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Mitochondrial dysfunction is a
key link involved in the
pathogenesis of sick sinus
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Sick sinus syndrome (SSS) is a grave medical condition that can precipitate
sudden death. The pathogenesis of SSS remains incompletely understood.
Existing research postulates that the fundamental mechanism involves
increased fibrosis of the sinoatrial node and its surrounding tissues, as well as
disturbances in the coupled-clock system, comprising the membrane clock
and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue
fibrosis and disrupts the functioning of both the membrane and calcium
clocks. This plays a crucial role in the underlying pathophysiology of SSS,
including mitochondrial energy metabolism disorders, mitochondrial oxidative
stress damage, calcium overload, and mitochondrial quality control disorders.
Elucidating the mitochondrial mechanisms involved in the pathophysiology of
SSS and further investigating the disease’s mechanisms is of great significance.
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1 Introduction

Sick sinus syndrome (SSS) encompasses a group of syndromes characterized by

impaired pacing function and/or conduction of electrical impulses due to dysfunction

of the sinoatrial node and its surrounding tissue (1, 2). The disease tends to occur in

the elderly (3), with an overall annual incidence of nearly 1 per 1,000 individuals aged

45 years and above (4), and approximately 1 per 600 individuals aged 65 years and

above (5). It is reported that the incidence of SSS is potentially associated with age and

race (6). The onset of SSS is typically insidious and progresses slowly, often rendering

early diagnosis challenging, as mild cases may remain asymptomatic. However, severe

cases can manifest as sinus arrest, Adams-Stokes syndrome, or sudden death (7, 8). SSS

is also one of the main indications for permanent pacemaker implantation (9, 10), but

recent studies indicate that while pacemaker implantation ameliorates symptoms, it

does not significantly enhance survival rates (11), and there are several main

disadvantages such as high cost, unsatisfactory treatment effect and great intraoperative

risk (12). The pathogenesis of SSS remains incompletely understood, so it is significant

to delve into the core link of the disease mechanism. Mitochondrial dysfunction is
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implicated in the pathogenesis of various arrhythmia diseases (13),

while the attention of SSS in arrhythmia-related diseases is far less

than that of atrial fibrillation. There is a lack of comprehensive

review and summary. This paper examines the pivotal role of

mitochondrial dysfunction in the pathogenesis of SSS.
TABLE 1 Major ion currents and their regulatory proteins on the
membrane clock.

Participating in the
process of cardiac
electrical activity
and current
direction

Ion
current

Ion channel
protein

Reference

Participating in
depolarization, total
electrical flow inward

If HCN1, HCN2,
HCN3, HCN4
(mainly HCN4,
HCN3 low
expression）

(36, 37)

ICa,L CaV1.2, CaV1.3 (38–40)

ICa,T CaV3.1, CaV3.2,
CaV3.3 (mainly

CaV3.1, CaV3.3 is
rarely expressed)

(41–43)

INCX NCX (44)

INa Nav1.5 (45)
2 Basic mechanisms of SSS

2.1 Fibrosis of the sinoatrial node and its
surrounding area

The cells in the sinoatrial node are composed of pacemaker

cells (P cells), transition cells (T cells), cardiac fibroblast (CF),

and atrial myocytes. There are 35%–55% fibrotic tissues in this

region (14), and the necessary degree of fibrosis in the sinoatrial

node tissues plays a role in maintaining the structural integrity

and electrical insulation in the conduction process. Such

structural characteristics ensure that the electrical signal is

effectively transmitted to the myocardium via the sinoatrial

conduction pathway (SACP) (15–17).

In general, the extent of degenerative fibrosis of the sinoatrial

node exhibits a positive correlation with advancing age. As age

increases, there is a notable decrease in sinoatrial node cells and/

or an increase in fatty tissue infiltration (14, 18, 19), disrupting

the continuity between the sinoatrial node and the surrounding

atrial myocardium (20), which is considered the most significant

intrinsic cause of SSS (21).As well as the atrial muscle tissue

around the sinoatrial node, it’s fibrotic process resulting in

slowed conduction and atrial systolic dysfunction, which

concomitantly increases the risk of atrial fibrillation (22). The two

genetically engineered mice, ROSA-eGFP-DTA and HCN4-KiT

Cre, cultured by Stefan Herrmann et al., accurately reflected the

histopathological results of human with SSS, wherein tissue

degenerative fibrosis in the sinoatrial node resulted in abnormal

cardiac pacing (23).Pathological fibrosis of the sinoatrial node is

also one of the etiologies of SSS (15, 24), CF within the sinoatrial

node secrete substantial amounts of extracellular matrix (ECM) in

response to angiotensin II (AngII), inflammatory injury, oxidative

stress, overload, and an acidic environment, culminating in

pathological fibrosis of the sinoatrial node (25–27). The TGF-β/

SMAD signaling pathway, modulated by AngII, is a well-

established mediator of interstitial fibrosis (28–30). The expression

of TGF-β1 related genes is implicated in the pathogenesis of SSS

(31), with elevated levels of TGF-β1 and Smad2 proteins observed

in atrial muscle remodeling associated with SSS (32). The SSS

mouse model developed by Chen et al. with a micro-osmotic

pump to continuously administer AngII, further simulates tissue

pathological fibrosis in the sinoatrial node stimulated by AngII (33).

Participating in
repolarization, total
electrical flow outward

IKto Kv4.2, Kv4.3, Kv1.4 (46)

IKr hERG (47)

IKs KvLQT1 (48)

IKAch Kir2.1, Kir2.2, Kir2.3,
Kir2.4 (Kir2.3 low

expression)

(41)

IK1 Kir3.1, Kir3.4 (49)

IKATP Kir6.2 (50)
2.2 Dysfunction of the coupled-clock
system

Lakatta’s laboratory proposed the coupled-clock system,

comprising the integration of the “Ca2+ clock” and the
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“membrane clock”, which is regarded as a crucial mechanism for

the functional operation of the sinoatrial node pacemaker (34,

35). The strict synchronization between the two clocks ensures

that the sinoatrial node beats steadily and rhythmically, and the

“membrane clock” is the periodic activity of the major ion

currents on the cell membrane (Table 1), including the delayed

rectifier potassium current (Ik), funny current (If), L-type

voltage-gated calcium channel current (ICa,L), T-type voltage-

gated calcium channel currents (ICa,T), and so forth (51). Among

them, If controlled by hyperpolarization-activated cyclic-

nucleotide gated (HCN) channels plays a dominant role (41, 52).

The “Ca2+ clock” primarily involves the inward current generated

by the sodium-calcium exchanger (NCX), which maintains

intracellular Ca2+ concentrations during diastole. Ca2+ serves as a

mediating signal between the membrane clock and the Ca2+

clock, facilitating current conduction within sinoatrial node cells

(53). Changes in the initial membrane potential lead to the

opening of L-type Ca2+ channels, and Ca2+ influx elevates

intracellular Ca2+ concentration. This intracellular Ca2+ can be

recycled from the cytoplasm into the sarcoplasmic reticulum

(SR) via the sarcoplasmic reticulum Ca2+-ATPase (SERCA),

which activates SR ryanodine receptors (RyRs) to release Ca2+,

thereby generating local Ca2+ release (LCR). The LCR

subsequently activates the NCX, and the resultant internal

Sodium-calcium exchanger current (INCX) generates activates ICa,L
again, and a new action potential is formed (54, 55). Any

impairment within the coupling of the membrane clock and Ca2+

clock will disrupt the pacing currents of the sinoatrial

node, adversely affecting the regular and stable rhythmicity of

sinoatrial node contractions, thereby precipitating the occurrence

of SSS (41, 56–59).
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TABLE 2 Summary of mitochondrial energy metabolism and mechanisms
of SSS.

Action target Mechanism of action
ATP-related
ion channels

KATP channel Involve in action potential formation, and
influence ICa,L

VRAC Mediate chloride ion currents (ICl, swell),
and involve in regional tissue fibrosis

ATP-related
ion pumps

SERCA Maintain Ca2+ homeostasis within the
cytoplasm and organelles, and involve in
LCR formation

NKA Resulting Na + concentration difference
acts as the driving force of NCX, forms
INCX

cAMP derived
from ATP

HCN4, L-type Ca2+

channel
Trigger rhythmic action potential

PKA/CaMKII Drive LCR

cAMP/PKA,
cAMP/PGE1,
TGFβ/Smad

Regulate the fibrosis process

Shi et al. 10.3389/fcvm.2024.1488207
In summary, the coupling mechanism of the coupled-clock

system is essential for the sustained conduction activity of the

sinoatrial node. Adequate levels of tissue fibrosis are crucial for

maintaining the insulating properties of cardiac electrical

conduction, while the interplay between conduction and

insulation is vital for the normal functioning of the sinoatrial

node. Remodeling of the sinoatrial node often results in fibrosis

of both the sinoatrial node and the surrounding atrial muscle

tissue (15, 60–65), induced by conditions such as atrial

fibrillation, atrial flutter, heart failure, myocardial infarction. A

small group of patients with SSS caused by family genetic factors

are associated with regional tissue fibrosis, such as TGF-β1T869C

gene (31), while the majority of cases are linked to mutations in

ion channel-related genes, with SCN5A and HCN4 identified as

two prominent pathogenic genes associated with SSS (66–72),

and others include KCNG2 (73), SCN10A (74), GNB2 (75, 76).

As well as endogenous metabolites like adenosine (77, 78)and

adrenaline (79–81), are closely associated with sinoatrial node

fibrosis and dysfunction of the coupled-clock system.
3 Mitochondria and mechanisms of
SSS

3.1 Mitochondrial energy metabolism and
mechanisms of SSS

Mitochondria, often known as the energy factories of cells, are

responsible for the production of adenosine triphosphate (ATP)

through oxidative phosphorylation, thereby supplying energy to

the cell. In the context of cardiac physiology, sinoatrial node

cells, functioning as the heart’s natural pacemaker, must

continuously generate electrical impulses, resulting in a

heightened demand for energy. The mechanism of SSS and

mitochondrial energy metabolism are reflected in the

following aspects (Table 2).

3.1.1 ATP-related ion channels
3.1.1.1 ATP-sensitive potassium channel (KATP channel)
KATP channel comprises Kir6 main subunit and SuR auxiliary

subunit (82), and participates in potassium ion current in

sinoatrial node cells (83). Its activity is modulated by intracellular

ATP concentrations; elevated ATP levels inhibit the channel,

preventing its involvement in action potential formation and

excitation-contraction coupling. Conversely, a decrease in ATP

concentration leads to channel activation, facilitating K+ efflux,

which accelerates repolarization and shortens the action potential

plateau (84–86). In addition to KATP channels distributed on the

cell membrane, which participate in the formation of membrane

clock currents, KATP channels distributed on the inner

mitochondrial membrane are closely related to mitochondrial

energy metabolism, mitochondrial membrane potential

maintenance, apoptosis inhibition, and Ca2+ overload alleviation,

thereby sustaining the homeostatic state of the intracellular

environment (87–89). The activity of KATP channel is regulated

by mitochondrial energy metabolism and synchronously
Frontiers in Cardiovascular Medicine 03
participates in mitochondrial energy metabolism and Ca2+

homeostasis, thereby influencing ICa,L (90), and repeatedly

affecting the coupled-clock system mechanism which mediates

the pacemaker currents of sinoatrial node cells.

3.1.1.2 Volume-regulated anion channel (VRAC)
VRAC is expressed in atrial myocytes, ventricular myocytes and P

cells, and is involved in cardiac physiology and pathophysiological

processes (91, 92). VRAC activation occurs in response to cellular

swelling, hence it is also referred to as the swelling-activated

chloride channel. The primary component of VRAC is leucine-

rich repeat protein 8 (LRRC8)A, commonly known as Swell1

(93), is essential for regulating cellular volume reduction,

maintaining cell volume homeostasis, and mediating chloride ion

currents (ICl, swell) (94). Activation of VRAC requires the

participation of ATP (95, 96), and the function is reversibly

inhibited in hypoxic environment and under the action of

mitochondrial inhibitors (97). Interestingly, VRAC is regulated

by mitochondrial energy metabolism; inhibition of VRAC

consequently affects the mitochondrial electron transport chain,

thereby impairing ATP production (98). On the other hand,

normally functioning VRAC channels also play an important role

in CF (99). Given their role as energy-demanding ion channel

proteins, it is plausible to suggest that metabolic disorders arising

from mitochondrial dysfunction may provoke inflammatory

responses in the sinoatrial node or contribute to increased

extracellular matrix deposition, thereby exacerbating regional

tissue fibrosis.

3.1.2 ATP-related ion pumps
3.1.2.1 SERCA
SERCA is a crucial ion pump integral to the Ca2+ clock mechanism

of the sinoatrial node. Its primary function is to restore intracellular

Ca2+ levels and maintain calcium homeostasis within the

cytoplasm and organelles, such as mitochondria and the SR. The

stable release of Ca2+ in the SR ensures the stable LCR of the

Ca2+ clock. SERCA has a high affinity with ATP (100), while

ATP consumption is accompanied by Ca2+ recycling (101, 102),
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TABLE 3 Summary of mitochondrial oxidative stress and SSS.

Action target Mechanism of action
Membrane clock ion
channel proteins

Inhibit the function of membrane clock ion channel
proteins (HCN4, KATP, SCN5A, KCNA5), and
influence ion currents, but if the antioxidant
treatments will ease

CaMKII Affect Ca2+ clocks LCR process, and even further
affect ICa,L and INCX

Involve in tissue fibrosis and structural remodeling

Intracellular Ca2+ Ca2+ overload and oxidative stress interact, drive
fibrosis

Shi et al. 10.3389/fcvm.2024.1488207
which can negatively regulate SERCA activity by restricting ATP

produced in mitochondria (103). Meanwhile, Claudia Rodriguez

et al. also demonstrated that AMP-activated protein kinase

(AMPK), which is involved in mitochondrial protection, can

stimulate the ATP-generating pathway and restore homeostasis to

activate SERCA activity (104). This indicates that mitochondria

play a significant role in cytoplasmic Ca2+ recovery through

SERCA based on energy metabolism, and further participate in

the coupled-clock system’s coupling mechanism. The ability of

sinoatrial node cells to generate larger and rhythmic LCRs

should be linked with increased abundance of SERCA (55), while

the expression level and activity of SERCA tend to decline with

age (105), which also proves that mitochondria-driven attenuation

of SERCA during aging is one of the mechanisms of SSS.

3.1.2.2 Na+/K+-ATPase (NKA)
NKA is an ion pump that consumes ATP to maintain the balance

of sodium (Na+) and potassium (K+) ions within the cell (106). It

works in concert with other ion channels and pumps to regulate

calcium (Ca2+) homeostasis within the SR, which is crucial for

both SR Ca2+ equilibrium and membrane depolarization in

sinoatrial node cells. This regulation ensures the maintenance of

the resting membrane potential and the rhythmic function of the

sinoatrial node (107, 108). When the concentration of

cytoplasmic Ca2+ is low, SERCA is in a low activity state, while

NKA, which is in a high activity state, can account for 30% of all

ATPases (109), and participate in the transport of Na+ and K+.

The resulting Na+ concentration difference acts as the driving

force of NCX (110–112). The whole process is regulated by

intracellular Ca2+ signaling (111), and eventually INCX is formed

(113), which is vital to the electrical function of the heart (114).

Gvantsa Chkadua et al. noted that NKA activity is regulated not

only by mitochondrial ATP but also by cytochrome c (Cyt C)

released from mitochondria, which mediates non-apoptotic

effects. NKA is activated by low Cyt C concentrations and

inhibited at higher concentrations (115). Norbert A. Dencher

et al. observed impaired mitochondrial function and significantly

reduced NKA expression in aged rats or those with age-related

diseases (116). Therefore, NKA is intricately linked with

mitochondrial function and is a potential target for

mitochondrial-mediated cardiac protection (117).

3.1.3 Cyclic adenosine monophosphate (cAMP)
derived from ATP is involved in the cardiac
electrical activity of sinoatrial node cells

cAMP, mainly derived from ATP, is formed by the cyclization

reaction of ATP after the removal of one pyrophosphate (two

phosphorus atoms) under the catalysis of adenylyl cyclase (AC)

(118). It is widely present in cells and plays a crucial role in

various physiological processes, notably acting as an intracellular

“second messenger” in the sinoatrial node (81, 119). cAMP/

protein kinase A (PKA) signal is an important mechanism

driving the coupled-clock system of sinoatrial node cell

membrane to trigger rhythmic action potential (120), and the

efficacy of this mechanism diminishes with age due to a

reduction in cAMP levels (80). Therefore, many iron channels on
Frontiers in Cardiovascular Medicine 04
the sinoatrial node cell membrane are regulated by cAMP, with

the most dependent being HCN4 (121–124), L-type Ca2+

channels (125–127). Regarding the regulation of the Ca2+ clock,

the occurrence of LCR is dependent on the phosphorylation of

cAMP downstream PKA and Ca2+/calmodulin-dependent protein

kinase II (CaMKII) (127–129), and cAMP also plays a regulatory

role in inhibiting tissue fibrosis (130). Age-related cardiac

contraction decline is partly attributed to the desensitization of

β-adrenergic/cAMP signaling. Enhancing cardiac cAMP

bioavailability and PKA activity has been shown to improve

contractile function in mice, potentially alleviating fibrosis and

cardiac tissue remodeling (131). Besides that, cAMP-elevating

receptor agonist prostaglandin E1 (PGE1) can inhibit cardiac

fibroblast proliferation (132). Alternatively, cAMP inhibits the

downstream TGFβ/Smad signaling pathway, reduces the

expression of α-SMA, alleviates ECM deposition, thus regulating

the fibrosis process (133–137).

In addition, although the cystic fibrosis transmembrane

conductance regulator (CFTR) has not been reported to be

related to the SSS mechanism, it holds potential as a target

protein for future investigations into its role in the

electrophysiological processes and fibrosis progression within the

sinoatrial node and adjacent tissues. CFTR is extensively

expressed in the heart (138), which requires ATP hydrolysis for

energy (139–141), and is also shown as cAMP-dependent (142),

and accompanied by current signals ICl,cAMP during chloride ion

transport (143, 144). What is more interesting is that gene

mutations resulting in the mistranslation of CFTR can directly

cause cystic fibrosis (139), suggesting a subtle connection

between the fundamental mechanisms of SSS and cystic fibrosis,

whether by coincidence or inevitability.
3.2 Mitochondrial oxidative stress and SSS

Aging and a variety of cardiovascular diseases are believed to be

related to mitochondrial oxidative stress. For instance, mice with a

germline deletion of the Ndufs4 subunit of respiratory complex I

exhibit chronic arrhythmias, atrioventricular block, and other

sinoatrial node dysfunctions. Targeted anti-oxidative stress

therapy has been shown to ameliorate chronic arrhythmias and

prolong their lifespan (145). The role of mitochondrial oxidative

stress in the pathogenesis of SSS may be related to the

following aspects (Table 3).
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3.2.1 Ion channels dysfunction is mediated by
mitochondrial oxidative stress injury

Thioredoxin 2 (Trx2) serves as a rate-limiting enzyme in the

mitochondrial thioredoxin system, which is one of the principal

pathways for scavenging reactive oxygen species (ROS). Trx2 can

bind to apoptosis signal-regulated kinase-1 (ASK1), inhibiting its

activity and thereby suppressing apoptosis induced by the pro-

apoptotic factor cysteine-aspartic acid protease-3 (Caspase3)

(146, 147). This mechanism plays a pivotal role in maintaining

cellular survival, reducing oxidative stress, and regulating

mitochondrial apoptosis signal transduction (148–150). Bicheng

Yan et al. discovered that Trx2 is essential for maintaining

HCN4-mediated normal heart rate; the absence of Trx2 results in

significant ROS accumulation, leading to the dysfunction of

HCN4, a critical factor in the development of SSS (151). Carlos

H. Pereira et al. found that p21-activated kinase 1 (Pak1)

enhances NADPH oxidase 2-dependent ROS production, thereby

reducing HCN expression and inhibiting sinoatrial node activity.

The sinoatrial node dysfunction, associated with a decreased

heart rate following oxidative stress injury controlled by Pak1, is

linked to membrane clock dysfunction rather than Ca2+ clock

dysfunction. Additionally, the application of TEMPOL, a ROS

scavenger, can clear ROS and reverse such sinoatrial node

function impairment (152). It is evident that HCN4 is an ion

channel significantly affected by mitochondrial oxidative stress

(152). A large amount of ROS accumulated by oxidative stress

damage can affect the function of KATP (153), the process of

tachypacing-induced mitochondrial dysfunction is often

accompanied by oxidative stress damage and Ca2+ overload,

targeted use of antioxidants can reverse associated mitochondrial

dysfunction, which reduced ADP and increased ATP production

in cells, meanwhile, KATP expression increased (154). The cardiac

sodium channel NaV1.5 (SCN5A) has a fundamental role in

excitability and conduction, peroxisome proliferator activated

receptor-γ (PPARγ) coactivator-1 (Pgc-1)-deficient murine

cardiac models simulate mitochondrial dysfunction, a decrease in

Nav1.5 channel protein expression was found in these models

(155). Upon tetrodotoxin (TTX) exposure, it is showed that ROS

increase, mitochondrial function decreases, SCN5A expression

decreased (156). As we can see, mitochondrial oxidative stress

injury is an important factor affecting the function and

expression of SCN5A, meliorate mitochondrial oxidative stress

and preserve bioenergetics can improve mitochondrial

dysfunction and protect the function of SCN5A (157).

Angiotensin II (Ang II) enhances the expression of KV1.5

(KCNA5) by activating ROS-dependent phosphorylation of

Smad2/3 (forming P-Smad2/3) and ERK 1/2 (forming P-ERK1/

2), antioxidant can diminish Ang II-induced reactive oxygen

species (ROS) generation, inhibit Ang II-induced expression of

P-Smad2/3, phosphorylated ERK (P-ERK1/2), which maintains

the normal function of KV1.5 (158–160).Trx2 is regulated by

nuclear factor-erythroid 2-related factor 2 (Nrf2), which together

constitute a crucial component of mitochondrial oxidative stress

(161, 162). Heng Zhang et al. found that SSS is associated with

oxidative stress damage, which may be related to the loss of
Frontiers in Cardiovascular Medicine 05
HCN4 and the weakening of If in the process of oxidative stress,

and the anti-oxidative stress effect of regulating the Nrf-2/HO-1

axis can improve SSS (163).

3.2.2 Mitochondrial oxidative stress and
Ca2+/CaMKII activation participate in Ca2+ clock
and structural remodeling

During mitochondrial oxidative stress, a substantial

accumulation of ROS participates in the calcium release process

of RyRs on the SR (164). This phenomenon is related to ROS-

mediated phosphorylation of CaMKII, where aberrant activation

of CaMKII phosphorylation results in Ca2+ leakage of RyRs and

abnormal LCR (165, 166). LCR affects the discharge rhythm and

the recycling and release of cytoplasmic Ca2+ by SR, ICa,L and

INCX (128, 167). Duanyang Xie et al. identified that

mitochondrial excitatory amino acid transporter 1 (EAAT1)-

dependent mitochondrial glutamate input enhances ROS

production, leading to the oxidation of CaMKII protein,

ultimately augmenting LCR (168). Jian-Bin Xue et al. observed

that sinoatrial node dysfunction following heart failure

manifested as decreased CaMKII phosphorylation, reduced RyRs

protein expression, diminished SERCA function, lowered SR Ca2+

content, attenuated LCR, and inhibited Ca2+ clock. Furthermore,

CaMKII was implicated in subsequent tissue fibrosis and

structural remodeling during this process (169, 170). Despite

appearing contradictory, the findings of the two scholars are

reconcilable. Duanyang Xie’s observations pertain to glutamate-

mediated ROS generation within the controlled oxidative stress

damage range of sinoatrial node cells, whereby sufficient ROS

and substrates required by CaMKII can enhance LCR. Under

severe oxidative stress, CaMKII often mediates apoptosis,

exacerbating the initial injury (171, 172). Jian-Bin Xue’s findings

are predicated on sinoatrial node dysfunction post-heart failure,

where CaMKII contributes more significantly to tissue fibrosis

and structural remodeling as part of compensatory mechanisms.

Both accelerated and decelerated heart rates mediated by LCR

enhancement or attenuation align with clinical manifestations of

SSS, including fast-slow syndrome and slow-fast syndrome. Our

inferences, based on clinical presentations, suggest that CaMKII

activation mediated by mitochondrial oxidative stress injury and

the abnormality of the sinoatrial node Ca2+ clock LCR are

experimentally demonstrated, also involving fibrosis and remodeling.

3.2.3 Mitochondrial Ca2+ overload and oxidative
stress damage mediated fibrosis

Mitochondria affect intracellular Ca2+ concentration by

modulating Ca2+ absorption and release. When Ca2+ overload

occurs in mitochondria, mitochondrial membrane potential

changes will cause oxidative stress or aggravate mitochondrial

oxidative stress damage. ROS generated by oxidative stress can

further damage mitochondrial membrane structure, affecting

mitochondrial Ca2+ uniporter (MCU) and mitochondrial

permeability transition pore (mPTP), thereby aggravatingCa2+

overload (173–175). Mitochondrial Ca2+ overload and oxidative

stress often interact (176). Xing Chang et al. demonstrated that
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hypoxia/reoxygenation (H/R) injury disrupts the equilibrium of

“Ca2+ release” and “Ca2+ cycling” in rat sinoatrial node cells, and

abnormal Ca2+ concentration or Ca2+ overload in sinoatrial node

cells further aggravated mitochondrial oxidative stress injury

(177). Oxidative stress and Ca2+ overload are frequently

implicated in the pathogenesis of fibrosis (178–180). An

imbalance in Ca2+ homeostasis is a critical factor in sinoatrial

node dysfunction and regional tissue fibrosis. Mingjie Zheng

et al. found that Hippo-Yap pathway plays a role in maintaining

sinoatrial node homeostasis by regulating Ca2+ homeostasis, and

the inactivation of Lats1/2, pathologically associated with the

Hippo-Yap signaling pathway, results in severe dysfunction of

the sinoatrial node, which is manifested by Ca2+ homeostasis

imbalance and increased fibrosis in the sinoatrial node region

(181). Impulse conduction disorders in the atrial region are still

an important part of SSS, and mitochondrial oxidative stress in

atrial myocytes is a significant cause of atrial fibrosis (182).
3.3 Mitochondrial quality control (MQC) and
SSS mechanism

MQC refers to the mechanisms within the cell that regulate the

number, morphology and function of mitochondria to ensure their

normal functioning and cell health, and involves mitochondrial

protein homeostasis, mitochondrial autophagy, and

mitochondrial dynamics and biogenesis (183–185). MQC defects

often play a crucial role in the pathogenesis of cardiovascular

diseases (186), especially degenerative diseases correlated with

aging (187). MQC defects associated with the pathogenesis of

SSS have been reported mainly in fusion protein-mediated

mitochondria-SR coupling and dynamin-related protein mediated

mitochondria fission and autophagy (Table 4).

3.3.1 Mitofusin 2(Mfn2) mediated mitochondria-SR
coupling

Mfn2 is a transmembrane guanosine triphosphatase (GTPase)

located in the outer membrane of mitochondria, and a key factor

in regulating mitochondrial fusion and maintaining

mitochondrial structure (188). Mfn2 is also expressed on SR, and

the proximity between mitochondria and SR (189), facilitates a

hub for crosstalk between them (190, 191). Inter-organelle
TABLE 4 Summary of MQC and SSS mechanism.

Action
target

Mechanism of action

Mfn2 Normal
expression

Maintain inter-organelle contact and
communication between mitochondria and
SR, involve in LCR

Decreased
expression

Increase mitochondria-SR distance, and affect
LCR

Drp1 Normal
expression

Synergize with the PINK1/Parkin signaling
axis to mediate mitochondrial autophagy,
ensure the stable level of MCQ

Overactivation Induce apoptosis, inhibit Drp1 can prevent
excessive mitochondrial fission, activates
mitophagy, improve SSS
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maintain cellular homeostasis (192), especially in the Ca2+ cycle

involved in LCR (189, 190, 193, 194). Under normal conditions,

mitochondrial ATP is vital to power SR Ca2+ cycling that drives

phasic contraction/relaxation, and changes in SR Ca2+ release are

sensed by mitochondria and used to modulate oxidative

phosphorylation based on metabolic need (195). Disruption of

the physical link between SR and mitochondria mediated by

Mfn2 impairs the mitochondria-SR metabolic feedback

mechanism. This results in diminished SERCA activity, obstructed

Ca2+ cycling, impaired mitochondrial ATP production, disrupted

energy metabolism, and potentially programmed cell death (195,

196). Lu Ren et al. identified that sinoatrial node dysfunction is

associated with Mfn2-mediated alterations in mitochondria-SR

connectomics. In a mouse model of sinoatrial node dysfunction

induced by heart failure, electron microscopy (EM) tomography

revealed mitochondrial structural abnormalities and increased

mitochondria-SR distance. This results in abnormal mitochondrial

Ca2+ processing, altered local PKA activity, and impaired

mitochondrial function in sinoatrial node cells (197).

3.3.2 Dynamin-related protein 1 (Drp1) mediates
mitochondrial fission and autophagy

Drp1, a GTPase widely distributed in the cytoplasm, is a major

regulatory factor in the process of mitochondrial fission (198, 199).

When the mitochondrial fission process is activated, Drp1 is

transported to the mitochondrial surface, where it binds to

related receptors to form helical oligomers. These helical Drp1

structures facilitate its GTP hydrolysis (200, 201), encircle the

mitochondrial outer membrane, and mediate its scission (202,

203). Drp1 plays a major role in the entire process of

mitochondrial fission (204), DRP1-mediated mitochondrial

fission promotes the occurrence of mitochondrial autophagy, and

the dysfunctional mitochondria produced by fission depend on

the clearance of mitochondrial autophagy (205, 206). Under

normal cellular conditions, Drp1 synergizes with the PINK1/

Parkin signaling axis to mediate mitochondrial autophagy,

ensuring the stable mitochondrial quality level and function

(207). Excessive activation of Drp1 leads to excessive

mitochondrial fission beyond the scope of mitochondrial

autophagy, the increase of Drp1 level promotes excessive opening

of mPTP, oligomerization of BCL2-associated X protein (Bax)

and release of Cyt C, and mitochondrial ROS accumulation, and

loss of mitochondrial membrane potential, ultimately inducing

apoptosis (208, 209). Conversely, the application of Drp1

inhibitors can ameliorate these adverse effects (210, 211).

Rebecca Z Fan et al. found that a partial Drp1 knockout

improves autophagy (212). Mitochondrial fission is integral to

fibrosis, as evidenced by Ching-Yi Chen et al., who found that

Drp1 inhibition elevated ATP levels and reduced mitochondrial

fission and apoptosis, thereby mitigating fibrosis (213). Enhanced

mitochondrial autophagy also contributed to the reduction of

ECM in the sinoatrial node (33), the mechanism of fibrosis in

SSS is linked to Drp1-mediated mitochondrial fission and

autophagy. Xing Chang et al. proved that Tongyang Huoxue

decoction (TYHX) inhibits Drp1 translocation to mitochondria,
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Mechanism of mitochondrial involvement in SSS. (The model membrane clock ion channel proteins in the figure are closely related to mitochondria
and have been mentioned in relevant literature, so they cannot represent all membrane clock ion channel proteins in the figure).
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prevents excessive mitochondrial fission, activates mitophagy, and

enhances mitochondrial membrane potential, demonstrating

TYHX’s efficacy in improving SSS (177).

The foregoing is the process of mitochondria related

mechanisms participating in the pathological mechanism of SSS,

which is mainly reflected in mitochondrial energy metabolism,

mitochondrial oxidative stress damage, MCQ’s involvement in

the basic pathological mechanism of SSS regarding the

exacerbation of regional tissue fibrosis and the dysfunction of the

coupled-clock system mechanism. For the summary, please refer

to the mechanism diagram (Figure 1).
4 Summary and conclusion

The rhythmically beating heart is an organ with high energy

demand (214). Mitochondrial dysfunction mechanisms are

frequently implicated in the physiological and pathological

processes of various cardiovascular diseases, including

myocardial ischemia-reperfusion injury (215), atrial fibrillation

(216), heart failure (217) and recovery after myocardial

infarction (218). There is no doubt that SSS cannot be

excluded, particularly as this class of diseases is clearly
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associated with aging, which has been shown to correlate

with mitochondrial dysfunction (219, 220). Disruption of the

coupled-clock system mechanism and severe regional tissue

fibrosis are the fundamental mechanisms of SSS. ATP and

its derivative, cAMP, produced via mitochondrial energy

metabolism, are involved in regulating membrane clock-related

ion channel proteins and Ca2+ clock-related ion pumps, and in

modulating signaling pathways that mediate fibrosis or

extracellular CF. Additionally, mitochondria-mediated oxidative

stress damage, Ca2+ overload, and MCU dysfunction

contribute to the development and progression of these

mechanisms in SSS.

In fact, SSS is a kind of syndrome of pacing function and (or)

impulse conduction dysfunction caused by dysfunction of

sinoatrial node and surrounding tissue lesions. This syndrome

encompasses lesions in the sinoatrial node region as well as in

the adjacent atrial and atrioventricular junction areas,

complicating both clinical and experimental research efforts.

Clinical diagnosis primarily relies on electrocardiographic

evaluations, yet the diverse and complex electrocardiographic

manifestations across different heart regions further complicate

the classification of disease types. At the same time, various

animal modeling methods of SSS often fail to reflect the
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1488207
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Shi et al. 10.3389/fcvm.2024.1488207
complexity of clinical diseases, such as gene regulation (23),

inducing ischemia-reperfusion injury on the sinoatrial node area,

and injecting sodium hydroxide to the sinoatrial node area

through internal jugular vein (221), among others. On the other

hand, mitochondria are ingenious and magical cellular organelles

with powerful functions. They can regulate energy metabolism,

oxidative stress and Ca2+ level, communicate with other

neighboring organelles, participate in intracellular

communication between organelles and mitochondrial autophagy

to clear dysfunctional mitochondria and maintain intracellular

environmental homeostasis. At the same time, mitochondrial

dysfunction to the point of inability to stabilize the entire cell

function can mediate the occurrence of apoptosis. The

multifaceted roles of mitochondria are interdependent; for

instance, oxidative stress damage can be exacerbated by abnormal

energy metabolism or Ca2+ overload in mitochondria. On the

contrary, energy metabolism is influenced by mitochondrial

oxidative stress and Ca2+ concentrations, with oxidative stress

and Ca2+ overload mutually interacting. Mitochondrial dynamics,

such as fission, fusion, and autophagy, are integral to

maintaining complete mitochondrial functionality, thus adding to

the complexity and challenges of related studies.

Based on the published clinical and experimental findings

concerning the mechanisms of mitochondrial dysfunction and

SSS, it is evident that further investigation is warranted.

Specifically, it remains unclear whether other ion channel

proteins associated with the membrane clock are directly

regulated by mitochondrial mechanisms and contribute to the

fundamental pathology of SSS, or if they exert no significant

regulatory effects. Additionally, the role of mitochondria in the

fibrosis process mediated by certain ion channel proteins, which

may be central to the basic mechanism of SSS, requires further

elucidation. Therefore, current research in this area is

insufficient. Further in-depth and comprehensive mechanism

studies will help clarify the involvement of mitochondrial

mechanism in the pathological mechanism of SSS and identify

the core link of disease pathogenesis, which is conducive to the
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development of relevant new effective drugs to prevent and

treat SSS.
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