for the propagation of data in both forward and backward directions.
This capability allows BiLSTM to integrate information from both
temporal contexts, thereby improving its predictive performance
compared to traditional RNN and LSTM architectures (32).
Consequently, BILSTM has attracted significant research interest
within the domain of electrocardiogram (ECG) analysis (33-35).

2.5 Model evaluation

In order to conduct a thorough and objective assessment of the
performance of the proposed CANet model, this study utilized
standard evaluation metrics, including Accuracy (ACC), Precision
(PRE), Recall (REC), F1-Score (F1), and the Receiver Operating
Characteristic (ROC) curve. These metrics were derived from the
values of True Positives (TP), True Negatives (TN), False
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Positives (FP), and False Negatives (FN). The specific formulas for
these metrics were outlined as follows:

TP + TN
ACC = 1
TP + FP + TN + FN M
PRE = P (2)
" TP + FP
REC = P (3)
" TP+ FN
2 x PRE x REC
pp = 2 X X R (4)
PRE + REC

where:

o ACC represents the ratio of correctly classified samples to the
total number of samples, providing a direct measure of
model performance.

o PRE reflects the proportion of actual positive samples that are
predicted as positive by the model, indicating the precision of
the model. High precision is crucial in applications such as
healthcare, where it denotes a lower rate of misclassification.

o REC indicates the proportion of actual positive samples
correctly identified by the model, representing the model’s
coverage. A high recall signifies that the model captures most
of the real positive cases.

o The FI score, the harmonic mean of precision and recall, is an
integrated metric, especially important when there is an
imbalance between positive and negative samples.

Additionally, the ROC
performance of a binary classifier, showing the relationship
between the True Positive Rate (TPR) and False Positive Rate
(FPR) at various threshold settings. Ideally, the best classifier’s
ROC curve approaches the upper left corner of the graph. The
Area Under the Curve (AUC) measures the model’s overall
ability to distinguish between positive and negative samples. An

curve graphically represents the

AUC value close to 1 indicates superior model performance.

3 Results
3.1 Experiment setup

In this
optimization were conducted on all developed models to ensure

study, comprehensive parameter tuning and
the objectivity and accuracy of the results. To maintain

consistency, identical parameter settings were employed
throughout the five-fold cross-validation and external testing
processes. Iterative experimentation demonstrated that the
models converged effectively without overfitting when the
number of epochs was set to 30. Specifically, for our CANet
model, the learning rate and batch size were fixed at 0.0001,
while parameter adjustments were made based on gradient

thresholding to enhance model performance.
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All experiments were conducted on a platform running
Windows 11 Professional operating system, with Python 3.10.9 as
the runtime environment. Regarding software libraries, Pytorch
2.0.1 + cull?, Scikit-learn, Sklearn 0.0.postl, scipy 1.10.0, and
other mathematical libraries were utilized to support the
construction of the model structure and the validation of results.
The hardware configuration included an Intel Core i7 10750H
processor (base frequency of 2.6 GHz, turbo frequency up to
5GHz, 6 cores/12 threads) and an NVIDIA GeForce GTX
1080Ti graphics card (8 GB memory capacity, 128-bit memory
bus width).

3.2 Result of five-fold cross-validation

To comprehensively and objectively evaluate the performance
of the proposed CANet model, this study utilized the five-fold
cross-validation method for dataset division and conducted
rigorous testing of the model. The mean values of the model test
results were used to reduce randomness and improve
generalization capability. After 10 training epochs, optimal
performance for CANet was observed with a learning rate of
0.0001, which helps to ensure that the model’s weights are
updated in small steps, preventing large oscillations or divergence
in the loss function. To provides a good balance between
accurate gradient estimation and computational efficiency, the
batch size is 64, without overfitting. The final training iteration
graph is depicted in Figure 4a.

During the five-fold cross-validation, CANet showed a
performance higher than all other models. In the accuracy scale,
this model shown a stable ability of prediction, which was the
only one that recognized all five heartbeats with a accuracy
higher than 95%. Moreover, it outperformed all baseline models
(ACC, PRE, REC and F1),

showcasing exceptional predictive performance.

across all evaluation matrics

These results highlight CANet’s high accuracy in recognizing
five different types of heartbeats. The corresponding ROC curves
and confusion matrices are shown in Figures 4b,c.

Compared to the five baseline models, CANet showed more
favorable results in the cross-validation. The baseline models’
ACC, PRE, REC, and F1 scores were lower than CANet’s, which
is shown in the Supplementary Table SI.

Among them, the GRU model performed the best, which mean
ACC reached 97%, but its precision was significantly lower than
CANet. The BiLSTM model slightly trailed GRU in classification
accuracy. The performance of the remaining models declined
further across several metrics. Overall, traditional models fell
short CANet, which
demonstrated a clear advantage in the cross-validation. The ROC

in various metrics compared to

curves for the baseline models are presented in Figures 4c-g.

3.3 Result of external validation

To evaluate the performance of the newly developed CANet
model, an external test using an unseen sample set was
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The result of five-fold cross-validation. (a) the training flow of CANet. (b) The ROC curve of CANet. (c—g) The ROC curve of BiLSTM, CNN, GRU, LSTM
and RNN.

conducted to assess its capability in handling unseen data. The
results demonstrate that CANet performed exceptionally well,
with average ACC, PRE, REC, and Fl1 of 94.41%, 92.41%,
92.41%, and 79.02%, respectively. Notably, the model accurately
identified [S] and [Q] type, achieving precision rates of 99.26%
and 99.22%, respectively. For [N] type, CANet consistently
showed reliable performance across all metrics, with ACC, PRE,
REC, and F1 at 94.91%, 99.26%, 94.55%, and 96.85%,
respectively. Additionally, the model was trained and tested using
data prior to data augmentation, yielding average ACC and PRE
of 93.27% and 87.23%, respectively. Due to imbalances in the
dataset, a significant number of [Q] type predictions were
incorrectly classified as [N], markedly reducing precision. These
findings underscore the significant improvement in model
performance facilitated by data augmentation. Overall, CANet
maintained high accuracy and precision across different types of
heartbeats The
corresponding confusion matrix and ROC curve are presented

without significant performance variation.

in Figures 5a,b.
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In external testing of baseline models, the GRU model
exhibited the highest accuracy, with mean ACC, PRE, REC, and
F1 of 93.76%, 73.06%, 93.14%, and 79.39%, respectively. Despite
its high GRU’s
evaluation metrics was inferior to CANet, especially in PRE and

recognition rate, performance across all
F1. The performance of all models in the external test is detailed
in Supplementary Table S2.

Other baseline models demonstrated lower precision, accuracy,
recall, and F1-scores. Additionally, GRU showed lower precision in
recognizing [S] and [V] types, with rates of only 38.38% and
41.86%, respectively. The accuracy of BiLSTM was slightly lower
than GRU, at 91.74%, with a precision of only 67.43%. The
(LSTM, CNN, RNN)

recognition results, with lower accuracy, precision, recall, and F1.

remaining models showed poorer
The results indicate that baseline models were inferior to CANet
in terms of accuracy and adaptability to the dataset, displaying a
clear imbalance in recognizing different types of heartbeats.
Additionally, the ROC curves of the baseline models are
illustrated in Figures 5b-g. Analysis of these curves reveals that
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FIGURE 5
The result of external validation. (a) the confusion matrix of CANet. (b) The ROC curve of CANet. (c—g) The ROC curve of BiLSTM, CNN, GRU, LSTM
and RNN.

the CANe model surpasses all baseline models in AUC values for
each classification. Apart from the [S] category, which has an
AUC of 97.47%, all other classifications have AUCs exceeding
99%, demonstrating exceptional clinical predictive value. These
results confirm the superior predictive performance of the CANe
model. Given its lightweight design, the model is poised for
widespread deployment in clinical electrocardiographic devices
and portable wearable devices, facilitating precise and real-time
detection of cardiac arrhythmias.

We measured the inference time for the model to process a
single ECG signal on a standard hardware platform (Intel Core
i7 CPU with 16 GB RAM). The average inference time was
found to be approximately 56.7 ms, which is well within the
typical requirement for real-time detection. This result is
consistent with the claim that the model can be used for
real-time arrhythmia detection. The model was found to
require approximately 30 MB of memory during inference. This
demonstrates  the

low memory footprint portability  of
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CardioAttentionNet, making it feasible for deployment on
resource-constrained devices, such as wearable ECG monitors or
mobile health applications.

4 Discussion

In this study, we proposed an innovative fusion model referred
to as CANet, which integrates Bidirectional Long Short-Term
(BiLSTM), Multihead Attention,
Separable Convolution. This model was specifically designed to

Memory and Depthwise
achieve high accuracy and robustness while maintaining a
lightweight architecture. CANet is employed for the classification
of electrocardiogram (ECG) signals, with the objective of
heartbeats
rhythms, thereby facilitating the detection of cardiac arrhythmias.
The results indicated that CANet exhibits remarkable recognition
capabilities for five clinically distinct types of heartbeats.

distinguishing  abnormal from normal cardiac
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During five-fold cross-validation, CANet achieved high average
precision, with 95% confidence intervals for the various heartbeat
types as follows: Normal (N) 97.92 +0.33%, Supraventricular (S)
98.58 +0.21%, Ventricular (V) 99.13+0.13%, Fusion (F)
99.30+£0.17%, and QRS (Q) 99.74+0.5%. In external testing,
CANet
attaining average accuracy (ACC), precision (PRE), recall (REC),
and F1 scores of 94.91%, 99.26%, 94.55%, and 96.85%, respectively.

Although the CANet model demonstrated superiority across

continued to demonstrate excellent performance,

multiple tasks in this study, we also acknowledge that other models
retain advantages in specific scenarios. The GRU model, in particular,
excels in handling time-series data, especially in situations
characterized by strong short-term dependencies. Due to its
streamlined architecture and lower computational complexity, the
GRU may offer higher efficiency in environments with limited
resources or computing power. In contrast, while CANet boasts more
robust performance, its complexity may render it less suitable for
scenarios sensitive to computational speed or resource demands.
Moreover, despite CANet’s demonstrated higher accuracy and
robustness in our investigated tasks, lightweight models such as the
GRU might still be viable choices in tasks or with data features where
these characteristics are prominent. These models could have
advantages in applications requiring real-time responses or operating
under resource constraints. Therefore, the selection of models in
practical applications should consider the specific task requirements,
computational resources, and data characteristics comprehensively.

The exemplary performance of CANet can be attributed to the
synergistic combination of its architectural design and predictive
capabilities. The integration of LSTM, Multi-Head Attention, and
Depthwise Separative Convolution enables effective processing and
memory of long-term sequential data, identification of cyclic
patterns in ECG signals, and simultaneous focus on multiple
features. Additionally, the temporal nature of cardiac signals offers
an ideal setting for the BiLSTM component of the model, yielding
more precise and efficient recognition capabilities. Through this
optimized design, we have significantly enhanced the model’s
performance while minimizing its parameters, thus avoiding
excessive computational load on the hosting devices. As a result,
the model holds potential for future deployment in portable
devices for real-time and precise detection and classification of
cardiac arrhythmias. These combined elements contribute to the
outstanding performance of CANet, showing potential for
application in wearable devices and clinical practice for early
arrhythmia diagnosis, thereby mitigating its impact on health.

To illustrate the model's feature extraction and effective
recognition of ECG signals, a heat activation map is presented as a
visualization of the model output in Figure 6. Specifically, for
Normal beats (N), the heatmap shows significant activation during
the QRS complex, indicating accurate identification of this critical
interval with reduced activation during the T wave, consistent with
normal electrophysiological characteristics. For Fusion beats (F),
the activation pattern is uniformly distributed during the QRS
complex and P wave, reflecting variations in cardiac signals in
these regions, corresponding to the clinically observed shortened
and QRS
Supraventricular ectopic beats (S), the heatmap exhibits heightened

interval between the P wave complex. For
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activity at the onset of the QRS complex, suggesting the model’s
sensitivity to changes in QRS morphology typical of
supraventricular ectopy, aligning with the clinical presentation of
abnormal P waves and altered QRS morphology. For Ventricular
ectopic beats (V), the clinical presentation of wide and abnormal
QRS complexes without preceding P waves is mirrored by intense
activity throughout the QRS interval on the heatmap, consistent
with the characteristics of ventricular ectopy. For Unknown beats
(Q), significant activation is shown on the T wave following the
QRS complex, indicating that the model can effectively capture
features of abnormal waveforms when dealing with uncertain
categories. This visual representation demonstrates CANet’s ability
to differentiate between various heart rate variabilities, emphasizing
the model’s interpretability and potential to enhance trust among
medical professionals and patients.

The electrocardiogram (ECG) serves as an essential tool in the
routine practice of clinical medicine, with over 300 million ECGs
conducted worldwide each year (36). Arrhythmias are highly
prevalent; however, the challenges associated with monitoring
certain malignant arrhythmias contribute to elevated mortality
rates. The enhanced accuracy in diagnosing cardiac arrhythmias
is primarily attributed to the expertise of clinicians, a situation
that is increasingly untenable given the current global shortage of
specirealized cardiologists. For instance, China has only 4.8
cardiologists per 100,000 individuals (37), while Japan is reported
to have approximately 14,000 specialized cardiologists (38),
figures that are grossly insufficient relative to their large
populations. In response to these challenges, wearable devices
incorporating deep learning technologies are being increasingly
integrated into daily life (39). Research indicates that the Apple
Watch, the most widely utilized wearable device, exhibits a
sensitivity of only 25% for atrial flutter/atrial tachycardia
(AFL/AT) (40),

accuracy in diagnosing atrial arrhythmias (41). The purpose of

while the Fitbit demonstrates even lower

this study is to develop an ECG-AI model that accurately detects
arrhythmia. Compared to traditional methods, this deep learning
approach eliminates the need for manual design and selection of
features, significantly reducing the expertise and time required
for arrhythmia diagnosis. Moreover, by diminishing the reliance
on specialized knowledge, the model can be deployed on
everyday wearable devices such as the Apple Watch to facilitate
routine monitoring of arrhythmias. This will assist clinicians in
obtaining more precise ECG diagnoses and providing technical
support for wearable and hospital devices.

In recent years, many studies have explored the application of
deep learning models in arrhythmia classification, some of
which focused on the problem of five categories of arrhythmias.
Although these studies have demonstrated the potential of AI
in arrhythmia detection,

existing models vary significantly

in complexity, accuracy, and computational efficiency. Our
proposed CANet model significantly improves on traditional
methods, especially in terms of lightweight design, real-time
detection capabilities, and portability, which are critical for the
clinical application of wearable devices. For example, Attia et al.
(8) proposed an Al-assisted ECG algorithm for identifying atrial

fibrillation (AF) in sinus rhythm with an accuracy of 83.3%.
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The heat activation map of new model (From left to right, up and down are respectively normal beat, ventricular ectopic beat, fusion beat,

supraventricular ectopic beat, unknown beat)
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However, the study only focused on one type of arrhythmia, while
our model solves the problem of multi-class classification and can
distinguish between normal, atrial, ventricular, atrial fibrillation,
and unclassified arrhythmias, providing a more comprehensive
solution. In addition, CANet integrates a multi-head attention
mechanism that can simultaneously focus on multiple features of
the ECG
computational complexity, which is also a limitation of many

signal, improving accuracy without increasing
existing models. Similarly, Faour et al. (11) studied a convolutional
neural network (CNN)-based AI model for detecting ST-segment
elevation myocardial infarction. Although the model was effective
in detecting specific types of arrhythmias, its high model
complexity limited its application on portable devices. In contrast,
CANet significantly reduced the number of parameters and
improved computational efficiency by using deep separable
convolutions, making it suitable for real-time arrhythmia detection
on wearable ECG devices. Finally, the deep neural network (DNN)
developed by Hannun et al. (7) showed high sensitivity and
specificity in classifying arrhythmias from raw ECG data. Although
this method performed strongly, its application in portable devices
was limited by its model complexity and large size. Our model
maintains high performance while adopting a lightweight design,
enabling real-time detection and making it more suitable for
deployment in resource-constrained environments. Compared with
these studies, CANet not only achieves competitive accuracy, but
also  further

computational overhead by integrating an efficient architecture and

improves  performance  without increasing
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attention mechanism to optimize feature extraction. This makes it
particularly suitable for clinical environments that require real-time
continuous monitoring and portability. In addition, CANet uses
data augmentation techniques such as time warping and noise
injection to enable it to perform well even with limited data, which
is a scenario that many existing models have difficulty handling.
Of course, there are some limitations to this study. Although the
model demonstrated superior accuracy compared to others during
validation, it still presents a risk of misdiagnosis, particularly in the
classification of ventricular ectopic beats and normal beats, where
accuracy is lower. This suggests that the model’s effectiveness in
arrhythmia detection may require further enhancement through
strategies such as data augmentation and balancing the dataset by
oversampling rare classes or undersampling common ones to
reduce bias towards specific patterns. As this study focuses on the
development of deep learning methodologies, and given the
limitations of dataset size and volume, comprehensive testing
across a broad spectrum of cardiac arrhythmia classifications was
not conducted. Consequently, the training and validation of this
study have certain limitations. Given the current model’s superior
classification performance, we plan to incorporate additional data
in future work and train the model to recognize a wider array of
arrhythmia types, thus broadening its applicability. Additionally,
the model’s external testing process has certain limitations: while
external validation typically requires testing across data from
diverse sources, this model’s external test was performed on a
held-out set from the MIT-BIH dataset, which introduces some
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bias and reduces the model’s robustness. Furthermore, this study was
not tested across extensive datasets, diverse populations, or complex
clinical settings. Therefore, it is necessary to further evaluate the
model’s performance using datasets with broader coverage.
Specifically, the current publicly available database used can only
detect the types of arrhythmias mentioned earlier, and in the
future, we plan to expand to include additional relevant types.
Additionally, there is a lack of external test data in this study, and
we may conduct a multi-center study to improve this in the
future. Lastly, the system has not been developed or deployed yet,
and further development is required for clinical translation.

5 Conclusions

In this endeavor, researchers have created an Al-powered ECG
model. The model has superior performance in both five-fold
cross-validation and external validation compared to other
models, indicating its greater feasibility and potential for reliably
detecting arrhythmias through a fusion deep learning model
featuring separable convolution. The principle aim of the study is
to facilitate the procurement of more precise ECG diagnoses
through technological advancement and to augment technical
clinical ~devices utilized in

support for wearable and

clinical circumstances.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Author contributions

YH: Writing - original draft, Writing - review & editing,
Conceptualization, Software, Methodology, Visualization, Project
administration. YZ: Writing — original draft, Writing - review &
Methodology,
acquisition. YQ: Conceptualization, Data curation, Investigation,

editing,  Visualization,  Software, Funding
Methodology, Software, Supervision, Writing - original draft. JL:
Data curation, Methodology, Software, Writing - original draft.
JZ: Data curation, Investigation, Methodology, Writing - review
& editing. DL: Data curation, Formal Analysis, Investigation,

Methodology, Project administration, Writing — review & editing.

References

1. Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global
burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a
systematic analysis for the Global Burden of Disease Study 2019. Lancet (2020)
396:1204-22. doi: 10.1016/S0140-6736(20)30925-9

2. Wang Z, Chen Z, Wang X, Zhang L, Li S, Tian Y, et al. The disease burden of
atrial fibrillation in China from a national cross-sectional survey. Am ] Cardiol.
(2018) 122:793-8. doi: 10.1016/j.amjcard.2018.05.015

Frontiers in Cardiovascular Medicine

10.3389/fcvm.2024.1473482

QW: Data
Methodology, Software, Supervision, Writing — review & editing.

Conceptualization, curation, Investigation,

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. This work
was supported by the [Guizhou Provincial Health and Wellness
Commission] under Grant [gzwkj 2021-102]; The National
Natural Science Foundation of China (No. 82260084); and
Guizhou Provincial Science and Technology Agency Project
(Qian Ke He Foundation ZK [2023] General 217, Qian Ke He
Foundation ZK [2022] General 268), and Support by Key
Advantageous of Guizhou

Discipline Construction Project

Provincial Health Commission in 2023.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcvm.2024.
1473482/full#supplementary-material

SUPPLEMENTARY TABLE S1
Result of five-fold cross validation.

SUPPLEMENTARY TABLE S2
Result of external validation.

3. Deng]J, Jiang Y, Chen ZB, Rhee J-W, Deng Y, Wang ZV. Mitochondrial dysfunction
in cardiac arrhythmias. Cells. (2023) 12:679. doi: 10.3390/cells12050679

4. Tracy CM, Epstein AE, Darbar D, Dimarco JP, Dunbar SB, Estes NM III, et al. 2012
ACCF/AHA/HRS focused update of the 2008 guidelines for device-based therapy of
cardiac rhythm abnormalities: a report of the American college of cardiology
foundation/American heart association task force on practice guidelines and the heart
rhythm society. Circulation. (2012) 126:1784-800. doi: 10.1161/CIR.0b013e3182618569

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fcvm.2024.1473482/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1473482/full#supplementary-material
https://doi.org/10.1016/S0140-�6736�(20)�30925-�9
https://doi.org/10.1016/j.amjcard.2018.05.015
https://doi.org/10.3390/cells12050679
https://doi.org/10.1161/CIR.0b013e3182618569
https://doi.org/10.3389/fcvm.2024.1473482
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

He et al.

5.Sun T, Ye M, Lei F, Qin J-J, Liu Y-M, Chen Z, et al. Prevalence and trend of atrial
fibrillation and its associated risk factors among the population from nationwide
health check-up centers in China, 2012-2017. Front Cardiovasc Med. (2023)
10:1151575. doi: 10.3389/fcvm.2023.1151575

6. Begg G, Willan K, Tyndall K, Pepper C, Tayebjee MJB. Electrocardiogram
interpretation and arrhythmia management: a primary and secondary care survey.
Br J Gen Pract. (2016) 66:€291-6. doi: 10.3399/bjgp16X684781

7. Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP,
et al. Cardiologist-level arrhythmia detection and classification in ambulatory
electrocardiograms using a deep neural network. Nat Med. (2019) 25(1):65-9.
doi: 10.1038/s41591-018-0268-3

8. Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh
BJ, et al. An artificial intelligence-enabled ECG algorithm for the identification of
patients with atrial fibrillation during sinus rhythm: a retrospective analysis of
outcome prediction. Lancet (London, England). (2019) 394(10201):861-7. doi: 10.
1016/S0140-6736(19)31721-0

9. Khurshid S, Friedman S, Reeder C, Di Achille P, Diamant N, Singh P, et al. ECG-
based deep learning and clinical risk factors to predict atrial fibrillation. Circulation.
(2022) 145:122-33. doi: 10.1161/CIRCULATIONAHA.121.057480

10. Véazquez CG, Breuss A, Gnarra O, Portmann J, Madaffari A, Da Poian G. Label
noise and self-learning label correction in cardiac abnormalities classification. Physiol
Meas. (2022) 43:094001. doi: 10.1088/1361-6579/ac89cb

11. Faour A, Cherrett C, Gibbs O, Lintern K, Mussap CJ, Rajaratnam R, et al. Utility
of prehospital electrocardiogram interpretation in ST-segment elevation myocardial
infarction utilizing computer interpretation and transmission for interventional
cardiologist consultation. Catheter Cardiovasc Interv. (2022) 100(3):295-303.
doi: 10.1002/ccd.30300

12. Somani S, Russak AJ, Richter F, Zhao S, Vaid A, Chaudhry F, et al. Deep
learning and the electrocardiogram: review of the current state-of-the-art. Europace.
(2021) 23:1179-91. doi: 10.1093/europace/euaa377

13. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al.
Physiobank, PhysioToolkit, and PhysioNet: components of a new research resource
for complex physiologic signals. Circulation. (2000) 101:e215-20. doi: 10.1161/01.
cir.101.23.e215

14. Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE
Eng Med Biol Mag. (2001) 20:45-50. doi: 10.1109/51.932724

15. Singh BN, Tiwari AK. Optimal selection of wavelet basis function applied to ECG
signal denoising. Digit Signal Process. (2006) 16:275-87. doi: 10.1016/j.dsp.2005.12.003

16. Mallat S. An efficient image representation for multiscale analysis. In: Machine
Vision. Optica Publishing Group (1987). p. FD4. doi: 10.1364/MV.1987.FD4

17. Liu B, Li Y. ECG Signal denoising based on similar segments cooperative filtering.
Biomed Signal Process Control. (2021) 68:102751. doi: 10.1016/j.bspc.2021.102751

18. Talmon J, Kors J, Van Bemmel J. Adaptive Gaussian filtering in routine ECG/
VCG analysis. IEEE Trans Acoust Speech Signal Process.. (1986) 34:527-34. doi: 10.
1109/TASSP.1986.1164864

19. Pan J, Tompkins WJ. A real-time QRS detection algorithm. IEEE Trans Biomed
Eng. (1985) 32:230-6. doi: 10.1109/TBME.1985.325532

20. Sathyapriya L, Murali L, Manigandan T. Analysis and detection R-peak detection
using modified pan-tompkins algorithm. 2014 IEEE International Conference on
Advanced Communications, Control and Computing Technologies: IEEE (2014). p. 483-7

21. Musa N, Gital AYU, Aljojo N, Chiroma H, Adewole KS, Mojeed HA, et al. A
systematic review and meta-data analysis on the applications of deep learning in
electrocardiogram. | Ambient Intell Humaniz Comput. (2023) 14:9677-750. doi: 10.
1007/s12652-022-03868-z

22. Salloum R, Kuo C-CJ. ECG-based biometrics using recurrent neural networks.
2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP): IEEE (2017). p. 2062-6

Frontiers in Cardiovascular Medicine

12

10.3389/fcvm.2024.1473482

23. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al.
Attention is all you need. NeurIPS Proceedings (2017). P. 30.

24. Fran C. Deep learning with depth wise separable convolutions. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017).

25. Baloglu UB, Talo M, Yildirim O, San Tan R, Acharya UR. Classification of
myocardial infarction with multi-lead ECG signals and deep CNN. Pattern Recognit
Lett. (2019) 122:23-30. doi: 10.1016/j.patrec.2019.02.016

26. Abdullah RM, Abdulazeez AM. Electrocardiogram classification based on deep
convolutional neural networks: a review. Fusion Pract Appl. (2021) 3:43-43-53. doi: 10.
54216/FPA.030103

27. Prabhakararao E, Dandapat S. Attentive RNN-based network to fuse 12-lead
ECG and clinical features for improved myocardial infarction diagnosis. IEEE Signal
Process Lett. (2020) 27:2029-33. doi: 10.1109/LSP.2020.3036314

28. Noor ST, Asad ST, Khan MM, Gaba GS, Al-Amri JF, Masud M. Predicting
the risk of depression based on ECG using RNN. Comput Intell Neurosci. (2021)
2021:1299870. doi: 10.1155/2021/1299870

29. Memory LS-T. Long short-term memory. Neural Comput. (2010) 9:1735-80.
doi: 10.1162/nec0.1997.9.8.1735

30. Jyotishi D, Dandapat S. An LSTM-based model for person identification using
ECG signal. IEEE Sens Lett. (2020) 4:1-4. doi: 10.1109/LSENS.2020.3012653

31. Chung J, Gulcehre C, Cho K, Bengio Y. Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv. (2014). doi: 10.48550/arXiv.1412.3555

32. Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional
LSTM and other neural network architectures. Neural Netw. (2005) 18:602-10.
doi: 10.1016/j.neunet.2005.06.042

33. Xu X, Jeong S, Li J. Interpretation of electrocardiogram (ECG) rhythm by
combined CNN and BiLSTM. IEEE Access. (2020) 8:125380-88. doi: 10.1109/
ACCESS.2020.3006707

34. Cheng J, Zou Q, Zhao Y. ECG signal classification based on deep CNN and
BiLSTM. BMC Med Inform Decis Mak. (2021) 21:1-12. doi: 10.1186/
512911-020-01362-0

35. Li J, Ke L, Du Q, Ding X, Chen X. Research on the classification of ECG and
PCG signals based on BiLSTM-GoogLeNet-DS. Appl Sci. (2022) 12:11762. doi: 10.
3390/app122211762

36. Holst H, Ohlsson M, Peterson C, Edenbrandt L. A confident decision support
system for interpreting electrocardiograms. Clin Physiol. (1999) 19:410-8. doi: 10.
1046/j.1365-2281.1999.00195.x

37. Report TWCOT, Health OC, China DI, Hu S-SJ. Report on cardiovascular
health and diseases in China 2021: an updated summary. J Geriatr Cardiol. (2023)
20:399-430. doi: 10.26599/1671-5411.2023.06.001

38. Norcini JJ, Weng W, Boulet J, Mcdonald F, Lipner RS. Associations between
initial American board of internal medicine certification and maintenance of
certification status of attending physicians and in-hospital mortality of patients with
acute myocardial infarction or congestive heart failure: a retrospective cohort study
of hospitalisations in Pennsylvania, USA. BMJ Open. (2022) 12:¢055558. doi: 10.
1136/bmjopen-2021-055558

39. Pay L, Yumurtas AC, Satti DI, Hui JMH, Chan JSK, Mahalwar G, et al.
Arrhythmias beyond atrial fibrillation detection using smartwatches: a systematic
review. Anatol J Cardiol. (2023) 27:126. doi: 10.14744/AnatolJCardiol.2023.2799

40. Caillol T, Strik M, Ramirez FD, Abu-Alrub S, Marchand H, Buliard S, et al.
Accuracy of a smartwatch-derived ECG for diagnosing bradyarrhythmias,
tachyarrhythmias, and cardiac ischemia. Circ Arrhythm Electrophysiol. (2021) 14:
€009260. doi: 10.1161/CIRCEP.120.009260

41. Koshy AN, Sajeev JK, Nerlekar N, Brown AJ, Rajakariar K, Zureik M, et al.
Smart watches for heart rate assessment in atrial arrhythmias. Int J Cardiol. (2018)
266:124-7. doi: 10.1016/j.ijcard.2018.02.073

frontiersin.org


https://doi.org/10.3389/fcvm.2023.1151575
https://doi.org/10.3399/bjgp16X684781
https://doi.org/10.1038/s41591-�018-�0268-�3
https://doi.org/10.1016/S0140-�6736�(19)�31721-�0
https://doi.org/10.1016/S0140-�6736�(19)�31721-�0
https://doi.org/10.1161/CIRCULATIONAHA.121.057480
https://doi.org/10.1088/1361-�6579/ac89cb
https://doi.org/10.1002/ccd.30300
https://doi.org/10.1093/europace/euaa377
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1161/01.cir.101.23.e215
https://doi.org/10.1109/51.932724
https://doi.org/10.1016/j.dsp.2005.12.003
https://doi.org/10.1364/MV.1987.FD4
https://doi.org/10.1016/j.bspc.2021.102751
https://doi.org/10.1109/TASSP.1986.1164864
https://doi.org/10.1109/TASSP.1986.1164864
https://doi.org/10.1109/TBME.1985.325532
https://doi.org/10.1007/s12652-�022-�03868-�z
https://doi.org/10.1007/s12652-�022-�03868-�z
https://doi.org/10.1016/j.patrec.2019.02.016
https://doi.org/10.54216/FPA.030103
https://doi.org/10.54216/FPA.030103
https://doi.org/10.1109/LSP.2020.3036314
https://doi.org/10.1155/2021/1299870
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/LSENS.2020.3012653
https://doi.org/10.48550/arXiv.1412.3555
https://doi.org/10.1016/j.neunet.2005.06.042
https://doi.org/10.1109/ACCESS.2020.3006707
https://doi.org/10.1109/ACCESS.2020.3006707
https://doi.org/10.1186/s12911-�020-�01362-�0
https://doi.org/10.1186/s12911-�020-�01362-�0
https://doi.org/10.3390/app122211762
https://doi.org/10.3390/app122211762
https://doi.org/10.1046/j.1365-�2281.1999.00195.x
https://doi.org/10.1046/j.1365-�2281.1999.00195.x
https://doi.org/10.26599/1671-�5411.2023.06.001
https://doi.org/10.1136/bmjopen-2021-�055558
https://doi.org/10.1136/bmjopen-2021-�055558
https://doi.org/10.14744/AnatolJCardiol.2023.2799
https://doi.org/10.1161/CIRCEP.120.009260
https://doi.org/10.1016/j.ijcard.2018.02.073
https://doi.org/10.3389/fcvm.2024.1473482
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Cardioattentionnet: advancing ECG beat characterization with a high-accuracy and portable deep learning model
	Introduction
	Methods
	Data collection
	Data preprocessing
	Feature extraction
	Model construction
	Cardioattentionnet (CANet)
	Baseline models

	Model evaluation

	Results
	Experiment setup
	Result of five-fold cross-validation
	Result of external validation

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


