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Introduction

Cardiac transplant remains the gold standard for end-stage heart failure. Over 5,000

patients now undergo transplants each year (1). The leading cause of 30-day mortality

after transplant is primary graft dysfunction (PGD). The incidence of PGD is currently

better defined after the definition has been established and a recent meta-analysis found

pooled incidence of PGD between 1.6% and 7.7% (2–5). The prevalence of PGD has

increased, as reported in a 2024 update from the International Consortium on PGD (6, 7).

PGD is currently defined as ventricular dysfunction of a donor graft that fails to provide

hemodynamic stability within 24-hour post-transplantation that cannot be attributed to

any other cause (3, 5). Secondary causes may include graft dysfunction due to pulmonary

hypertension, intraoperative complications, or hyperacute rejection. It can be separated into

PGD-LV, for disease affecting the LV or biventricular failure, and PGD-RV, when due to

isolated RV involvement (5).

The 2014 consensus statement by Kobashigawa et al. based on the modified Delphi

method provided a definitive definition and grading system that helped define the true

incidence of PGD (5). This consensus supported the use of inotropes such as

phosphodiesterase-3 inhibitors and catecholamines for initial management and helped

to identify risk factors which underlie PGD. Therapy can be escalated to use intra-

aortic balloon pumps followed by initiation of mechanical circulatory support (MCS)

and ultimately extracorporeal membranous oxygenation (ECMO) (5). Plasmapheresis

may be used to combat inflammatory cytokines that are thought to underlie PGD

(5, 8). The gold standard for preventing PGD is a cooled flush of preservation fluid for

myocardial protection, which helps improve tolerance to ischemic time (9).

In this opinion paper, we discuss risk factors and linear and machine learning models

used to predict outcomes of PGD and list possible strategies to improve the discriminatory

power of the risk prediction models for PGD.
Risk factors

Common risk factors for PGD have been grouped into donor factors, recipient factors,

and procedural factors (9).
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Donor factors

Age has been identified as a significant risk factor, possibly due

to decreased tolerance for long ischemic times in the hearts of older

patients (10). Singh et al. identified an odds risk of 20% for each

decade increase in age (9). Another risk factor of PGD is the

cause of donor death. PGD rates were increased in patients who

died of intracranial hemorrhage compared to traumatic death,

which may be attributed to a catecholamine surge decreasing

myocardial function (11). Gender mismatch between donor and

recipient may be a risk factor for PGD and had a worse survival

at five years, which persisted despite size-matching organs. Left

ventricular hypertrophy of donor hearts should be kept under 14

mm and without associated EKG changes (12). Hearts with LVH

are more sensitive to ischemic changes due to supply/demand

mismatches. LVH in the setting of long ischemic times and older

age shows increased mortality (13, 14). Donor ionotropic

requirements are shown to induce LV and RV dysfunction and

are risk factors for PGD (15–17). Most recently donor hyperoxia

(donor supported on FiO2≥ 40%) at recovery has been shown to

be a novel risk factor for severe primary graft dysfunction and

early death of the recipient (18).
Recipient factors

The need for pre-operative MCS is strongly linked to the

development of PGD which is possibly linked to the activation of

inflammatory mediators, causing vasodilation and lowering of

systemic vascular resistance (8, 19, 20). Increased ischemic time

may underly the increased incidence of PGD in MCS patients

due to a summative effect of blood exposure to the surfaces of

bypass machines which can further exacerbate the inflammatory

response (20).

Pre-operative recipient amiodarone is an indicator of the

critical, pro-arrhythmic state of these patients. Dose and

duration-dependent relationships between amiodarone use and

PGD post-transplant have been identified (21, 22). However,

early studies have also found that patients receiving pre-operative

amiodarone had lower post-operative heart rates that were more

likely to require atrial pacing without an increase in

postoperative mortality (23).

Other notable recipient factors affecting PGD were diabetes

mellitus, age, and re-sternotomy (24, 25). Advanced glycation end

products and coronary endothelial inflammation may also induce

graft loss. Diabetes has been identified as a predictor of graft loss

within and after the first year of transplant. Advanced recipient

age is associated with PGD and mortality, likely due to increased

comorbidities and increased rates of inflammation (17, 26, 27).

Prior recipient sternotomy from congenital surgery, CAD

implantation, or CABG presents a challenging dissection of

adhesions during transplantation and thus may increase ischemic

times or increase the risk for reoperation and bleeding. It has been

linked to a three-fold increase in risk of PGD (25). Heart size

discrepancies predict mortality at 30 days and one year, likely due

to insufficient cardiac index to support body habitus (28).
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Procedural factors

Prolonged ischemic time during transport and surgery

increases the risk of PGD (24–27, 29). Warm ischemic time

refers to surgical periods or aortic clamping where blood flow is

halted, while cold ischemic time refers to time spent in cold

storage. Cardiopulmonary bypass time is linked to PGD due to

the occurrence of ischemic reperfusion injury as well as systemic

inflammatory pathway activation (30).
Current risk prediction models for PGD and
their limitations

Few risk prediction models exist in the current literature

derived using linear regression and machine-learning algorithms.
Linear models

The prediction models for PGD derived using linear

regression are RADIAL, PREDICTA, and ABCE (24, 31, 32).

RADIAL was developed using a Spanish cohort of transplant

patients to help establish a definition for PGD as well as a

predictive score (24). This was a single-center retrospective

study of 621 patients. They found six multivariate risk factors

of PGD: Right atrial pressure ≥ 10 mmHg, recipient Age ≥ 60

years, Diabetes mellitus, Inotrope dependence, donor Age ≥ 30

years, and Length of ischemic time >240 minutes. The

c-statistic between the actual and predicted PGD incidence was

0.547, demonstrating reasonable predictive ability using the

multivariable (stepwise- backwards elimination) logistic

regression methodology. However, the limitations included a

small cohort from a single center, and the definition of PGD

was not universal at the time it was proposed. Hence this

model does not appear to perform well when applied to severe

PGD in the current day scenarios (7).

PREDICTA was developed using data from 613 patients

between 10/2012 and 9/2016 at six UK transplant centers. A

multivariate logistic regression approach was used and compared

to the RADIAL score (31). The c-statistic was 0.704 compared to

0.547 from the RADIAL score. The risk factors identified in this

cohort also included diabetes and increasing donor age. Unlike

the RADIAL score, they also identified preoperative MCS,

prolonged cardiopulmonary bypass time, and prolonged implant

time. The incidence of PGD was 38%. Though this model had a

multicenter cohort it also had its share of limitations in that it

still had a small number of patients limited to the UK hospitals

and lacked external validation in an international setting.

ABCE risk score was based on the severity of the disease (32).

This was a single-center retrospective study that included 734

patients between 10/2012 and 9/2016. Different risk factors were

identified for mild to moderate PGD vs. severe PGD which may

suggest different mechanisms of disease (32). Multivariable

logistic regression was performed for mild/moderate and

machine learning was used for severe PGD patients.
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PGD occurred in 24% of the cohort. Within the PGD group,

42% developed mild PGD, 33% developed moderate PGD, and

25% developed severe PGD. Prior cardiac surgery, recipient

GDMT (ACEI/ARB/ARNI plus MRA), treatment with

amiodarone plus a beta blocker, and ischemic time were

identified as four recipient risk factors for PGD (32). In addition,

3 surgical factors such as prolonged ischemic time, more RBC

transfusions, and more platelet transfusions were associated with

PGD. Using machine learning with a nested cross-validation

scheme for severe PGD an AUC of 0.79 and 0.77 were obtained

for the training and validation sets respectively. This model has a

c-statistic of 0.77 compared to 0.41 obtained with the RADIAL

score for severe PGD. Only 48% of patients with severe PGD

survived one year, while mild/moderate PGD did not affect

survival. ABCE risk score has its merits in that it showed for the

first time that risk factors for mild/moderate and severe PGD are

varied as well as shared and that only severe PGD impacted

mortality. Additionally, this model used a machine learning

approach for risk prediction of severe PGD. However, it is still

limited by its small cohort size based on a single center lacking

robust external validation.
Machine learning models

Two models using machine learning algorithms exclusively

exist in the current literature Linse et al. developed a non-linear

artificial neural networks (ANN) model to evaluate donor-

recipient variables for death due to PGD at 30 days post-

transplantation using a cohort of 64,964 patients using the

ISHLT registry (33). The incidence of PGD at 30 days was 3.7%.

Thirty-three of 77 risk variables were identified as relevant. The

model had a c-score of 0.70 (95% CI: 0.68–0.72) compared with

the RADIAL score which had a c-statistic of 0.53 (CI 0.52, 0.54).

The most influential variables were underlying heart failure

diagnosis, ischemia time, and sex mismatch, which were not

among the international heart transplant survival algorithm

(ISHTA) (34) and renal function had a lower impact. 90% of the

variables had missing data with a mean of 42%. The limitation of

this model is that despite its generalizability, it uses registry data

that contains missing and misclassified data which can introduce

bias despite multiple imputations even in the setting of cross-

validation and cross-testing. This model also has a focus on

short-term outcomes at 30 days.

In 2022, an international, multicenter PGD Consortium was

formed to redefine the clinical risks of PGD (7). In this cohort,

2746 patients were enrolled since 2015. Of these, 73.4% were from

North America and 26.6% were from Europe. 7.8% had severe

PGD. The radial score when applied to this cohort showed a

suboptimal discriminatory power of 0.53. Multivariate logistic

regression applied to this cohort identified 3 risk factors acute—

preoperative dialysis, durable LVAD support, and total ischemic time.

To the international PGD consortium, an ML risk-scoring

algorithm was applied which included 18 variables with a c-stat

of 0.729 in a training set (35). This model is limited because of

the small cohort size and is pending validation (35).
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Discussion

PGD is affected by numerous variables and pathophysiology

remains poorly understood. Therefore, a critical need exists for

high-performing risk prediction models. More recent models

have begun to use machine learning algorithms in place of

traditional, linear statistical methods. Machine learning

approaches may allow for a better fit between variables and

outcomes by identifying patterns in datasets, especially in large,

complete datasets. RADIAL, PREDICTA, and ABCE scores,

which used linear regression may therefore be unable to account

for complex relationships between risk factors as well as between

risk factors and outcomes (24, 31, 32). However, in the existing

literature machine learning models have failed to outperform

linear prediction models possibly because ML algorithms operate

as black boxes and may require a collective improved

comprehension of how they work in small and large data sets.

Most of the existing models for PGD prediction are derived

from small single-center cohorts with marginal external

validation. Risk prediction models have the potential to

determine candidacy for heart transplants through prediction of

post-transplant outcomes and therefore play an important role in

patient selection. This opinion article discusses the existing

models and their limitations to highlight the knowledge gap.
Future directions

A need exists for high-powered predictive models that can

integrate many variables from multi-institutional data. This is

necessary to account for heterogeneity in patient characteristics that

affect patient outcomes and survival in cardiac transplant patients

and hence will contribute to improving generalizability. The main

barrier to improved risk prediction is complete and accurate

granular data from representative populations. Missing data is

another limitation, as it allows for selection bias and difficulty in

quantifying variables. The use of multicenter data can introduce

heterogeneity which may influence post-operative management.

The ISHLT consensus developed a standardized definition for

PGD in 2014 (5). For this reason, variables identified in models

developed before 2014 may be inaccurate in predicting risk in

the contemporary era.

The use of pre-processed data may affect the performance of

models, as deep networks operate best with raw data where the

algorithm can identify the relationships between the data (32).

Figure 1 summarizes the possible strategies that can be used to

improve discriminatory power. The generation of large databases

and using AI-driven technologies (Deep Learning, Gradient

Boosting, Neural Networks, and Decision Trees) on these

databases should help iron out complex interactions between

variables. The addition of new risk factors such as donor

hyperoxia, brain death, and biomarkers of inflammation/

myocardial injury may help increase discriminatory power.

The role of DCD (Donation after circulatory death) and DBD

(Donation after brain death) hearts in predisposing to PGD is

poorly understood at his time. Hence more research is needed to
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FIGURE 1

Suggested strategies to improve risk models for PGDin cardiac transplantation.
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establish the differences between them. Additionally using different

procurement methods such as normothermic regional perfusion vs.

direct procurement and perfusion using the Organ Care System

can impact PGD. Though severe PGD is noted with DCD hearts

the length of stay and recovery is much better with DCD than

with DBD suggesting different patterns of recovery depending on

the cause of death. Hence DBD and DCD may appear to be risk

factors with varying impacts on PGD (36) Therefore DBD and

DCD can be added to the panel of risk factors to assess their

role in the prediction of PGD.
Conclusions

PGD remains the leading cause of early mortality following

cardiac transplant. Its risk factors are multifactorial and require

improved prediction models to improve outcomes. Limitations of

current models are missing data, uneven distribution of variables,

small patient cohorts and lack of robust external validation

datasets. Improvement in the discriminatory ability is necessary

before current models can be used to assist in clinical decision-

making effectively. Prospective data collection to generate large

databases and validation of results using independent data sets

remain prerequisites for developing better risk prediction models.
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