AUTHOR=He Youfu , Zhou Yu , Qian Yu , Liu Jingjie , Zhang Jinyan , Liu Debin , Wu Qiang TITLE=Cardioattentionnet: advancing ECG beat characterization with a high-accuracy and portable deep learning model JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=Volume 11 - 2024 YEAR=2025 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2024.1473482 DOI=10.3389/fcvm.2024.1473482 ISSN=2297-055X ABSTRACT=IntroductionThe risk of mortality associated with cardiac arrhythmias is considerable, and their diagnosis presents significant challenges, often resulting in misdiagnosis. This situation highlights the necessity for an automated, efficient, and real-time detection method aimed at enhancing diagnostic accuracy and improving patient outcomes.MethodsThe present study is centered on the development of a portable deep learning model for the detection of arrhythmias via electrocardiogram (ECG) signals, referred to as CardioAttentionNet (CANet). CANet integrates Bi-directional Long Short-Term Memory (BiLSTM) networks, Multi-head Attention mechanisms, and Depthwise Separable Convolution, thereby facilitating its application in portable devices for early diagnosis. The architecture of CANet allows for effective processing of extended ECG patterns and detailed feature extraction without a substantial increase in model size.ResultsEmpirical results indicate that CANet outperformed traditional models in terms of predictive performance and stability, as confirmed by comprehensive cross-validation. The model demonstrated exceptional capabilities in detecting cardiac arrhythmias, surpassing existing models in both cross-validation and external testing scenarios. Specifically, CANet achieved high accuracy in classifying various arrhythmic events, with the following accuracies reported for different categories: Normal (97.37 ± 0.30%), Supraventricular (98.09 ± 0.25%), Ventricular (92.92 ± 0.09%), Atrial Fibrillation (99.07 ± 0.13%), and Unclassified arrhythmias (99.68 ± 0.06%). In external evaluations, CANet attained an average accuracy of 94.41%, with the area under the curve (AUC) for each category exceeding 99%, thereby demonstrating its substantial clinical applicability and significant advancements over traditional models.DiscussionThe deep learning model proposed in this study has the potential to enhance the accuracy of early diagnosis for various types of arrhythmias. Looking ahead, this technology is anticipated to provide improved medical services for patients with heart disease through continuous, non-invasive monitoring and timely intervention.