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and immune infiltration
assessment in abdominal aortic
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Cardiology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing
University of Chinese Medicine, Jiangyin, Jiangsu, China
Objective: Abdominal aortic aneurysm (AAA) is a life-threatening vascular
condition. This study aimed to discover new indicators for the early
detection of AAA and explore the possible involvement of immune cell
activity in its development.
Methods: Sourced from the Gene Expression Omnibus, the AAA microarray
datasets GSE47472 and GSE57691 were combined to generate the training set.
Additionally, a separate dataset (GSE7084) was designated as the validation set.
Enrichment analyses were carried out to explore the underlying biological
mechanisms using Disease Ontology, Kyoto Encyclopedia of Genes and
Genomes, and Gene Ontology. We then utilized weighted gene co-expression
network analysis (WGCNA) along with 3 machine learning techniques: least
absolute shrinkage and selection operator, support vector machine-recursive
feature elimination, and random forest, to identify feature genes for AAA.
Moreover, data were validated using the receiver operating characteristic
(ROC) curve, with feature genes defined as those having an area under the
curve above 85% and a p-value below 0.05. Finally, the single sample gene set
enrichment analysis algorithm was applied to probe the immune landscape in
AAA and its connection to the selected feature genes.
Results: We discovered 72 differentially expressed genes (DEGs) when
comparing healthy and AAA samples, including 36 upregulated and 36
downregulated genes. Functional enrichment analysis revealed that the DEGs
associated with AAA are primarily involved in inflammatory regulation and
immune response. By intersecting the result of 3 machine learning algorithms
and WGCNA, 3 feature genes were identified, including MRAP2, PPP1R14A,
and PLN genes. The diagnostic performance of all these genes was strong, as
revealed by the ROC analysis. A significant increase in 15 immune cell types in
AAA samples was observed, based on the analysis of immune cell infiltration.
In addition, the 3 feature genes show a strong linkage with different types of
immune cells.
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Conclusion: Three feature genes (MRAP2, PPP1R14A, and PLN) related to the
development of AAA were identified. These genes are linked to immune cell
activity and the inflammatory microenvironment, providing potential biomarkers
for early detection and a basis for further research into AAA progression.

KEYWORDS

abdominal aortic aneurysm, feature gene, machine learning, WGCNA, immune cell
infiltration
TABLE 1 Overview of the datasets used in this study.

Database Dataset Platform Sample
GEO GSE57691 GPL10558 10 controls and 49 AAA cases

GEO GSE47472 GPL10558 8 controls and 14 AAA cases

GEO GSE7084 GPL570, GPL2507 10 controls and 9 AAA cases
1 Introduction

Abdominal aortic aneurysm (AAA) is a vascular disease

characterized by the abnormal dilation of the abdominal aorta. It

is associated with the destruction and loss of elasticity of the

arterial wall and primarily affects men over 40 years old,

especially those with common risk elements such as smoking,

raised blood pressure, and elevated cholesterol (1, 2). If AAA is

not treated promptly, it increases the risk of aortic rupture,

leading to severe bleeding and even posing a threat to the

patient’s life. Studies have revealed that AAA is a leading

contributor to unexpected deaths among older adults (3).

Therefore, early screening and diagnosis of AAA patients are

crucial to prevent AAA rupture.

The development of AAA is multifaceted, encompassing the

breakdown of elastin, changes in collagen structure and the

involvement of inflammatory cells (4, 5). The inflammatory

response is a critical factor in initiating and sustaining the

progression of AAA, with the resulting series of pathological

changes ultimately leading to aneurysm formation (6). There has

been a growing appreciation for the contribution of immune and

inflammatory factors to AAA development. Continuous

inflammation leads to AAA formation and progression through

the degradation and remodeling of the components of the

vascular wall (7). The interplay between various immune cell

types creates a complex inflammatory environment that

promotes AAA development (8–10). The inflammatory

microenvironment’s role in AAA development also makes it a

potential target for early detection. Identifying related immune

responses and markers could improve screening and enable

earlier intervention, reducing rupture risk (11). Considering the

significant role of inflammation in AAA progression, integrating

bioinformatics approaches provides a necessary and logical

progression. These techniques, such as machine learning and co-

expression network analysis, allow us to uncover the genetic and

molecular mechanisms underlying the immune responses and

inflammation associated with AAA.

Recent advancements in microarray-based integrated

bioinformatics analyses have significantly enhanced the discovery

of essential genes linked to specific diseases, providing promising

candidates for diagnostic biomarkers (12). Weighted Gene Co-

expression Network Analysis (WGCNA) is a systems biology

technique that categorizes genes with similar functions into

modules based on their expression relationships, thus revealing

the complex organization of the genome (13). Unlike strategies

that rely on differentially expressed genes (DEGs) analysis, its
02
advantage lies in organizing genes into modules and connecting

them to disease traits or biological processes, ultimately

identifying key genes in disease pathways.

Publicly available gene expression profiles of AAA patients

from 3 datasets were extracted from the Gene Expression

Omnibus (GEO) database. Two of these datasets were fused to

construct a training set, while the remaining dataset was used for

validation. Then we utilized a variety of machine learning

methods to identify AAA feature genes. A validation cohort

confirmed gene validity, and the receiver operating characteristic

(ROC) curve assessed prediction ability. Finally, through

quantitative analysis, we explored the infiltration of various

immune cell subsets within AAA patient tissues and delved into

the correlations between these subsets and their associated gene

expression profiles. This research sheds new light on the

immunopathological mechanisms of AAA, offering crucial clues

for subsequent research on targeted treatments.
2 Materials and methods

2.1 Data gathering and evaluation

The primary outcome was the classification of each sample as

either “AAA” or “Control” group based on gene expression data.

AAA was defined as an abdominal aortic diameter exceeding

3.0 cm, confirmed through abdominal ultrasound screening, with

additional evaluation using CT or MRI in more complex cases or

for pre-surgical planning (1). We explored the GEO database

(14) for raw data related to AAA and eventually downloaded 3

datasets that examined AAA tissue samples from both patients

and healthy participants: GSE47472 (controls: 8, AAA patients:

14) (Supplementary Table 1), GSE57691 (controls: 10, AAA

patients: 49) (Supplementary Table 2), and GSE7084 (controls:

10, AAA patients: 9) (Supplementary Table 3). Table 1 presents

the characteristics of the datasets.

We merged the gene expression data from GSE47472 and

GSE57691 into a new matrix, which we designated as the

training data (Supplementary Table 4). The datasets GSE47472
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1497170
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Xie et al. 10.3389/fcvm.2024.1497170
and GSE57691 were selected as the training set because of their

larger sample sizes and shared platform, which ensured data

consistency and supported robust machine learning analysis.

GSE7084, although smaller and from a different platform, was

used as an independent validation set to confirm the reliability

and generalizability of our findings. These datasets were chosen

for their relevance to AAA and the availability of both patient

and control samples, allowing for comprehensive comparative

analysis. Batch effects were addressed using the “sva” package

(15), and datasets had samples excluded when inter-group

discrepancies were not resolved (Supplementary Figure S1).
2.2 Differential gene analysis

The “limma” package (16) in R software was used to analyze

variations in gene expression in AAA patients compared to

control subjects, applying an adjusted (adj) p-value of <0.05 and

|log2 fold change (FC)| > 1 to identify DEGs. Genes exhibiting a

log2FC > 1 and an adj p-value <0.05 were categorized as

up-regulated, reflecting increased expression, while genes with

log2FC <−1 and the same p-value threshold were marked as

down-regulated, indicating reduced expression. The pheatmap

and volcano plot were used to display the selected DEGs.
2.3 Pathway enrichment evaluation

In this work, the R packages “clusterProfiler” and “DOSE” were

used to perform functional enrichment analysis of DEGs, utilizing

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG) and Disease Ontology (DO) (17–19). Pathways related to

the genes were explored using KEGG enrichment analysis. GO

enrichment analysis was divided into 3 categories: molecular function

(MF), cellular component (CC), and biological process (BP).

Moreover, DO enrichment analysis was applied to study diseases

associated with the genes. Using a q-value of less than 0.05 as a

threshold, enrichment analysis was performed to explore biological

functions, detect pathway enrichments, and assess disease associations.
2.4 Construction of WGCNA target module
and feature genes screening

To uncover gene networks and co-expressed gene modules

potentially relevant to the disease, we utilized WGCNA (20).

This method was applied to identify gene modules linked to

clinical traits. First, we calculated the variance of each gene and

selected those with a standard deviation greater than 0.7 for

further analysis. Clustering analysis was then performed on all

samples, and outlier samples were removed based on clustering

distance. A soft threshold (β = 9) was selected based on the

network’s topological properties to construct a scale-free co-

expression network, transforming the expression matrix into an

adjacency matrix and subsequently into a topological overlap

matrix (TOM). To identify gene co-expression modules, we
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employed average linkage hierarchical clustering based on the

TOM, with a hybrid dynamic tree-cutting algorithm determining

the module boundaries. To ensure the robustness of the

identified modules, a minimum size threshold of 60 genes was

set. Subsequently, we calculated the eigengene for each module to

capture its overall expression pattern. We then performed

clustering analysis to merge modules with similar eigengenes,

applying a merging threshold of 0.25. Key genes were identified

using high gene significance (GS) and module membership

(MM) scores, and gene module-clinical trait associations were

visualized with the “ComplexHeatmap” package (21).
2.5 Machine learning based feature
gene screening

We implemented 3 machine learning methods in this research,

leveraging the R packages “glmnet”, “e1071”, and “randomForest”.

First, we applied Least Absolute Shrinkage and Selection Operator

(LASSO) logistic regression for feature selection, using L1

regularization to identify the most important features (22). Next,

the Support Vector Machine—Recursive Feature Elimination

(SVM-RFE) method, which recursively eliminates irrelevant

features, was used to iteratively remove less significant features and

determine the optimal variables (23). Finally, the Random Forest

(RF) algorithm was used for classification, regression, and feature

selection by building multiple decision trees, aggregating their

results, and providing a robust evaluation of feature importance

while handling noisy data (24). These methods were used to

analyze the intersecting genes from these analyses, and feature

genes were identified based on their importance in the intersecting set.
2.6 Feature gene validation

We systematically analyzed key gene expression profiles in

AAA samples compared to normal controls using the R software

to assess their diagnostic significance. Initially, we began by

conducting expression variation analysis with the “limma”

package, followed by generating box plots using the “ggpubr”

package (25) to visually depict the differences in variation in core

gene expression across groups. Furthermore, ROC curves for

each core gene were constructed using the “pROC” package (26),

and we calculated the area under the ROC curve (AUC) values

with 95% confidence intervals to quantify diagnostic accuracy. A

higher AUC value, approaching 1, indicates stronger diagnostic

capability for AAA. Finally, to validate the robustness of these

core genes, we used the external validation dataset GSE7084 and

re-evaluated their expression patterns and diagnostic value

through box plots and ROC curves across different datasets.
2.7 Immune cell infiltration analysis

The immune environment is key to understanding immune cell

composition and function, providing insights for predicting disease
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progression and evaluating treatment efficacy. We utilized single-

sample gene set enrichment analysis (ssGSEA) (27) to determine

the expression patterns of 28 immune cell types in the samples

under study. Differences in the abundance of each immune cell

type between the AAA group and the control group were

compared using the Wilcoxon rank-sum test, with p < 0.05 as the

criterion for identifying immune cell types with higher

infiltration levels. Moreover, Spearman correlation coefficients

were used to analyze the relationship between immune cell

abundance and gene expression levels in the samples, with

p < 0.05 considered indicative of a significant regulatory

relationship between immune cells and genes.
2.8 Statistical methods

R software version 4.2.2 was used for statistical analysis. For

data meeting the criteria of normal distribution and equal

variances, comparisons between the two groups were performed

using a t-test or U-test. Correlations were assessed using

Pearson’s correlation or Spearman’s correlation test, with

statistical significance defined as a p-value less than 0.05.
3 Results

3.1 Identification of DEGs

By applying the “limma” package, differential gene expression

analysis of the merged dataset identified 72 DEGs, based on the
FIGURE 1

DEGs between AAA patients and controls. (A) Volcano plots display all DEGs
and red spots signifying up-regulated genes. (B) The heatmap displays DE
highlighted in red, whereas those from normal controls are in blue. Gene
blocks signify genes with decreased expression levels.
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criteria of an adj p-value <0.05 and absolute |log2FC| > 1

(Supplementary Table 5). Of these, 36 genes were upregulated

(log2FC > 1) and 36 were downregulated (log2FC <−1), as

illustrated in the volcano plot (Figure 1A). The top 60 DEGs

have been indicated in Figure 1B.
3.2 DO, GO functional analysis and KEGG
pathway enrichment

According to the DO analysis, these DEGs were involved in

diseases like pre-eclampsia, primary immunodeficiency disease,

head and neck carcinoma, cervical cancer and aortic aneurysm

(Figure 2A) (Supplementary Table 6). KEGG pathway analysis

highlighted a strong involvement of these DEGs in the interleukin

17 (IL-17) signaling pathway, the tumor necrosis factor (TNF)

signaling pathway, the transcriptional misregulation in cancer, the

rheumatoid arthritis and other pathways (Figures 2B,C)

(Supplementary Table 7). Enrichment was considered significant

with q-values <0.05. Finally, GO functional annotation revealed

enrichment in 15 terms among the DEGs (Figure 2D).

Notable enrichment of DEGs was observed in the GO

BP analysis for pathways including the regulation of

neuroinflammatory response (GO: 0150077), the positive

regulation of acute inflammatory response (GO: 0002675), and

the response to toxic substance (GO: 0009636) among others.

GO CC enrichment analysis identified a marked enrichment of

DEGs in the external side of plasma membrane (GO: 0009897),

the haptoglobin-hemoglobin complex (GO: 0031838) and the
in the training dataset, with blue spots indicating down-regulated genes
Gs between control and AAA groups. Samples from AAA patients are
s with increased expression levels are marked by red blocks, and blue
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FIGURE 2

Functional enrichment profiling of DEGs. (A) The DO enrichment analysis is illustrated using a bubble diagram, highlighting the top 20 significantly
enriched gene entries. (B) Bubble plots are used to display the KEGG enrichment analysis, featuring the top 20 pathways with the highest
significance. (C) Results of KEGG are depicted on circle charts. (D) GO analysis of characteristic gene modules.
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hemoglobin complex (GO: 0005833). The GO MF enrichment

analysis revealed significant DEGs enrichment in the integrin

binding (GO: 0005178), the haptoglobin binding (GO: 0031720),

and the peroxidase activity (GO: 0004601) among others

(Supplementary Table 8). All GO terms and pathways were

considered statistically significant with q-values <0.05. These

enriched pathways, especially IL-17 and TNF signaling, are key

to inflammatory processes that degrade the aortic wall, driving

AAA progression.
3.3 WCGNA analysis and identification of
significant modules

In this research, WGCNA was used to group genes closely

linked to AAA, and all samples were incorporated into the

analysis after screening (Supplementary Figure S2). To establish a

scale-free network, we used the soft threshold method and

determined the optimal threshold of 9 based on the R2 = 0.9

criterion (Figure 3A). Subsequently, we performed modular

analysis on the resulting network and merged modules according
Frontiers in Cardiovascular Medicine 05
to the cutoff value, ultimately identifying 5 biologically significant

co-expression modules (Figure 3B). Furthermore, a significant

positive correlation (cor) is observed between the MEturquoise

module and AAA (cor=0.48, p = 6e-06) (Figure 3C). The final

selection included 9 genes from the MEturquoise module, which

had cor.MM values higher than 0.8 and cor.GS values above 0.5,

marking them as targeted genes. We overlapped genes acquired

from WGCNA and 72 DEGs and obtained 7 candidate genes for

AAA (Figure 3D).
3.4 Selection of notable genes

In Figure 4A, the LASSO regression method identifies 4 genes

initially extracted from the differentially expressed AAA

genes. Next, the SVM-RFE algorithm identified a set of 7 genes

(Figure 4B). Following this, the RF algorithm identified seven

genes with an importance score exceeding 2 (Figure 4C). The

results from these 3 methods were then combined using a Venn

diagram, ultimately yielding 4 overlapping genes, specifically

MRAP2, PPP1R14A, PLN and TENT5B (Figure 4D).
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FIGURE 3

WGCNA analysis applied to AAA. (A) Gene correlations best match scale-free topology when β is set to 9 in soft-threshold analysis. (B) Using average
linkage clustering, the gene dendrogram shows module assignments from dynamic tree cutting below. (C) Relationship analysis between identified
modules and AAA. (D) Overlap of AAA DEGs and feature genes presented in a Venn diagram through WGCNA.

FIGURE 4

Identifying key genes using machine learning techniques. (A) LASSO regression analysis. (B) Feature selection using the SVM-RFE method. (C) RF
algorithm application. (D) Venn diagram representing the shared genes across the 3 approaches.

Xie et al. 10.3389/fcvm.2024.1497170
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3.5 Validation of feature genes

MRAP2, PPP1R14A, PLN and TENT5B were found to be

significantly less expressed in AAA patients than in the control

group in the training dataset (p < 0.001) (Figures 5A–D). Next,

we validated these genes using the GSE7084 dataset, which also

showed reduced expression in AAA patients. A marked decline

in MRAP2 expression was identified in AAA samples compared

to controls (p < 0.001) (Figure 5E). In the same way, PPP1R14A

expression was notably diminished in AAA samples (p < 0.001)

(Figure 5F). PLN expression also showed a notable decrease in

AAA samples relative to the comparator group (p < 0.001)

(Figure 5G). However, the gene TENT5B was missing in the

validation set (GSE7084), likely due to temporal and

technological differences. Moreover, MRAP2, PPP1R14A, and

PLN were also singled out as feature genes for more in-depth study.
3.6 Diagnostic efficacy of feature genes

The ROC analysis in the training group demonstrated that

MRAP2, PPP1R14A, PLN, and TENT5B could efficiently

discriminate AAA from controls, with AUCs of 0.911 (95% CI:

0.843–0.965) for MRAP2 (Figure 6A), 0.873 (95% CI: 0.792–0.937)

for PPP1R14A (Figure 6B), 0.864 (95% CI: 0.751–0.952) for PLN

(Figure 6C), and 0.895 (95% CI: 0.813–0.961) for TENT5B

(Figure 6D). However, the gene TENT5B was missing in the

validation set (GSE7084). In the validation group, the ROC curves

demonstrated that these genes, MRAP2, PPP1R14A, and PLN, had

a high predictive capacity for AAA, as shown by AUC values

above 85% (Figures 6E–G), indicating strong diagnostic ability.
FIGURE 5

Box plot depicting the differential expression of key genes between AAA a
dataset. (E–G) Feature gene expression in the validation dataset. Significanc
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3.7 Immune infiltration analysis

Immune infiltration disparities between AAA patients and

healthy controls were further analyzed in the study via ssGSEA

analysis. Figure 7A revealed how 28 immune cells were

distributed within the training group. The infiltration levels of

type 2 T helper cell (Th2), type 1 T helper cell (Th1), T follicular

helper cell (Tfh), neutrophil, memory B cell, Myeloid-Derived

Suppressor Cell (MDSC), mast cell, immature B cell, effector

memory CD8 T cell, effector memory CD4 T cell, central

memory CD8 T cell, central memory CD4 T cell, activated

CD8 T cell, activated CD4 T cell and activated B cell were

notably higher in AAA samples. On the other hand, CD56dim

natural killer (NK) cell infiltration in AAA samples showed a

marked reduction (Figure 7B). In our research, we analyzed the

correlation between the genes MRAP2, PLN, and PPP1R14A and

various types of immune cells (Figure 7C). MRAP2, PLN, and

PPP1R14A were positive associated with immature dendritic cell

(DC) and were negatively correlated with monocyte, MDSC,

immature B cell, effector memory CD4 T cell, central memory

CD4 T cell, activated DC, activated CD8 T cell, activated CD4 T

cell and activated B cell.
4 Discussion

AAAs pose a significant threat to health and well-being. The

pathophysiological process of AAA involves a series of complex

molecular and cellular events, including changes in the

biomechanics of the vessel wall, thrombosis, apoptosis,

extracellular matrix degradation, inflammatory responses, and
nd control groups. (A–D) Feature genes’ expression within the training
e levels: *p < 0.05, **p < 0.01, and ***p < 0.001.
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FIGURE 6

ROC curve analysis of feature genes. (A–D) The feature genes in the training dataset underwent ROC curve analysis. (E–G) The feature genes in the
validation dataset underwent ROC curve evaluation.

FIGURE 7

ssGSEA immune infiltration related to AAA. (A) Heatmap visualizing the differences in the distribution patterns of 28 immune cell populations per
sample. (B) Variations in immune cell infiltration levels between AAA and normal control tissues. (C) The relationship between immune cell
infiltration and MRAP2, PLN, and PPP1R14A is analyzed, with significance thresholds indicated as *p < 0.05, **p < 0.01, and ***p < 0.001.
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vascular aging. These factors interact with each other, collectively

contributing to the onset and progression of AAA. Despite a

continuous stream of research on the subject, the exact causes of

AAA remain not fully understood.

Although the advancement in surgical treatments, the risk of

complications and mortality remains high. Understanding the

underlying causes and progression of AAA is essential for

developing more effective diagnostic and therapeutic approaches.

While surgery is a crucial component of treatment, there is a

pressing need for targeted interventions to prevent AAA

development and improve outcomes. In this study, we integrated

differential analysis with WGCNA to identify key genes, followed

by the application of LASSO, SVM-RFE, and RF to filter

potential genes. We then conducted functional and immune

analyses on the selected targets. These biomarkers have the

potential to enhance disease diagnosis, guide therapy selection,

and predict treatment response.

In the present study, the GSE47472 and GSE57691 datasets

were downloaded from the GEO database and integrated to

generate a training dataset, which included 63 samples from

AAA patients and 18 from healthy controls. We identified 72

DEGs in total, with an equal distribution of upregulated and

downregulated genes. As per the GO and KEGG enrichment

analysis outcomes, DEGs are mainly implicated in mononuclear

cell differentiation, T cell activation, and IL-17 and TNF

signaling pathways. These results align with prior studies (28),

which have well-documented the critical roles of immune system

dysregulation and inflammation in AAA progression. The

diseases enriched by the DEGs, as shown by DO enrichment,

were largely associated with pre-eclampsia, primary

immunodeficiency disease, head and neck carcinoma, cervical

cancer, aortic aneurysm and so on. Although some diseases are

not directly related to AAA, the analysis highlights shared

pathological mechanisms, particularly those related to immune

system dysregulation and chronic inflammation (29, 30).

WGCNA has been successfully applied in earlier research to

explore the links between genomic modules and clinical

attributes, leading to the discovery of key genes associated with

specific trait (31). We performed WGCNA to discover gene

modules with correlated expression related to AAA.

Subsequently, 4 feature genes were identified by finding the

overlap between the genes discovered through WGCNA and

the DEGs.

The deep integration of machine learning and bioinformatics

has unlocked new opportunities for identifying key feature genes

and predicting disease states. LASSO makes the model sparse by

selecting the most important genes, which helps prevent

overfitting and enhances both interpretability and generalizability

(32). SVM-RFE recursively optimizes feature selection,

performing well on small sample datasets and capturing complex

nonlinear relationships between genes (33). RF is advantageous

due to its high feature importance assessment capability, allowing

it to handle nonlinear relationships in gene expression data while

effectively reducing the impact of noise (34). Leveraging the

complementary strengths of these methods, I combined LASSO,

SVM-RFE, and RF to discover characteristic genes linked to AAA.
Frontiers in Cardiovascular Medicine 09
Then, we applied 3 different machine learning methods to filter

the co-expressed genes, identifying 4 candidate genes (MRAP2,

PPP1R14A, PLN, TENT5B) for AAA. The GSE7084 dataset was

used to confirm the expression levels of the four genes. Several

factors may explain the absence of the TENT5B gene in the

GSE7084 dataset. It is likely due to the fact that the validation

and test datasets were generated on different platforms and the

validation dataset being collected earlier than the test dataset

(35). Moreover, TENT5B, also known as FAM46, was discovered

after the compilation of the GSE7084 dataset (36). This

chronological discrepancy provides a reasonable explanation for

its absence from the dataset. The remaining three genes

(MRAP2, PPP1R14A, PLN) exhibited a significant reduction in

expression in AAA tissues, which was consistently observed in

the training dataset. Additionally, by performing ROC curve

analysis on MRAP2, PPP1R14A, and PLN, we determined that

each of them have outstanding diagnostic performance.

MRAP2 regulates energy balance and appetite through

melanocortin receptors, particularly MC4R, affecting food intake

and body weight. Mutations in MRAP2 are linked to obesity and

metabolic disorders (37). PPP1R14A produces a protein that

inhibits protein phosphatase 1, a key enzyme in muscle

contraction and cell division, especially important in smooth

muscle function (38). PLN regulates calcium uptake in cardiac

muscle cells by inhibiting SERCA, and its phosphorylation allows

proper heart muscle relaxation (39). Current research has not

clearly demonstrated a direct association between the MRAP2,

PPP1R14A, and PLN genes with AAA. Obesity and metabolic

disorders may be risk factors for AAA, with MRAP2 regulating

appetite and energy balance, potentially indirectly affecting AAA-

related risk factors such as hypertension and atherosclerosis

(40, 41). PPP1R14A regulates smooth muscle contraction, which is

fundamental to the structure of arterial walls. Dysfunction in

smooth muscle may impact the structural integrity and elasticity of

arterial walls, potentially contributing to AAA (4). PLN is

primarily associated with heart disease, but abnormalities in

calcium regulation could affect smooth muscle function in arterial

walls, thereby indirectly influencing the risk of AAA (42). Future

research will likely focus more on these potential connections.

The progression of AAA is marked by an overactivation and

impairment of immune cells, which contribute to the worsening

of the disease. Gaining deeper insight into the mechanisms

controlling immune cell activation in AAA will offer valuable

targets for treatment strategies. Previous studies (43) have only

analyzed the recruitment of 22 immune cell types within AAA,

whereas our ssGSEA analysis provided a more comprehensive

evaluation of the recruitment of 28 immune cell varieties,

revealing the complexity of the immune microenvironment in

AAA. The results show that AAA samples had distinctly higher

levels of 15 immune cell types, such as Th2, Tfh, MDSC, mast

cells, among others.

The irregular activation of immune cells, including CD8 T

cells, CD4 T cells, and B cells, is a hallmark of AAA pathology.

By secreting inflammatory molecules and regulating immune

reactions, these cells speed up the degradation of the aortic wall

(44). Tfh, a key subgroup of CD4 T cells, are fundamental in
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triggering germinal center formation and aiding B cell survival,

differentiation, and growth. Studies show that Tfh cells may

directly impact AAA through mechanisms related to

inflammation (13). Similarly, Th2 cells contribute by producing

IL-4 and IL-5, which induce vascular smooth muscle cell

apoptosis and weaken the aortic wall. They also promote

eosinophil recruitment and drive the degradation of elastin and

collagen, accelerating aneurysm progression (45). Mast cells are

initiators of the inflammatory response in AAA, and their

activation drives the progression of the disease (46). Their

activation releases proteolytic enzymes such as tryptase and

chymase, which degrade elastin and collagen, contributing to

tissue remodeling and further weakening the aortic wall (47).

MDSCs facilitate the development of AAA through the IL-3-

ICOSL-ICOS signaling axis (48). Our results also show the

significant reduction in CD56dim NK cells indicates a

diminished innate immune surveillance capacity, which may

impair the body’s ability to regulate abnormal cellular activities

within the aneurysm. Immune cells gather in significant numbers

at the AAA site, suggesting that the body has triggered a

complex immune response that accelerates the disease’s

progression (49, 50). Our findings largely align with previous

research. However, in contrast to earlier studies, we did not find

marked variations in the levels of DCs, NK cells, and Th17 cells

between the two groups. These differences may be ascribed to

variations in the datasets employed or potential data imbalances

in the prior research.

The correlation of genes such as MRAP2, PLN, and PPP1R14A

with various immune cells further suggests that these genes might

modulate immune cell function, influencing the chronic

inflammatory environment in AAA. The initiation and

progression of AAA rely equally on both innate and adaptive

immune responses (51). The results indicate that various

immune cells are closely related to AAA, directly demonstrating

the widespread activation of the immune system within

aneurysmal tissue. This imbalance between heightened adaptive

immunity and reduced innate regulation could be key to

understanding the disease progression of AAA and identifying

potential therapeutic strategies.

Despite utilizing various bioinformatics techniques to identify

feature genes, several important limitations must be

acknowledged. First and foremost, the challenge of acquiring

abdominal aorta specimens could restrict the potential clinical

applications of this diagnostic model. Secondly, with a limited

sample size, the reliability of the results was somewhat

compromised, pointing to the need for a larger sample. Thirdly,

this research utilized data from publicly available databases,

which somewhat limited our ability to obtain more clinically

pertinent data. The range of patient demographics and clinical

features may have affected the analysis outcomes, while

environmental factors could also compromise the accuracy of the

susceptibility gene-based diagnostic model. Last but not least the

feature genes and related immune cells identified in this study

hold potential value in the diagnosis and treatment of AAA, but

further validation is required.
Frontiers in Cardiovascular Medicine 10
5 Conclusion

MRAP2, PLN, and PPP1R14A were identified as feature genes

in AAA. These genes are linked to immune cell activity,

contributing to the inflammatory microenvironment that

drives AAA progression. These findings highlight potential

targets for developing risk predictors and immune-based

therapies for AAA.
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