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Screening and regulatory
mechanism exploration of M1
macrophage polarization and
efferocytosis-related biomarkers
in coronary heart disease
Hong Gao, Junhua Li, Jianxin Huang and Xiaojie Jiang*

Department of Cardiology, The First Hospital of Nanchang, Nanchang, China
Background:Macrophage polarization and efferocytosis have been implicated in
CHD. However, the underlying mechanisms remain elusive. This study aimed to
identify CHD-associated biomarkers using transcriptomic data.
Methods: This study examined 74 efferocytosis-related genes (ERGs) and 17 M1
macrophage polarization-related genes (MRGs) across two CHD-relevant
datasets, GSE113079 and GSE42148. Differential expression analysis was
performed separately on each dataset to identify differentially expressed genes
(DEGs1 and DEGs2). The intersection of upregulated and downregulated
genes from both sets was then used to define the final DEGs. Subsequently,
MRG and ERG scores were calculated within the GSE113079 dataset, followed
by weighted gene co-expression network analysis (WGCNA) to identify key
module genes. The overlap between these module genes and the DEGs
yielded candidate biomarkers, which were further evaluated through machine
learning, receiver operating characteristic (ROC) curve analysis, and expression
profiling. These biomarkers were subsequently leveraged to explore immune
infiltration patterns and to construct a molecular regulatory network. To
further validate their expression, quantitative reverse transcriptase PCR (qRT-
PCR) was performed on clinical CHD samples, confirming the relevance and
expression patterns of these biomarkers in the disease.
Results: A total of 93 DEGs were identified by intersecting the upregulated and
downregulated genes from DEGs1 and DEGs2. WGCNA of the MRG and ERG
scores identified 15,936 key module genes in the GSE113079 dataset. Machine
learning and ROC analysis highlighted four biomarkers: C5orf58, CTAG1A,
ZNF180, and IL13RA1. Among these, C5orf58, and ZNF180 were
downregulated in CHD cases, while CTAG1A and IL13RA1 was upregulated.
qRT-PCR results validated these findings for C5orf58, CTAG1A, ZNF180, and
IL13RA1 showed inconsistent expression trends. Immune infiltration analysis
indicated IL13RA1 all had a positive correlation with M0 macrophage, while
had a negative correlation with. NK cells activated. The molecular regulatory
network displayed that GATA2 and YY1 could regulate CTAG1A and ZNF180.
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Conclusions: These results suggest that C5orf58, CTAG1A, ZNF180, and IL13RA1
serve as biomarkers linking M1 macrophage polarization and efferocytosis to
CHD, providing valuable insights for CHD diagnosis and therapeutic strategies.
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1 Introduction

Coronary Heart Disease (CHD), a significant contributor to

global cardiovascular mortality, specifically refers to myocardial

ischemia, hypoxia, or necrosis due to coronary atherosclerosis

(1–3). World Health Organization data indicate that

cardiovascular disease claims approximately 17 million lives

annually, with CHD accounting for over half of these deaths

(4, 5). By 2030, this number is projected to reach 23 million. The

pathogenesis of CHD is primarily driven by the buildup of

cholesterol and other lipids in the arterial intima, forming

atherosclerotic plaques that cause vascular lumen narrowing or

blockage. Modifiable risk factors include hypertension,

dyslipidemia, diabetes, obesity, smoking, and being overweight,

while non-modifiable ones include age and genetic predisposition

(6). Current treatments encompass pharmacotherapy, surgical

interventions, and lifestyle changes. Pharmacotherapy, often a

first-line approach, typically involves antiplatelet, antithrombotic,

and antihypertensive agents (7, 8). However, these treatments

may have adverse effects and limited effectiveness. While coronary

interventions and coronary artery bypass grafting offer substantial

benefits, challenges remain, including surgical risks, postoperative

recovery, and high costs (9, 10). Consequently, the need for novel

diagnostic and therapeutic biomarkers is pressing, as they could

enhance the precision of CHD assessment, enable personalized

treatment plans, and ultimately improve patient outcomes.

Macrophage polarization refers to the differentiation of

macrophages into distinct subpopulations with varying functions

and phenotypes in response to specific stimuli (11–15). M1

macrophages primarily drive inflammatory responses, while M2

macrophages are involved in tissue repair and anti-inflammatory

processes (16, 17). Efferocytosis, a critical process in which

macrophages identify and remove apoptotic cells, maintains

intracellular environmental stability (18). This mechanism is

essential for preventing the release of toxic cellular contents,

promoting tissue regeneration, and averting autoimmune

reactions (19). Both macrophage polarization and efferocytosis

are governed by intricate regulatory networks involving multiple

signaling pathways and cytokine interactions. These processes are

central not only to immune regulation and inflammation but

also to the pathogenesis of cardiovascular diseases such as

atherosclerosis (20–23). Research indicates that M1 macrophages

are activated in the early stages of atherosclerosis, where they
lated genes; MRGs, macroph
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exacerbate inflammatory responses by releasing pro-inflammatory

mediators and chemokines (24, 25). Simultaneously, impaired

efferocytosis contributes to atherosclerosis by failing to

adequately clear apoptotic cells, leading to necrotic core

formation (26). In addition, some scholars have reported that

epigenetic regulation contributes to the pathophysiology of

cardiovascular disease (CVD) by altering gene expression and

controlling various cellular activities, including macrophage

polarization (27). Increasing attention has been focused on the

interplay between macrophage polarization and efferocytosis in

CHD research (11). According to reports, macrophages also

produce vascular endothelial growth factor C (VEGFC) through

phagocytosis, which can alleviate heart damage and inhibit

inflammation, promote lymphatic vessel formation and

phagocytosis of cell debris, while inhibiting excessive macrophage

secretion of inflammatory factors, thereby playing a role in heart

repair (28). Numerous studies have established that both

processes are intimately involved in CHD’s onset and

progression, and their regulation may offer novel therapeutic

strategies (29–32). However, despite extensive research, the

precise mechanisms underlying macrophage polarization and

efferocytosis in CHD remain incomplete.

This study employs comprehensive bioinformatics techniques,

utilizing CHD-related transcriptomic data to investigate the

potential roles of M1 macrophage polarization and efferocytosis

in CHD development. Differential expression analysis was

applied to assess changes in gene expression related to these

processes. Machine learning algorithms were then employed to

identify biomarkers tightly linked to CHD pathology. Enrichment

analysis and other methodologies were used to elucidate the

regulatory functions of these biomarkers within biological

processes and signaling pathways. These analyses aim to deepen

the understanding of M1 macrophage polarization and

efferocytosis in CHD while identifying potential molecular

targets and biomarkers for future therapeutic strategies.
2 Methods

2.1 Source of data

The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.

nih.gov/geo/) database provided two CHD-relevant transcriptome
age polarization-related genes; DEGs, differentially expressed genes; WGCNA,
tic; qRT-PCR, quantitative reverse transcriptase PCR; PBMC, peripheral blood
e Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; SVM-RFE,
curve; PBS, phosphate buffer solution; FGF23, fibroblast growth factor 23.
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datasets: GSE113079 (GPL20115) and GSE42148 (GPL13607).

Basic information for these two datasets was provided in

Supplementary Table S1 and Table S2. GSE113079 comprised

peripheral blood mononuclear cells (PBMCs) from 93 patients

with CHD and 48 controls, while GSE42148 included whole

blood samples from 13 CHD cases and 11 controls. A

comprehensive literature review was also performed to identify

genes linked to M1-type macrophage polarization and apoptotic

cell clearance. This review prioritized recent peer-reviewed

studies published in high-impact journals, focusing on research

involving macrophage polarization and efferocytosis with

available gene expression data. Excluded were conference

abstracts, case reports, non-human studies, and incomplete data.

From the MsigDB database (https://www.gsea-msigdb.org/gsea/

msigdb), 35 macrophage polarization-related genes were

identified, which were then annotated and categorized into M1

and M2 subtypes. Seventeen M1 macrophage polarization-related

genes (MRGs) were selected for further analysis. Additionally,

redundant genes were removed from the list of efferocytosis-

related genes (ERGs), resulting in a final set of 74 ERGs (33, 34)

(Supplementary Table S3).
2.2 Differential expression analysis

In order to distinguish differentially expressed genes obtained

from the two datasets, we defined the differentially expressed

genes (DEGs) derived from dataset GSE113079 as DEGs1, and

from the dataset GSE42148 as DEGs2. The GSE113079 and

GSE42148 datasets were analyzed using the limma package

(v 3.52.4) (35) to identify differentially expressed genes (DEGs1

and DEGs2) with |log2FC|>0.5 and P < 0.05. Volcano and

heatmaps were generated using ggplot2 (v 3.3.6) (36) and

pheatmap (v 1.0.12) (37) to visualize DEGs1 and DEGs2. The

intersecting upregulated and downregulated genes from both

datasets were merged to generate contro vs. case DEGs.
2.3 Weighted gene co-expression network
analysis (WGCNA)

To identify CHD-associated genes linked to MRGs and ERGs,

single-sample gene set enrichment analysis (ssGSEA) in the GSVA

package (v 1.44.5) (38) was used to calculate the ssGSEA

enrichment scores for the samples included in the GSE113079,

usingMRGs and ERGs as background sets. WGCNA, as a

powerful bioinformatics tool, is specifically used to excavate gene

modules closely linked to particular diseases, thereby further

unveiling the core genes within these modules. In this process,

“modules” specifically refer to clusters of genes exhibiting highly

similar expression characteristics. To decipher the association

between gene sets and sample phenotypes, this study constructs a

regulatory network among gene sets and identifies key regulatory

genes. Firstly,the Wilcoxon test (P < 0.05) compared scores

between the case and control groups. Next, module genes were

identified using weighted gene co-expression network analysis
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(WGCNA, v 1.72-1) (39), with MRG and ERG scores serving as

trait variables. Samples in GSE113079 were initially clustered to

exclude outliers, and to ensure gene interactions conformed to a

scale-free topology, the R2 was adjusted to 0.85 with a mean

connectivity approaching 0. An optimal soft threshold was

selected for module detection, and a dynamic tree-cutting

algorithm, requiring a minimum of 100 genes per module, was

used to construct the module hierarchy. Pearson correlations

between modules and the MRG and ERG scores were

independently calculated, with genes from modules showing

correlations >0.3 and P < 0.05 being selected as key module genes.
2.4 Recognition and functional exploration
of candidate genes

Candidate genes were selected from the intersection of DEGs

and key module genes. These candidates underwent Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) enrichment analysis using the clusterProfiler package

(v 4.7.1) (40) to explore their involvement in biological processes

(P < 0.05). The top 10 enriched terms were visualized using a tree

diagram generated by the treemap package (v 2.4-4) (41).
2.5 Machine learning

To identify feature genes linked to macrophage polarization

and efferocytosis, machine learning techniques were applied to

the candidate genes. First, Support Vector Machine Recursive

Feature Elimination (SVM-RFE) was conducted using e1071 (v

1.7-12) (42) to identify the optimal combination of genes with

the lowest error rate, thereby extracting relevant feature genes.

Concurrently, a 3-fold cross-validation approach was used with

the glmnet package (v 4.1-7) (43) to perform the least absolute

shrinkage and selection operator (LASSO) analysis, identifying

feature genes corresponding to the minimal Lambda value. Genes

simultaneously identified by both SVM-RFE and LASSO were

further analyzed through receiver operating characteristic (ROC)

curve plotting and expression profiling in both GSE113079 and

GSE42148 datasets. Genes exhibiting consistent expression trends

and an area under the ROC curve (AUC) greater than 0.8 in

both datasets were recognized as biomarkers (P < 0.05).
2.6 Immune infiltration

To further assess the immune cell composition in CHD,

immune infiltration analysis was performed on the GSE113079

dataset using the CIBERSORT program (v 1.03) (44), which

estimates the proportions of 22 immune cell types. The

Wilcoxon test (P < 0.05) was employed to compare immune cell

distributions between case and control groups. Spearman’s

correlation analysis was conducted to evaluate the relationships

between biomarkers and differentially expressed immune cells,

particularly M0/M1 macrophages.
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2.7 Construction of molecular regulatory
networks

To explore the regulatory mechanisms of the identified

biomarkers, transcription factors (TFs) were predicted using the

JASPAR database through the NetworkAnalyst 3.0 platform (https://

www.networkanalyst.ca/). miRNA targets for the biomarkers were

predicted using the miRWalk (http://mirwalk.umm.uni-heidelberg.

de) and miRDB (http://www.mirdb.org/) databases. Finally,

networks of biomarker-TF and miRNA-biomarker interactions were

constructed to elucidate their regulatory roles.
2.8 The quantitative reverse transcriptase
PCR (qRT-PCR)

To validate biomarker expression via qRT-PCR, peripheral

blood samples were collected from five patients with CHD and

five healthy individuals at the First Hospital of Nanchang. The

patient’s clinical information can be found in Supplementary

Table S4. PBMCs were extracted by adding 3 ml of whole blood

to a 15 ml centrifuge tube containing 3 ml of PBMC isolate.

Following centrifugation at 2,000 g for 20 min, the second layer

of cells was carefully transferred to a fresh 15 ml centrifuge tube

containing 15 ml of phosphate-buffered saline (PBS). After 10-

min centrifugation at 1,000 g, the supernatant was discarded, and

the cell pellet was mixed thoroughly with 1 ml of TRIzol

(Ambion, USA). PCR extraction was then performed, ensuring

the cell precipitate was fully homogenized. After RNA

quantification, reverse transcription was immediately initiated

using the SweScript First Strand cDNA Synthesis Kit (Servicebio,

China) following the manufacturer’s protocol. qPCR amplification

was conducted using a 40-cycle program on the CFX96 Real-Time

Fluorescence Quantitative PCR Instrument. Primer sequences are

detailed in Table 1, and the 2−ΔΔCt method was used to analyze

biomarker expression.
2.9 Statistical analysis

All bioinformatics analyses were performed in R (v 4.3.1). The

Wilcoxon test (P < 0.05) was applied to compare data between the

CHD and control groups.
TABLE 1 Primer sequences.

Primer Sequence
C5orf58 F GAACCTCGGTGACGGTTGG

C5orf58 R GAGGGGGTTGTTTCTTTCTGC

CTAG1A F CTGCAGCCTCTCTGCCTC

CTAG1A R ACAGTTGCGGCTCAGTAGAG

ZNF180 F GGAGGAGAGCATGGAAGAGC

ZNF180 R AAGTACCCTGTTCCTCCCGT

IL13RA1 F CTTGGCTCTTGTCTGCTGGA

IL13RA1 R CTCTTCTCCAAAGCGCCCAT

GAPDH F CGAAGGTGGAGTCAACGGATTT

GAPDH R ATGGGTGGAATCATATTGGAAC
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3 Results

3.1 Efferocytosis and M1 macrophage
polarization were associated with CHD

Differential expression analysis of the GSE113079 and

GSE42148 datasets identified 4,443 DEGs1 (Figures 1A,B;

Supplementary Table S5) and 2,031 DEGs2 (Figures 1C,D;

Supplementary Table S6), respectively. DEGs1 consisted of 2,348

upregulated and 2,095 downregulated genes, while DEGs2

included 1,124 upregulated and 907 downregulated genes. By

intersecting the upregulated and downregulated genes from both

datasets, 47 upregulated and 46 downregulated intersecting genes

were identified, resulting in a total of 93 DEGs (Figure 1E).

Additionally, GSVA scores based on MRGs and ERGs showed

significant differences between patients with CHD and controls,

with all scores being lower in the disease group, indicating that

CHD is associated with both M1 macrophage polarization and

efferocytosis (Figures 1F,G).
3.2 The genes linked to M1 macrophage
polarization and efferocytosis in CHD

Using MRGs and ERGs genes as background gene sets to

obtain enrichment scores, and the findings revealed no outliers

(Figures 2A, B). The optimal soft-thresholding power was

determined to be 5, using both R2 and mean connectivity criteria

(Figures 2C,D). The hierarchical clustering tree divided all genes

in the GSE113079 dataset into eight modules (Figures 2E,F), with

the red (r = 0.39, P = 1.74 × 10−6) and turquoise (r = 0.33,

P = 8.22 × 10−6) modules showing the highest correlation with

M1 macrophage scores (Figure 2E). Similarly, the green (r = 0.52,

P = 2.48 × 10−11), turquoise (r = 0.51, P = 1.64 × 10−10), and

yellow (r =−0.36, P = 1.22 × 10−6) modules were most strongly

correlated with efferocytosis characteristics (Figure 2F). The

results showed that we obtained 7,079 genes associated with

MRGs and 8,839 gene modules associated with ERGs.
3.3 ZNF180, CTAG1A, Il13ra1, and C5orf58
were detected as biomarkers linked to
efferocytosis and M1 macrophage
polarization

The intersection of key module genes and DEGs yielded 63

candidate genes (Figure 3A). Functional enrichment analysis

(Supplementary Table S7) revealed that these genes were

primarily associated with 244 GO functions, such as neutrophil-

mediated bactericidal activity, specific granule lumen, and

polypeptide N-acetylgalactosaminyltransferase activity, along with

three KEGG pathways: mucin-type O-glycan biosynthesis, other

types of O-glycan biosynthesis, and drug metabolism – other

enzymes (Figures 3B, C). From these candidate genes, the SVM-

RFE model identified 17 feature genes with the lowest error rate
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FIGURE 1

Screen for differentially expressed genes related to efferocytosis and M1 macrophage polarization in CHD. (A) Volcano plot of DEGs1. (B) Heatmap of
DEGs1. (C) Volcano plot of DEGs2. (D) Heatmap of DEGs2. (E) Venn diagram of intersecting DEGs. The left - hand bar chart shows the number of
genes in each subset; the upper bar chart shows the number of genes in each intersection; green represents the number of commonly down -
regulated genes; red represents the number of commonly up - regulated genes. (F) Differences in ERGs scores between groups. (G) Differences
in MRGs scores between groups. (A,C) Each point in the graph represents a gene. Orange represents significantly up - regulated genes, green
represents significantly down - regulated genes, and gray represents non - significant genes. (B,D) Green represents the Control samples, and red
represents the Case samples; in the graph, red indicates highly - expressed genes, and blue indicates low - expressed genes.

Gao et al. 10.3389/fcvm.2024.1478827
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FIGURE 2

Genes related to M1 macrophage scores and efferocytosis in CHD. (A) Clustering of M1 macrophage samples. (B) Clustering of efferocytosis samples.
(A,B) Branches represent samples, and the vertical axis represents the height of hierarchical clustering. The darker the color above, the higher the
score, and the red group below represents disease samples. (C) Scale-free fit index and mean connectivity analysis for various soft-thresholding
powers. The horizontal axis represents the power value of the weight parameter. In the left figure, the vertical axis is the scale - free fit index, that
is, signed R2. The higher the square of the correlation coefficient is, the closer the network is to the scale - free distribution. In the right figure,
the vertical axis represents the average value of all gene adjacency functions in the corresponding gene module. (D) Dendrogram of co-
expression module clustering. Different colors represent distinct co-expression modules. (E,F) Heatmap of the correlation between modules and
scored traits. It contains a group of highly related genes, and each color indicates a specific gene module.Select modules with an absolute value
of correlation greater than 0.3 and P less than 0.05. Therefore, select the red, turquoise, and green, turquoise, yellow modules as key modules
respectively.

Gao et al. 10.3389/fcvm.2024.1478827
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FIGURE 3

ZNF180, CTAG1A, IL13RA1, and C5orf58 identified as biomarkers related to efferocytosis and M1 macrophage polarization. (A) Candidate gene
identification. (B) GO enrichment results for candidate genes. The size of the square represents the number of enriched genes; the color
represents significance. (C) KEGG enrichment results for candidate genes. (D) SVM-RFE analysis. The abscissa represents the number of genes,
and the ordinate represents the error rate (E,F) LASSO regression analysis graph. (E) The graph of the penalty term parameter. The position of the
left - hand dotted line is the position where the cross - validation error is the smallest. Determine log(Lambda) according to this position
(lambda.min), and the number of feature genes is shown above. Find the optimal log(Lambda) value, and find the corresponding genes and their
coefficients in the right figure; (F) After different variables are penalized by λ, the changes in their coefficients. (G) Genes identified by both
machine learning algorithms.

Gao et al. 10.3389/fcvm.2024.1478827
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(Figure 3D). Meanwhile, LASSO regression analysis revealed that

the minimal error rate occurred when Lambda was set at 0.007,

identifying 15 feature genes (Figures 3E, F). After screening, a

total of 10 feature genes were identified by both machine

learning methods: ABHD6, C5orf58, CTAG1A, GALNT3, IGFL3,

IL13RA1, KCNMB4, MYBPC3, SRF, and ZNF180 (Figure 3G).

ROC curve analysis demonstrated that C5orf58, CTAG1A,

ZNF180, and IL13RA1 had AUC values exceeding 0.8 in both

the GSE113079 and GSE42148 datasets, indicating that these four

genes were strong predictors of CHD (Figures 4A, B).

Meanwhile, C5orf58 and ZNF180 were all downregulation in

case group, whilst CTAG1A and IL13RA1 upregulation in

expression, establishing C5orf58, CTAG1A, ZNF180, and

IL13RA1 as biomarkers (Figures 4C, D). The qRT-PCR results

indicated that the all biomarkers had expression trends similar to

those in the datasets (Figure 4E).
3.4 The naive Cd4t cells and M0
macrophages might regulate CHD by
interacting with biomarkers

To investigate the role of immune cells in CHD, an immune

cell infiltration analysis was performed. The proportion of

immune cells in the case and control samples is displayed in

Figure 5A. Differential expression analysis of these immune cells

revealed significant differences in 10 immune cell types between

the two groups. Specifically, CD8T cells, memory-activated CD4T

cells, activated NK cells, and activated dendritic cells were

significantly downregulated in the case group, while the

remaining immune cells exhibited opposite trends (Figure 5B).

Finally, the correlation analysis of biomarkers with immune cells

showed that Monocytes had the strongest positive (r = 0.330,

p < 0.001) with IL13RA1, NK cells had strongest negative

(r = -0.432, p < 0.001) with IL13RA1 (Figure 5C).
3.5 The regulation of biomarkers was
mediated by a number of molecules, GATA2
potentially being one of them

To further explore the molecular regulatory mechanisms of

these biomarkers in CHD, TF prediction was carried out. The

results showed that only CTAG1A and ZNF180 had

transcription factors predicted, while the other two biomarkers

did not have transcription factors predicted. A total of 9

transcription factors were predicted. Among them, YY1 and

GATA2 have regulatory effects in both CTAG1A and ZNF180,

indicating that they may have a regulatory functions in CHD.

(Figure 5D). Meanwhile, 710 and 206 miRNAs targeting

biomarkers were estimated in the miRWalk and miRDB

databases, accordingly. Only two key genes were predicted in the

database. This network has 294 nodes and 803 pairs of

interaction relationships (Figure 5E).
Frontiers in Cardiovascular Medicine 08
4 Discussion

CHD, as a prevalent global cardiovascular disorder, poses a

significant threat to human health. Its pathogenesis is

multifaceted, involving the interplay of various cellular and

molecular mechanisms. In recent years, growing evidence has

underscored the critical role of M1 macrophage polarization and

its association with efferocytosis in the onset and progression of

CHD (28, 45–48). This study employed differential gene

expression analysis to identify changes in the expression of genes

related to M1 macrophage polarization and efferocytosis in CHD,

providing preliminary insights into their potential involvement in

the disease. Through machine learning techniques, this study

further identified biomarkers (C5orf58, CTAG1A, ZNF180, and

IL13RA1) that are closely associated with CHD pathology,

suggesting their potential as therapeutic targets. Enrichment

analysis and other approaches were then applied to elucidate the

regulatory roles of these biomarkers in key biological functions

and signaling pathways, offering valuable insights into the role of

M1 macrophage polarization and efferocytosis in CHD.

Cancer/Testis Antigen 1A (CTAG1A) is a protein coding gene

associated with cancer and is a member of the Cancer Testis

Antigen (CTA) family. At present, there are relatively few studies

on CTAG1A, which highlights the innovation of our research.

Research has shown that CTAs have high tumor specificity and

sensitivity (49, 50), making them considered tumor specific

biomarkers and potential targets for cancer treatment. In this

study, CTAG1A, as one of the cancer/testicular antigen related

genes, was screened as a biomarker for coronary heart disease.

We speculate that it may play an important regulatory role in the

occurrence and development of coronary heart disease.

IL13RA1 (interleukin-13 receptor subunit alpha 1) belongs to

protein coding genes. The protein encoded by this gene is a

subunit of the interleukin-13 receptor. Currently, research on

IL13RA1 is relatively scarce, which highlights the innovation of

our study. Interleukin-13 (IL-13) is a cytokine with multiple

functions in the immune system, acting through the IL-13

receptor (IL-13R) (51). There are research reports that the

immune system plays a key role in the process of cardiac

homeostasis and failure in humans and mice through IL-13R α 1

signaling (52). This indicates that the biomarker IL13RA1

identified in this study may play an important regulatory role in

the occurrence and development of coronary heart disease.

ZNF180 is a protein coding gene belonging to the ZNF family.

According to reports, the expression of this gene is downregulated

due to methylation in colorectal cancer. In vitro and in vivo

experiments have shown that overexpression of ZNF180 is

functionally associated with inhibiting cell proliferation and inducing

cell apoptosis (53). In addition, ZNF180 is a coding gene that

regulates immune cell infiltration in melanoma cells and is negatively

correlated with the expression of plasminogen activator inhibitor-1

(54). There are also studies indicating that ZNF180 is a candidate

protein for coronary artery disease (CAD) (55), suggesting that it

may be a potential drug target for CAD. At present, research on

ZNF180 is relatively limited, and there have been no reports on

coronary heart disease, which highlights the innovation of this study
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FIGURE 4

Biomarker expression levels and diagnostic performance evaluation. (A) ROC curves for biomarkers in the GSE113079 dataset. (B) ROC curves for
biomarkers in the GSE42148 dataset. (A,B) The abscissa is the false positive rate. The smaller X is, the higher the accuracy rate. The ordinate is the
true positive rate. The larger Y is, the higher the accuracy rate. By evaluating the true positives and false positives of different thresholds, a curve
can be constructed. This curve extends from the lower left to the upper right and bends towards the upper left. A classifier with no discriminative
power between positive and negative classes will form a diagonal line, with the two ends being (0, 0) and (1, 1) respectively. (C) Intergenomic
expression status in the GSE113079 dataset. (D) Intergenomic expression status in the GSE42148 dataset. (C,D) The abscissa represents genes, and
the ordinate represents the expression level; the box color indicates sample grouping; the abscissa color indicates gene grouping (purple
represents up - regulation, green represents down - regulation, and black represents non - significant), and the top shows significance,
*, p < 0.05; **, p < 0.01; ***, p < 0.001. (E) Differential expression of biomarkers in patients with CHD and controls based on qRT-PCR. The sample
size was 5.
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FIGURE 5

Immune infiltration analysis and molecular regulation analysis. (A) Stacked diagram of immune cell infiltration. (B) Box plot of immune cell infiltration
situation. The abscissa represents 22 kinds of immune cells (purple indicates significantly up - regulated immune cells, and green indicates significantly
down - regulated immune cells), and the ordinate represents the scores of immune cells in the samples. ns, not significant; *, P < 0.05; **, P < 0.01;
***, P < 0.001. (C) Heat map of biomarkers and differential immune cell correlation. Red indicates a positive correlation, blue indicates a negative
correlation; significance: *, P < 0.05; **, P < 0.01; ***, P < 0.001 (D) TF-biomarkers regulatory network;Key genes are shown in green and
transcription factors in blue. (E) Construction of miRNA-biomarkers network. The mRNA is shown in green, and the predicted miRNA is shown in blue.
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and the novelty of the results obtained. C5orf58 (open reading frame 58

on chromosome 5) was found to be highlymethylated and expressed at

low levels in hepatocellular carcinoma. However, the biological effects

of C5orf58 had not been reported prior to this. According to Entrez

Gene, C5orf58 is located on chromosome 5q35.1. This study is the

first to investigate C5orf58, demonstrating the innovation of this

research. This study reveals for the first time the correlation between

C5orf58, ZNF180, M1 macrophage polarization, and increased

bubble cells in coronary heart disease. The qRT PCR results of key

genes are consistent with the expression trends in the dataset.

Although the P-value of ZNF180 was greater than 0.05 in the

experiment, due to the fact that the entire study was based on

significantly differentially expressed genes, ZNF180 was significantly

expressed in our processed samples and was also significant in

dataset validation. According to reports, the expression of ZNF180

also showed significant differences in coronary artery disease (CAD)

(55), and the disease studied in this study belongs to the CAD type,

indicating that ZNF180 plays an important role in coronary heart

disease. The insignificant qRT PCR results in this study may be due

to factors such as small sample size, data analysis, or experimental

procedures. In future research, we will increase the sample size and

optimize experiments to improve the reliability of statistics.

In recent years, the immune-inflammatory mechanism has been

recognized as a key factor in the pathogenesis of CHD. Macrophages,

key players in innate immune memory, are critically involved in

atherogenesis by promoting the release of inflammatory cytokines,

enhancing cholesterol deposition, and disrupting vascular smooth

muscle cell function. Macrophage-targeted therapies have thus

emerged as a potential strategy for CHD treatment. Similarly, T cell

subsets, including CD4+ T cells and CD8+ T cells, contribute

significantly to CHD by stimulating immune responses, producing

inflammatory cytokines, promoting lipoprotein accumulation, and

inducing plaque formation (56). Our immune infiltration and

Spearman correlation analysis showed significant differences in 10

immune cells, including macrophages and T cells, between the

coronary heart disease group and the control group. Meanwhile,

CTAG1A and IL13RA1 were positively correlated with macrophage

M0, and the correlation was significant, while ZNF180 and C5orf58

were negatively correlated. And the correlation is not significant. In

addition, the correlation between monocytes and these four genes is

very significant. Among them, monocytes are positively correlated

with CTAG1A and IL13RA1, and negatively correlated with ZNF180

and C5orf58.These results not only deepen our understanding of

CHD’s immune mechanisms but also offer valuable insights for

developing targeted treatment strategies.

GO and KEGG enrichment analyses were conducted to explore

candidate gene interactions in greater depth. The results identified

that these genes were primarily involved in 244 GO functions, such

as neutrophil-mediated bacterial killing, specific granule cavities, and

peptide N-acetylglucosamine transferase activity. Research has found

that there are 19 members of the peptide-N-acetylglucosamine

transferase activity family in mice. Galnt1 is essential for normal

heart development and function, and its gene deletion can lead to

abnormal valve development and heart function (57); The deletion of

galnt11 gene can lead to congenital heart disease and visceral ectopia

(58). This indicates that our enrichment results are related to
Frontiers in Cardiovascular Medicine 11
coronary heart disease. Additionally, they were associated with three

key KEGG pathways: mucin-type O-polysaccharide biosynthesis,

other types of O-polysaccharide biosynthesis, and drug metabolism

by other enzymes. These findings strongly suggest that the candidate

genes play a significant role in cellular immune regulation. Notably,

previous studies have shown that Th17 cell infiltration occurs from

the early to late stages of coronary atherosclerosis. Neutralizing IL-

17A blocked atherosclerosis progression in Apoe -/- mice on a high-

fat diet, and inhibiting CD4+ T cell polarization slowed coronary

disease progression (59). Furthermore, homocysteine-activated CD4+

T cells were found to increase pyruvate kinase muscle isoenzyme 2 (a

key rate-limiting enzyme in glycolysis), thereby accelerating

arteriocoronary atherosclerosis (60). The ROC curve analysis of this

study confirms that the four biomarkers C5orf58, CTAG1A,

ZNF180, and IL13RA1 all exhibit good diagnostic performance, with

AUC values exceeding 0.8. This discovery is consistent with the

previous research results of Guo Liwei et al., further strengthening

these genes as reliable biomarkers for coronary heart disease. These

results not only offer new avenues for early CHD diagnosis but also

provide a foundation for future therapeutic strategies.

This study focuses on the roles of C5orf58, ZNF180, CTAG1A, and

IL13RA1 in the polarization of M1 macrophages and the increase of

bubble cells in coronary heart disease. Through systematic immune

correlation analysis and molecular regulation predictions, these

biomarkers were revealed to have a potentially significant impact on

CHD pathogenesis, particularly in relation to M1 macrophage

polarization. This research contributes new insights into the

pathophysiological mechanisms of CHD and establishes a theoretical

framework for developing novel therapeutic strategies. Although our

research has achieved good results, the limitation of sample size is a

factor that cannot be ignored. The limited sample size increases the

uncertainty of the results. Therefore, our results are only preliminary

and require more extensive data to validate. Given the limitations of

sample size, future research should consider increasing the sample

size to improve statistical power and the reliability of results.

Consider collaborating through multiple centers to gather data from

different institutions to achieve sufficient sample size. Meanwhile,

functional experiments targeting key genes, such as knockout or

overexpression experiments, have not been implemented in current

research due to limitations in experimental conditions and

techniques. However, future research should focus on overcoming

these technological barriers and adopting more advanced methods,

such as CRISPR/Cas9 gene editing technology, to delve deeper into

gene function. This is the only way to more accurately evaluate the

role of genes in disease development and their potential as

therapeutic targets.
5 Conclusions

This study focuses on four biomarkers C5orf58, ZNF180,

CTAG1A, and IL13RA1 that are associated with M1 macrophage

polarization and bubble cell proliferation in coronary heart disease,

highlighting their key roles in the pathogenesis of the disease.

Immune correlation and molecular regulation analyses offer fresh

insights into the underlying pathophysiology of coronary heart
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disease, establishing a theoretical basis for developing therapeutic

strategies. Additionally, the findings underscore the significance of

immune regulation in the progression of the disease and

emphasize the diagnostic potential of these biomarkers.
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