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Early growth response-1,
a dynamic conduit in
cardiovascular disease
Levon M. Khachigian*

Vascular Biology and Translational Research, Department of Pathology, Faculty of Medicine and Health,
School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
The transcription factor, early growth response-1 (Egr-1) is the product of
a prototypic immediate-early gene that plays an integral role in the
pathogenesis of multiple cardiovascular diseases. Egr-1 has been linked with
atherogenesis, myocardial ischemia-reperfusion injury, cardiac fibrosis and
heart failure. Egr-1 expression is triggered by a host of factors including
cytokines, hormones, growth factors, hyperglycaemia, biomechanical forces
and oxygen deprivation. Egr-1 is a molecular conduit that links changes in the
cellular environment with the inducible expression of genes whose products
play a causative role in this inflammatory disease. It is rapidly synthesised,
undergoes post-translational modification, interacts with a range of cofactors
and drives gene expression. Studies in Egr-1 deficient mice, animal models
using DNAzymes, RNA interference, oligodeoxynucleotide decoys, antisense
oligonucleotides, and new insights provided by technologies such as single
cell RNA sequencing, have shaped our understanding of the importance of
Egr-1 in the initiation and progression of cardiovascular disease. This article
describes Egr-1’s role in various cardiovascular settings and discusses potential
mechanisms of action. Given the range of conditions linked to Egr-1, this zinc
finger protein may serve as a therapeutic target for intervention.
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Introduction

Cardiovascular disease remains the leading cause of death worldwide (1). In 2020,

approximately one-third of adults in the United States received care for a cardiovascular

risk factor or condition (2). This public health burden is set to increase. For example,

health care costs to manage cardiovascular risk factors are expected to rise dramatically,

from $400 billion in 2020 to $1,344 billion in 2050 (2) and productivity losses are

expected to rise by 54% from $234 billion to $361 billion.

Transcription factors regulate the expression of genes underpinning the pathogenesis

of cardiovascular disease by binding to DNA regulatory elements, interacting with other

regulatory proteins and undergoing modification themselves. Early growth response

(Egr-1/EGR1) is a zinc finger transcription factor and product of an immediate-early

gene which rapidly responds to changes in the cellular environment. Egr-1 has been

linked with multiple cardiovascular disorders including reperfusion injury, myocardial

fibrosis, no reflow and heart failure.

Egr-1 was discovered 3 decades ago and comprises N-terminal and C-terminal

activation domains, several C2H2 type DNA-binding zinc fingers, nuclear localization
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2024.1487668&domain=pdf&date_stamp=2020-03-12
mailto:l.khachigian@unsw.edu.au
https://doi.org/10.3389/fcvm.2024.1487668
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1487668/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1487668/full
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1487668/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2024.1487668
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Khachigian 10.3389/fcvm.2024.1487668
signals and an inhibitory domain (3–8). Egr-1 functionally

interacts with a broad range of partners, including protein

kinases (e.g., MAPK3/ERK1), transcriptional activators [e.g.,

C/EBPβ (9), JUN (10)] and transcriptional repressors

[e.g., NGFI-A binding protein 1 (NAB1) (11) and NAB2 (12)]

(Figure 1). These cofactors have been found to play a causal role

in the development of cardiovascular dysfunction. For example,

ERK1 phosphorylates EGR1 (at Ser26), an amino acid in EGR1

critical for vascular endothelial cell proliferation and migration

(13, 14). EGR1’s interaction with C/EBPβ controls transcription

of the human low-density lipoprotein (LDL) receptor gene (9),

which is linked with hypercholesterolemia and cardiovascular

disease (15). Cardiac-specific NAB1 overexpression regulates

cardiomyocyte growth through interaction with Egr-1 and

inhibits cardiac hypertrophy in response to pressure overload

(16). Recent work indicates that EGR1 can also interact with

chromatin remodeling proteins, including subunits of the

nucleosome remodeling and deacetylation (NuRD) complex to

repress inflammatory enhancers in macrophages and plays a

gatekeeper role in monocytic commitment (17). Trizzino et al.

correlated EGR1 binding with enhancer activation and repression

during macrophage differentiation. On one hand, EGR1

transactivates through direct interactions with its DNA motif,

while on the other, appears to act as a corepressor at myeloid

enhancers enriched with AP1, PU.1, C/EBPα and other

macrophage factors. EGR1 was found to be required for the
FIGURE 1

STRING representation of structural and/or functional interactions between
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repression of approximately 1,600 enhancers in the course of

macrophage differentiation (17). Recent work by Ding et al. in

cancer cells shows that EGR1 can directly bind HDAC9 (18),

a histone deacetylase that promotes vascular inflammation

and atherosclerosis (19).

This article briefly reviews emerging evidence further

implicating Egr-1 in the pathogenesis of cardiovascular disease.
Egr-1, atherosclerosis and acute
coronary syndrome

Building on pioneering studies from a range of laboratories

that established pro-inflammatory and pro-atherogenic roles

for Egr-1 (20, 21), Manta and colleagues (22) studied links

between Egr-1 and stabilin proteins in atherosclerosis using

Apoe−/− mice interbred with stab1−/− and stab2−/− mice. Stab1

and stab2 are scavenger receptors expressed in the liver by

sinusoidal endothelial cells implicated in atherogenesis. Low-

density lipoprotein and ox-LDL uptake into caudal veins are

reduced stab1−/−stab2−/− zebrafish (23). Manta et al. (22) found

that atherosclerotic plaque burden was substantially lower

in Apoe−/−stab1−/− and Apoe−/−stab2−/− animals, and that

monoclonal antibodies targeting stab1 or stab2 reduced diet-

associated atherosclerosis in Apoe−/−mice and Ldlr−/−mice.

Single-cell RNA seq of circulating myeloid cells from Apoe−/−,
human EGR1 with other proteins. Image was created in STRING (Protein-
l STRING network setting with edges indicating functional and physical
atabases, and relative line thickness indicating strength of data support.
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Apoe−/−stab1−/− and Apoe−/−stab2−/− mice revealed transcriptional

changes in patrolling (Ccr2–/Cx3cr1+/Ly6Clo) and inflammatory

(Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including reduced expression

of Egr-1. Egr-1 was the only gene downregulated in both monocyte

subtypes (22). scRNA-seq by Cochain et al. showed that EGR1

(along with PHLDA1, ATF3, NLRP3 and CCL2) is expressed in

macrophages of both human and mice atherosclerotic lesions (24).

Peripheral blood cytospin staining with anti-Cd11b and anti-Egr-1

antibodies confirmed downregulation of Egr-1 in Cd11b+ cells of

Apoe−/−stab1−/− and Apoe−/−stab2−/− mice compared with those

from Apoe−/− mice. Egr-1 attenuation may represent a common

mechanism for lower proatherogenic activation of monocytes.

Atheroprotection resulting from stab-deficiency is likely due to

Egr-1 downregulation in monocytes by plasma proteins regulated by

stabilin-reliant clearance.

Egr-1 is also thought to play a role in plaque thrombogenicity

and instability, which underpin acute myocardial infarction. Egr-1

activates tissue factor expression in macrophages (25, 26). Tissue

factor expression is inhibited by simvastatin in advanced

atherosclerotic lesions of Apoe−/−mice (27). Recent studies by

Severino et al. (28) investigated the effects of atorvastatin on

CD4 + T-cells in statin-naïve non-ST elevation acute coronary

syndrome patients. Atorvastatin reduced levels of EGR1 (−10.9
fold) (most profound inhibition) and FOS (−5.5 fold), and

decreased the proportion of CD4+CD28−T-cells producing IFN-γ

(from 44.1% to 15.0%). CD4+CD28−T-cells have been implicated

in weakening of the fibrous cap and atherosclerotic plaque

rupture (29). Interestingly, atorvastatin can reduce levels of tissue

factor, an EGR1-dependent gene (30), in cholesterol-fed rabbits

(31). Moreover, atorvastatin decreased levels of pro-inflammatory

cytokines IL-6 and IL-18, chemokine (C-C motif) receptor-2

(CCR2) and Toll-like receptor-4 (TLR4). The authors surmised

atorvastatin’s inhibitory effects on EGR1 may account for why

the statin reduces inflammation in acute coronary syndromes.

Future studies should determine whether other statins have

similar effects on EGR1 and tissue factor in this setting.

Additionally, Wang et al. (32) reported the involvement of Egr-1

in coronary microembolization (CME), a thrombotic and

microinfarction complication that can arise in acute coronary

syndrome patients during percutaneous coronary intervention

(PCI) and result in no reflow. In a rat model of CME, in which

myocardial tissue underwent edema and inflammatory cell

infiltration around injected microspheres, the authors found that

Egr-1 shRNA reduced myocardial injury (serum cardiac troponin

I levels) and microinfarct area. Moreover, qPCR after CME-

induced myocardial injury revealed activation of the Egr-1/Bim/

Beclin-1 pathway impacting autophagy and apoptosis. Egr-1

silencing increased LC3-II and Beclin-1 levels and ameliorated

levels of cleaved caspase-3, p62 and Bim. Future studies using

alternatives to plastic microspheres to cause a coronary

microembolus would better reflect the clinical situation and build

on these important proof-of-principle investigations.

Apoptosis underpins myocyte loss after acute myocardial

infarction, which can lead to LV remodeling and heart failure

(33). Recent studies by Zhou et al. revealed that EGR1 stimulates

the expression of a range of apoptosis-related proteins (ATF2,
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ELK1, HAND2 and CTCF) to promote cardiomyocyte cell death.

Mutation of Ser501 (to Ala) reduced EGR1 phosphorylation and

impaired the pro-apoptotic effect of EGR1 in cardiomyocytes in

a JNK-dependent manner (34).

Biomechanical forces impact atherosclerotic lesion formation

and progression. Oscillatory shear stress (OSS) is an atheroprone

biomechanical force that can induce the expression of endothelial

cell surface adhesion molecules, such as VCAM-1 and ICAM-1,

which facilitate leukocyte adhesion and invasion into the arterial

wall (35). Egr-1 is activated in endothelial cells by fluid shear

stress (36), a response inhibited by PD98059 indicating control

via the MEK/ERK pathway (37). Bondareva et al. recently found

that EGR1 was induced by OSS and its binding motif is among

the most prominent enriched motifs (38). This followed work

by Ajami et al. using pathway analysis to identify an SRF-EGR1-

HIF1A regulatory axis for OSS up-regulation and that a range

of mediators including cytokines, focal adhesions and eNOS

activation are targets of EGR1 (39). Egr-1 modulation by

biomechanical forces has recently been exploited in a bioreactor

application using a non-endothelial system. Kwon et al.

developed CHO-DG44 cells that express GFP in small-scale

bioreactors secondary to EGR1 promoter activation by shear

stress although the definition of an exact shear stress value was

not achieved in their sensor design (40).
Egr-1, cardiomyopathy and fibrosis

The adult heart lacks the capacity to regenerate and heart

failure can ensue after cardiac ischemia and fibrosis (41). Li et al.

(42) sought to identify potential targets for vascular regeneration

by investigating the transcriptomic dynamics of coronary

vascular endothelial cells following ischemic injury in the heart

through comprehensive meta-analysis of publicly available single-

cell RNA-sequencing data. Egr-1/EGR1 was among the most

significantly upregulated genes in human and murine vascular

endothelial cells after ischemia (along with Jun, Zfp36, Fosb, and

Hsp90aa1), findings supported by substantially greater

EGR1+CD31+ double staining in coronary tissue from patients

with ischemic cardiomyopathy compared with normal hearts

(42). Cardiac ischemia and fibrosis are primary causes of end-

stage heart failure (43). Egr-1 is induced by profibrotic stimuli

such as TGF-β and can promote collagen synthesis, extracellular

matrix production and fibrosis (44, 45).

Koenig et al. (46) used scRNA-seq and single-nucleus (sn)

RNA-seq on left ventricular cardiac tissue from 17 individuals

with dilated (non-ischemic) cardiomyopathy (DCM) and 28 non-

diseased donors. EGR1 was one of the most significantly

upregulated genes in vascular endothelial cells (alongside DUSP5/

6, PDE4B/D, FGFR1, SMAD3/6, VEGF-A/C, APLNR) and

macrophages, monocytes and dendritic cells (along with CCL3,

NLRP3, NFKB2) in DCM material compared to non-diseased

tissue. While this study sheds light on the transcriptional

landscape of cells in healthy and diseased human heart, future

experiments exploring signaling mechanisms or the potential role

of chromatin modification and accessibility involving EGR1 in
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this context would provide added mechanistic insights on

molecular control in the pathogenesis of heart failure.

Investigations by Shen et al. showed that inhibition of Egr1

expression in mice relieved the severity of myocardial fibrosis,

whereas delivery of miR-150-5p antagomir exacerbated

myocardial fibrosis, reversing the effect of sh-Egr1 (47). A recent

study by Zhang et al. (48) showed that Egr-1 regulates

regenerative senescence during neonatal heart regeneration as

well as cardiac repair in adult mice. In neonatal hearts, Egr-1

mediates angiogenesis and cardiomyocyte replication, whereas in

adult hearts, senescence and repair induced by the heparan

sulfate proteoglycan, agrin, involves integrin–FAK–ERK–Akt1

signaling and Egr-1 activation in cardiac fibroblasts. The authors

found increased fibrotic scar formation and impaired cardiac

function in Egr-1 deficient mice treated with agrin compared

with wild-type mice, demonstrating that Egr1 is needed for

agrin-induced cardiac repair. Future work should delineate

whether cellular localisation impacts Egr-1 function and use

conditional Egr-1 deficient mice to better understand Egr-1

mediated senescence in cardiac fibroblasts during repair.
Egr-1 and vascular dysfunction

Tian et al. (49) reported EGR1 regulation of sushi, von

Willebrand factor type A, EGF, and pentraxin domain-containing

protein 1 (SVEP1), a large extracellular matrix protein associated

with coronary artery disease (50). In Apoe−/− or Svep1+/−Apoe−/−

mice fed a high fat diet for 8 weeks, Svep1+/−Apoe−/− mice had

reduced atherosclerotic plaque burden. Moreover, Svep1

deficiency specifically in SMC reduced atherosclerotic and plaque

size and complexity (51). Levels of SVEP1, which mediates SMC

migration and proliferation in response to ox-LDL, are elevated

in human atherosclerotic plaques compared to normal tissues.

EGR1 binds to and transactivates the SVEP1 promoter and

drives SVEP1 expression in SMCs treated with ox-LDL (49).

Separate studies by Xie et al. (52) revealed that the splicing

factor, serine/arginine-rich splicing factor 1 (SRSF1) promotes

SMC proliferation and injury-induced neointima formation and

involves induction of truncated form of p53, Δ133p53, which

activates Krüppel-like factor 5 (KLF5), a process requiring the

physical interaction of Δ133p53 and EGR1. These findings

suggest that Δ133p53-EGR1 complex formation is needed for

SRSF1-inducible KLF5 signalling and SRSF1-dependent

proliferation (52). That Egr-1 promotes SMC hyperplasia has

been demonstrated using a range of approaches (53–63). For

example, intimal thickening is reduced when blood vessels from

Egr-1-deficient mice are injured compared with wild type

animals (64) and lumens of vein grafts from Egr-1−/− mice are

wider than those of wild types (65). Tian et al. and Xie et al.’s

data suggest that the growth-regulatory effects of EGR1 on SMCs

are reliant on SVEP1, SRSF1 and/or other genes. For example,

Mylonas et al. (66) reported in a rabbit vein graft model that

Egr-1 oligodeoxynucleotide decoys that reduce the expression of

pro-inflammatory transcription factors (NF-κB, KLF4, HIF1α),

stem cell genes (NANOG and HOXA5), toll-like receptors
Frontiers in Cardiovascular Medicine 04
(TLR2, TLR3, TLR4, TLR8), chemokines (CCL4, CCL20, CCR2),

interleukins (IL1β, IL2, IL4, IL8, IL10, IL18), TNFα and

interferons (IFNβ, IFNγ). These decoys reduce Egr-1 expression,

ki-67+ proliferation and intimal hyperplasia (67). Egr-1 is thus

an attractive target to control intimal thickening given the

breadth and nature of genes it regulates.
Egr-1 in hypertension and
preeclampsia

The direct relationship between hypertension and the risk of

cardiovascular disease is well established (68, 69). Systolic blood

pressure is a leading modifiable risk factor for premature

cardiovascular death (70). EGR1 levels are elevated in advanced

vascular lesions from individuals with late-stage pulmonary

arterial hypertension (71). Laggner et al. recently implicated

EGR1 as a driver of right ventricular remodeling in idiopathic

pulmonary arterial hypertension and chronic thromboembolic

pulmonary hypertension patients (72). Preeclampsia is a

common complication in pregnancy and defined by onset of

hypertension, proteinurea and organ failure after 20 weeks’

gestation. The pathogenesis of preeclampsia is incompletely

understood but is associated with vasospasm and impaired

placental angiogenesis. Zhao and colleagues (73) studied serum

fibroblast growth factor 23 (FGF23) in healthy women or

pregnant women with preeclampsia and examined its role

mediating placental angiogenesis through ERK1/2-EGR1

signaling. They found that third trimester FGF23 levels were

lower in women with preeclampsia. FGF23 stimulated endothelial

cell migration, invasion and tubule formation in vitro. It also

promoted placental VEGF-A expression through the ERK1/2-

EGR-1 pathway since SCH772984 blocked both EGR1 and

VEGF-A in these cells. Moreover, levels of p-ERK, EGR1 and

VEGF-A in placental tissue were lower in the preeclampsia group

than in controls. Whether Egr-1 directly regulates VEGF-A

transcription in endothelial cells appears to be context-dependent

since VEGF-A levels do not appear to change at least in retinas

of mice deficient in Egr-1 (74) or when Egr-1 is knocked down

(75) or overexpressed (76). While Zhao et al.’s studies suggest a

potential mechanism in the development of preeclampsia, future

studies should determine if FGF23 levels correlate with

preeclampsia severity or if the FGF23-ERK1/2-EGR-1 pathway is

causal for preeclampsia in animal models (73).
Egr-1 and complications of diabetes

Egr-1 plays a causal role in the development of type 2 diabetes.

Shen and colleagues (77) found that glucagon, which increases

blood glucose levels by regulating gluconeogenesis, stimulates

Egr-1 which binds the promoter of the gluconeogenic

transcription factor C/EBPα and activates the expression of

hepatic gluconeogenic genes. Xu et al. reported that Egr-1 drives

the development of renal tubulointerstitial fibrosis in the context

of diabetic kidney disease. Egr-1 activates the expression of renal
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fibrosis markers (such as protease-activated receptor 1, TGF-β1,

fibronectin and collagen I) via the TGF-β1/Smad pathway (78).

Recent work comparing differential gene expression across multiple

autoimmune disorder datasets, including type 1 diabetes, revealed

that EGR1 was the only gene commonly expressed across four

datasets (type 1 diabetes, rheumatoid arthritis, systemic lupus

erythematosus, Crohn’s disease) (79). Beyond type 2 diabetes, which

mainly affects older individuals, EGR1 has been used as a marker

gene for childhood-onset type 2 diabetes (80).

Diabetic retinopathy is a major cause of vision loss and

disability. Ao et al. (81) found that Egr1 is highly expressed in

retinas of hyperglycaemic streptozotocin (STZ)-treated diabetic

rats. Intravitreal delivery of Egr-1 shRNA to STZ-induced

diabetic rats reduced Egr-1 and p53 levels and inhibited

apoptosis in the retina. Karthikkeyan et al. showed that EGR1 is

also expressed human diabetic retina compared with non-diabetic

retina (82). Moreover, El-Asrar et al. showed EGR1 expression in

epiretinal membranes from individuals with proliferative diabetic

retinopathy (mainly by vascular endothelial cells and stromal

cells) and proliferative vitreoretinopathy (mainly myofibroblasts).

EGR1 expression was coincident with HMGB1, RAGE, and OPN

expression, suggesting its involvement in vitreoretinal angiogenic,

inflammatory and fibrotic processes (83).
Future research directions

The studies above have expanded our appreciation of the

regulatory role that Egr-1 plays in vascular disease. Several

limitations have already been identified that need to be addressed

to advance the field. Additionally, many articles have described

Egr-1 function without clarifying direct molecular mechanisms in

a specific cardiovascular disease. For example, while Egr-1 is a

well-established prototypic transcription factor, does it functionally

collaborate with other such factors and if so, which ones, how and

in which cell types? Can single cell- or single nuclear-RNA-

sequencing extend our appreciation of Egr-1 control in complex

cardiovascular tissue? Does Egr-1 undergo post-translational

modification(s), dynamic or otherwise, in the context of a specific

cardiovascular disease? How can ERK-dependent Egr-1 promoter

activation be studied separately from ERK-dependent Egr-1

phosphorylation in the context of cardiovascular disease when Egr-

1 is expressed so rapidly? Moreover, it is vital that new EGR1-

targeting agents be developed or existing approaches be refined,

whether this be with natural, novel or repurposed pharmaceuticals

or those that exploit nucleic acid strategies. In this regard, recent

studies indicate that the naturally occurring agent astragaloside IV

inhibits cardiac hypertrophy through ERK and PKCβII/Egr-1

activation in rodents born from mothers with intrauterine hypoxia

(84). This can also include DNAzymes targeting EGR1, which have

been used by ourselves and others in a range of local delivery

models to reduce post-angioplasty restenosis (53, 54, 85), in-stent

restenosis (54) and to lower infarct size following myocardial

ischemia-reperfusion (86, 87). However, an important challenge

has been overcoming low efficient tissue uptake after systemic

delivery (88). Future studies could apply insights from other fields
Frontiers in Cardiovascular Medicine 05
to models of cardiovascular disease. For example, Jiang et al. (89)

encapsulated EGR1 DNAzymes (75) with poly(ethylenimine) and

an amorphous Mn2+/Zn2+-coordinated inositol hexaphosphate

(IP6) capsule modified with a cRGD targeting peptide shell then

injected these intravenously into mice bearing tumors which

accumulated the DNAzyme. cRGD peptides confer targeting

ability via recognition of αvβ3 integrin receptors, mimicking

integrin-mediated endocytic cell entry. Upon endocytosis, the Mn2

+/Zn2+-IP6 shell is degraded in the cell’s acidic lysosomal

environment releasing Mn2+, Zn2+ and the DNAzyme. These

biocapsulated DNAzymes suppressed EGR1 levels in tumors and

induced tumor cell death. Delivered intravenously, biocapsule

DNAzymes inhibited EGR1 levels in, and growth of, pulmonary

metastatic tumors (89). While this approach demonstrates the

clinical potential of biocapsules for targeted inhibition of breast

cancer, the same approach may be useful in vascular settings,

especially given the crucial role played by αvβ3 integrin in

atherogenesis. For example, αvβ3 antibodies inhibit macrophage

infiltration into atherosclerosis lesions and lesion formation in

diabetic pigs fed a high fat diet (90). Moreover, αvβ3 mediates

plaque angiogenesis, inflammation and SMC accumulation (91, 92)

and positron emission tomography radiotracers (18F-fluciclatide)

have targeted these as potential markers of atherosclerosis (93).
Concluding remarks

As an immediate-early gene activated by a range of

environmental cues such as cytokines, hormones, growth factors

and hypoxia, Egr-1 integrates changes outside the cell with

programmatic inducible gene expression. The breadth of

dependent genes and scope of proliferative, migratory, immune

and inflammatory conditions that EGR1 controls suggest this

factor represents a fertile therapeutic target for drug development

for many types of cardiovascular disease. A key challenge,

however, is devising effective, clinically viable, preferably

systemically deliverable interventional strategies that can

selectively target EGR1 and provide sustained inhibition in

cardiovascular settings involving complex, interactive molecular

networks and comorbidities.
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