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Identification of mitophagy-
related key genes and their
correlation with immune
cell infiltration in acute
myocardial infarction via
bioinformatics analysis
Zulong Sheng*, Rui Zhang, Zhenjun Ji, Zhuyuan Liu and
Yaqing Zhou

Department of Cardiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
Background: Acute myocardial infarction (AMI), a subset of acute coronary
syndrome, remains the major cause of mortality worldwide. Mitochondrial
dysfunction is critically involved in AMI progression, and mitophagy plays a
vital role in eliminating damaged mitochondria. This study aimed to explore
mitophagy-related biomarkers and their potential molecular basis in AMI.
Methods: AMI datasets (GSE24519 and GSE34198) from the Gene Expression
Omnibus database were combined and the batch effects were removed.
Differentially expressed genes (DEGs) in AMI were selected, intersected with
mitophagy-related genes for mitophagy-related DEGs (MRDEGs), and then
subjected to enrichment analyses. Next, the MRDEGs were screened using
machine learning methods (logistic regression analysis, RandomForest, least
absolute shrinkage and selection operator) to construct a diagnostic risk
model and select the key genes in AMI. The diagnostic efficacy of the model
was evaluated using a nomogram. Moreover, the infiltration patterns of
different immune cells in two risk groups were compared. We also explored
the interactions between the key genes themselves or with miRNAs/
transcription factors (TFs) and drug compounds and visualized the protein
structure of the key genes. Finally, we explored and validated the expression of
key genes in plasma samples of patients with an AMI and healthy individuals.
Results:We screened 28 MRDEGs in AMI. Based on machine learning methods, 12
key genes were screened for the diagnostic risk model, including AGPS, CA2, CAT,
LTA4H, MYO9B, PRDX6, PYGB, SIRT3, TFEB, TOM1, UBA52, and UBB. The
nomogram further revealed the accuracy of the model for AMI diagnosis.
Moreover, we found a lower abundance of immune cells such as gamma delta
T and natural killer cells in the high-risk group, and the expression of key genes
showed a significant correlation with immune infiltration levels in both groups.
Finally, 64 miRNA–mRNA pairs, 75 TF–mRNA pairs, 119 RNA-binding protein–
mRNA pairs, and 32 drug–mRNA pairs were obtained in the interaction networks.
Conclusions: In total, 12 key MRDEGs were identified and a risk model was
constructed for AMI diagnosis. The findings of this study might provide novel
biomarkers for improving the detection of AMI.
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FIGURE 1

The workflow of this study.
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1 Introduction

Acute myocardial infarction (AMI) is a major cause of

hospitalization and death across the world, with an increasing

incidence annually (1). According to the Report on

Cardiovascular Health and Diseases in China, there were over

one million hospitalized patients with an AMI in 2022, and the

in-hospital mortality was 4.3% (2). As a serious coronary heart

syndrome, AMI can cause life-threatening symptoms such as

sudden cardiac death and cardiogenic shock (3, 4). In the past

decades, myocardial reperfusion, especially percutaneous

coronary intervention, and new thrombolytic drugs have

significantly improved the survival of patients with an AMI (5).

However, these therapies can induce ischemia–reperfusion injury

and other pathologies, and the incidence of heart failure has still

increased annually since their introduction (6). Effective and

reliable methods for the early detection of AMI are still not

available (7, 8). Exploration of effective biomarkers for the

accurate prediction of AMI is the key to the prevention and

management of AMI.

Mitochondria constitute approximately 30% of total

cardiomyocyte volume. Apart from producing adenosine

triphosphate (ATP) via oxidative phosphorylation, mitochondria

are also responsible for cellular reactive oxygen species (ROS)

production (9). Damage to mitochondria can cause excessive

production of ROS and lead to oxidative stress, cell injury, and cell

death, as well as inflammatory responses and immune cell

activation, contributing to the pathological processes of

cardiovascular diseases (10, 11). Mitochondrial dysfunction is a

crucial driver of heart injury in ischemic heart disease, thus

exploring strategies to maintain mitochondrial homeostasis is of

vital significance for intervention in cardiovascular diseases.

Mitophagy is a selective and specialized autophagic pathway that

regulates mitochondrial quality and quantity by removing or

degrading dysfunctional or redundant mitochondria and is essential

for maintaining mitochondrial and cellular homeostasis (12–14).

Studies have revealed the pivotal role of mitophagy in heart

diseases, including myocardial ischemia, by removing

malfunctioning mitochondria, thus alleviating oxidative stress,

improving cell survival, and mitigating heart injury (15–17).

Additionally, AMI is associated with immune cell infiltration in

the acute and reparative phases, while autophagy has been

found to regulate the immune system by mediating

mitochondrial homeostasis (18). In AMI, mitophagy is activated

via multiple signaling such as the Parkin- and receptor-

mediated pathways and the Ulk1/Rab9/Rip1/Drp1 pathway (19).

Mitophagy-related genes (MRGs) have been revealed to regulate

this physiological process and their dysregulation affects AMI

progression, suggesting their roles as potential targets for AMI

prevention and treatment (19–21). However, mitophagy-related

biomarkers in AMI have not been fully elucidated. The

expression profile and relationship of MRGs in AMI remain

largely unknown.

Therefore, this study intended to identify mitophagy-related

key genes and evaluate their value for AMI diagnosis. We

analyzed the differentially expressed genes (DEGs) in AMI and
Frontiers in Cardiovascular Medicine 02
intersected these DEGs with mitophagy-related genes to find

mitophagy-related DEGs (MRDEGs). A risk model was

constructed using the MRDEGs via machine learning methods,

and a nomogram was used to assess the diagnostic accuracy of

the model. Moreover, the correlations between the key MRDEGs

with immune infiltration and relevant networks were explored.

Additionally, a transcription factor (TF)-miRNA network and a

protein-drug network for the key genes were constructed, which

might provide novel insight into the molecular basis of MRDEGs

involved in AMI.
2 Materials and methods

2.1 Data acquisition and pre-processing

Human blood gene expression profiling datasets (GSE24519

and GSE34198) were downloaded from the Gene Expression

Omnibus (GEO) database (22) using the “GEOquery” R package

(23). The GSE24519 bioarray dataset included 34 AMI blood

samples and 4 normal blood samples from the GPL2895

platform. The GSE34198 dataset included 49 AMI blood samples

and 48 normal samples from the GPL6102 platform. The

information from the two datasets is shown in Supplementary

Table 1. The workflow of our study is shown in Figure 1.
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1501608
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Sheng et al. 10.3389/fcvm.2024.1501608
2.2 MRDEGs in AMI

The GeneCards database (https://www.genecards.org/) was

used to screen MRGs using “Mitophagy” as the search term, and

the screening criteria of “Protein Coding” and “Relevance score”

>1. A total of 1,592 MRGs were obtained. In addition, we also

obtained nine MRGs from previous literature. Finally, 1,593

MRGs were obtained after removing duplicates.

Before analyzing the DEGs, two GEO datasets (GSE24519 and

GSE34198) were combined and debatched using the “sva”

R package (24). To assess the biological variability between

samples and verify the effects of debatching, principal

component analysis (PCA) was performed. PCA is a commonly

used method for dimensionality reduction, extracting the

principle components from the high-dimensional data and

retaining the trends and patterns of the original data (25). Next,

the DEGs between the AMI samples and control samples were

obtained with the criteria of |logFC|>0 and p < 0.05 using the

“limma” R package (26). The collected DEGs were intersected

with the MRGs to obtain the MRDEGs in AMI. The results of

the differential expression analysis were visualized in a volcano

plot and a heatmap using the “ggplot2” (27) and “pheatmap”

R packages. The group comparison chart showing the expression

pattern of MRDEGs in the control and AMI groups was

produced using the “ggplot2” R package. Genes with statistically

significant expression in AMI were selected for subsequent

analyses. Spearman’s correlation analysis determined the

expression correlation between MRDEGs. A chromosome

localization map of MRDEGs was visualized using the “RCircos”

R package (28).
2.3 Functional enrichment analyses of
MRDEGs

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were conducted

for the MRDEGs using the “clusterProfiler” R package (29) with

a false discovery rate (FDR) value (qvalue) <0.05 and p.adj

<0.05 using Benjamini–Hochberg (BH) as the p-value

correction method.
2.4 Gene set enrichment analysis

To analyze the differences in biological processes (BPs)

between AMI samples and normal samples, the

“c2.cgp.v2022.1.Hs.symbols.gmt [Chemical and Genetic

Perturbations] (3399)” reference geneset was downloaded from

the MSigDB database (http://www.gsea-msigdb.org/gsea/msigdb/)

(30, 31). Based on the gene expression profiling, we conducted

the enrichment analysis using the “clusterProfiler” R package

with the criteria of p.adj <0.05 and FDR value (qvalue) <0.05,

with BH as the p-value correction method.
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2.5 Selection of key genes and risk model
construction via machine learning

To construct a diagnostic model for AMI, a logistic regression

analysis of the association between the MRDEGs and AMI was

performed, and the MRDEGs were screened using the criteria of

p < 0.05. The results were visualized using a forest plot.

RandomForest (RF) is an algorithm that integrates multiple

decision trees based on ensemble learning. The “randomForest”

package (32, 33) was used to construct the risk model based on

the MRDEG expression in the AMI datasets, under the

conditions of set.seed (150) and ntree = 2,000. MeanDecreaseGini

refers to the average reduction of the Gini coefficient. The Gini

coefficient represents the impurity of the node, and

MeanDecreaseGini represents the average decrease in the

impurity of the variable separating nodes of all trees and

indicates the importance of the variables to our grouping. Ten-

fold cross-validation was then performed five times and the

number of variables were selected based on the cross-validation

curve. The key variables were selected based on the cross-

validation and the MeanDecreaseGini value.

Least Absolute Shrinkage and Selection Operator (LASSO) is a

dimensionality reduction method for selecting optimized variables.

Based on the LASSO regression, some coefficients were reduced to

zero, so only variables with non-zero regression coefficients were

selected for the construction of the risk model (34). LASSO

analysis of the MRDEGs selected using random forest was

performed using the “glmnet” R package (35). The LASSO risk

model was constructed and the LASSO risk score (RiskScore)

was calculated using the following formula:

RiskScore ¼
X

i

Coefficient (genei)�mRNA Expression (genei)

AMI patients were divided into a high- or low-risk group

based on the median RiskScore. MRDEGs selected using the

LASSO risk model were regarded as the key genes for the

following analysis.
2.6 Nomogram

The diagnostic performance of the key genes was evaluated

using a nomogram (36). On the basis of the LASSO results, a

nomogram was drawn using the “rms” R package to reveal the

relationship between the expression of the key MRDEGs and

AMI diagnosis. A calibration curve was produced via calibration

analysis to evaluate the accuracy and the resolution of the

LASSO risk model on the basis of the key MRDEGs. A decision

curve analysis (DCA) diagram was drawn to evaluate the

accuracy and discrimination of the LASSO risk model using the

“ggDCA” R package.
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To quantitatively measure the semantic similarity of the

MRDEGs, the GO terms were compared using the “GOSemSim”

R package (37, 38), followed by the calculation of the geometric

mean of the MRDEGs at the three levels [BP, cellular component

(CC), and molecular function (MF)] to obtain the final score. The

MRDEGs were then sorted in descending order. The visualization

of the results was conducted using the “ggplot2” R package.
2.7 Gene set variation analysis

Gene set variation analysis (GSVA) is a non-parametric and

unsupervised method for evaluating the enrichment of a

transcriptome gene set (39). The “h.all.v7.4.symbols.gmt” geneset

in the MSigDB database was acquired, and GSVA was conducted

for all genes in the two risk groups. The difference in the

functional enrichment of genes between the two risk groups was

analyzed with the criteria of p < 0.05. Finally, the enriched

pathways via GSVA were displayed.
2.8 Analysis of immune cell infiltration

A single-sample gene set enrichment analysis (ssGSEA)

algorithm quantified the relative abundance of each gene in each

sample. The enrichment scores calculated by the ssGSEA analysis

represent the relative abundance of immune cell infiltration in

each sample based on the gene expression markers in the

immune cells. The calculation was conducted using the “GSVA”

R package (39). The immune cell infiltration patterns of the two

risk groups were visualized in a heatmap. In addition, the

correlation of infiltration levels of different immune cells and the

correlation between the levels of the key MRDEGs and

infiltration levels of immune cells in the two risk groups were

subject to Pearson correlation analysis under the threshold value

of p < 0.05, and data visualization was conducted using the

“ggplot2” R package.

The cell-type identification by estimating relative subsets of RNA

transcripts (CIBERSORT) deconvolution algorithm is also applied to

estimate the composition and abundance of different types of immune

cells in a cell mixture (40). The expression matrix data in AMI,

combined with the leukocyte signature matrix (LM22) feature gene

matrix, were used to screen the immune cells with enrichment

scores greater than zero. The comparison between the groups was

visualized using stacked bar charts. Additionally, the correlation

between infiltration levels of different immune cells, or between

infiltration levels and the levels of the key MRDEGs in the two risk

groups were subject to Pearson correlation analysis using the

“ggplot2” R package to visualize the results.
2.9 Interaction network analysis of key
MRDEGs

The starBase database (version 3.0, https://rnasysu.com/encori/)

is a platform that displays the interactions between miRNA–
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ncRNA, miRNA–mRNA, ncRNA–RNA, and RNA–RNA based on

deep mining of high-throughput sequencing data from the RNA–

RNA interactome, CLIP-seq, and degradome sequencing

(degradome-seq) (41). MiRNAs that could potentially bind to the

key MRDEGs were screened using the starBase platform using the

criterion of pancancerNum >8. In additional, we screened the

potential RNA-binding proteins (RBPs) on the starBase platform

using the criterion of clusterNum >10.

The CHIPBase database (version 3.0, https://rna.sysu.edu.cn/

chipbase/) (42) shows combined base sequence matrixes and

binding sites according to DNA-binding protein ChIP-seq data

and predicts the transcriptional regulation of TFs on genes. The

potential TFs that could bind to the key genes were searched for

in the CHIPBase database using the criteria of >10 upstream and

downstream samples.

The Comparative Toxicogenomics Database (CTD, http://

ctdbase.org/) is a platform that links genes, chemicals,

phenotypes, diseases, and known toxicological information (43).

Drugs or small molecule compounds that could interact with the

key genes were predicted using the CTD with the criterion of

“Reference Count” >2.

The interaction networks between the key MRDEGs and

miRNAs, RBPs, TFs, and drugs were finally visualized via

Cytoscape software. The interaction among MRDEGs was also

explored using the STRING database (https://cn.string-db.org/)

(44), and the protein–protein interaction (PPI) network was

constructed using Cytoscape software (version 3.9.1).
2.10 Spatial protein structure of key genes

The Alphafold platform (45) has proposed that, even without a

homologous template, a protein’s structure can be predicted with

atomic precision based on a calculation, most of the known

proteins in Homo sapiens included. The protein structure of

each predicted key MRDEG on the Alphafold2 website was

downloaded and visualized.
2.11 Clinical sample collection

The blood samples were collected from 20 patients with an

AMI and healthy control individuals. The samples were

centrifuged at 3,000 rpm at 4°C for 10 min, and the plasma

sample was stored at −80°C until use. The study was conducted

following the principles in the Declaration of Helsinki, and

informed consent was obtained from all participants.
2.12 Real-time quantitative polymerase
chain reaction

Total RNA was extracted using Trizol reagent (Invitrogen,

USA), and reverse transcribed into cDNA using a Script High

Fidelity One Step RT-PCR Kit (Vazyme, China) following the

manufacturer’s instructions. A polymerase chain reaction (PCR)
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was then performed using SYBR Green Mix on an ABI 7500 Fast

Real-Time PCR system (Applied Biosystems, USA). The relative

expression of the genes was calculated using the 2−ΔΔCt method

with GAPDH as the internal control. The primer sequences were

as follows: AGPS-F: 5′- CGGGTTCTCTCTGGCCATC-3′,
AGPS-R: 5′-TCTTGCCGCTTCTTTGGGAT-3′; CA2-F: 5′-
CAAACACAACGGACCTGAG-3′, CA2-R: 5′-AGTGTCGATGT
CAACAGGG-3′; CAT-F: 5′-CTGTGAACTGTCCCTACCG-3′,
CAT-R: 5′-TAATTTGGAGCACCACCCT-3′; LTA4H-F: 5′-CT
CTACTCTCCTGGACTGC-3′, LTA4H-R: 5′-CATCTTCTTTGGC
AGTAATCCA -3′; MYO9B-F: 5′-TTCCAAAGAACCTACTGG
ACTC-3′, MYO9B-R: 5′- CAGTAGGGACTTGGTGGTG-3′; PR
DX6-F: 5′-GAGGACCATCTTGCCTGGAG-3′, PRDX6-R: 5′-
AAACACCACACGAGCTGTCA-3′; PYGB-F: 5′-CCATGACAG
GTTCAAGGTG-3′, PYGB-R: 5′-TTCTTGGTCCACTCCTTGG-
3′; SIRT3-F: 5′-AGGGACGATTATTAAAGGTGGA-3′, SIRT3-

R: 5′-TACATCCTGCAGGGAAAGC-3′; TFEB-F: 5′-AGCTCAC
AGATGCTGAGAG-3′, TFEB-R: 5′-TGTTGAACCTTCGTCTC
CT-3′; TOM1-F: 5′-TCAACCTCATCCAGTCCTG-3′, TOM1-R:

5′-GCAGGTCCTCATAGATGGT-3′; UBA52-F: 5′-AAACCATC
ACCCTTGAGGT-3′, UBA52-R: 5′-GTGGGATACCCTCCTTG
TC-3′; UBB-F: 5′-AGATGGCCGTACTCTTTCTG-3′, UBB-R:

5′-TGCATACCACCTCTCAGAC-3′; GAPDH-F: 5′-TCAAGATC
ATCAGCAATGCC-3′, GAPDH-R: 5′-CGATACCAAAGTTGTC
ATGGA-3′.
2.13 Statistical analysis

R software (V 4.2.3) was used for data processing and analyses.

Continuous variables are presented as the mean ± standard

deviation and compared by the Wilcoxon rank sum test between

the two groups, while the independent Student’s t-test evaluated

the statistical differences between the normally distributed

variables. The difference in multiple groups was compared using

the Kruskal–Wallis test. The comparison between categorical

variables was subject to the chi-square test or Fisher’s exact test.

Spearman’s or Pearson’s correlation analyses were used for the

correlation analyses. A value of p < 0.05 was regarded as the

threshold value.
3 Results

3.1 Screening of MRDEGs in AMI

Human AMI datasets (GSE24519 and GSE34198) were

combined and the batch effects were removed with the “sva”

R package. As revealed by the distribution boxplot and principal

component analysis, the batch effects of the samples in the two

datasets were eliminated (Figures 2A–D).

The DEGs in the AMI samples compared with normal samples

were screened using the criteria of |logFC| >0 and p <0.05. A total of

352 DEGs in AMI were obtained, including 192 upregulated DEGs

and 160 downregulated DEGs (Figure 3A). These DEGs were

intersected with the MRGs obtained from GeneCards and previous
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literature, and 34 MRDEGs were finally obtained. These were

AGPS, CA2, CAT, CHCHD3, CLINT1, DDX21, DSP, F13A1,

FLOT1, GABARAPL1, GFPT2, HPRT1, IGF2R, LTA4H, MYO9B,

NSUN2, PAPSS1, PIGK, PRDX6, PRKDC, PYGB, RAB7A, RFC1,

RPL11, SIRT3, SRP54, ST7, TFEB, TOM1, TOMM20, UBA52, UBB,

WDR12, and YWHAH. The expression profiles of these MRDEGs

in the AMI and control samples are shown in a heatmap

(Figure 3B). A group comparison of 34 MRDEGs between AMI

and control samples was then conducted, and 28 MRDEGs were

shown to be differentially expressed in AMI with statistical

significance, namely, AGPS, CA2, CAT, CHCHD3, CLINT1,

DDX21, F13A1, FLOT1, GABARAPL1, HPRT1, IGF2R, LTA4H,

MYO9B, NSUN2, PRDX6, PRKDC, PYGB, RAB7A, RFC1, RPL11,

SIRT3, TFEB, TOM1, TOMM20, UBA52, UBB, WDR12, and

YWHAH. TOM1 and UBB were extremely differentially expressed

in AMI (p < 0.001) (Figure 3C). We then analyzed the correlation

between the 28 MRDEGs using Spearman’s correlation analysis

(Figure 3D). The locations of the 28 MRDEGs on human

chromosomes were subsequently analyzed and annotated

accordingly (Figure 3E). These MRDEGs were distributed on most

chromosomes, among which chromosome 6 was the most

commonly distributed with four MRDEGs.
3.2 Functional enrichment analyses of
MRDEGs

To characterize the 28 MRDEGs, GO and KEGG enrichment

analyses were performed with p.adj <0.05 and FDR <0.05

(Figures 4A–D and Supplementary Table 2). According to the

GO enrichment analysis, the MRDEGs were significantly

enriched in various biological membranes such as mitochondrial

outer membrane, lysosomal membrane, organelle outer

membrane, and others in CC, and significantly enriched in

ubiquitin or ubiquitin-like protein ligase binding, protein tag,

and snoRNA binding in MF. The BP results were not shown due

to a lack of statistical significance. The KEGG analyses showed

that the MRDEGs were enriched in mitophagy-related pathways.

GSEA was applied to determine the difference in functional

enrichment pathways between the control and AMI groups

(Figure 5A and Supplementary Table 3). The results showed that

the GRAHAM Cml Dividing VS Normal Quiescent (Figure 5B),

LI Wilms Tumor Anaplastic (Figure 5C), BLANCO Melo

Bronchial Epithelial Cells Influenza A Del Ns1 Infection

(Figure 5D), SARRIO Epithelial Mesenchymal Transition

(Figure 5E), NAKAJIMA Eosinophil (Figure 5F), and LEONARD

Hypoxia (Figure 5G) pathways were differentially enriched

between the AMI and control groups.
3.3 Construction of the LASSO risk model
and the selection of the key genes

To construct an AMI risk model, we conducted a logistic

regression analysis with p <0.05 as the cutoff value, and the

expressions of the MRDEGs in AMI are shown in Figure 6A.
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FIGURE 2

Data collection and pre-processing. Box plot of the AMI datasets (A) before correction and (B) after collection. PCA plot of the AMI datasets (C) before
correction and (D) after collection. AMI, acute myocardial infarction; PCA, principal component analysis.
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A total of 27 key MRDEGs were screened and subjected to RF

analysis (Figure 6B). The error curve of the decision tree was

drawn with a seed of 150 and the number of decision trees as

2,000. The results showed that the error had leveled off when the

number of decision trees was 2,000. MeanDecreaseGini

represents the importance of the genes for our grouping

(Figure 6C). Next, we performed ten-fold cross-validation five

times to select the number of genes (Figure 6D). We found that

when the number of genes was 18, the error of the model was

relatively small and tended to be stable with the increase in the
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number of genes. In total, 18 MRDEGs were indicated to be

crucial for AMI diagnosis, namely AGPS, CA2, CAT, CHCHD3,

CLINT1, LTA4H, MYO9B, PRDX6, PRKDC, PYGB, SIRT3, TFEB,

TOM1, TOMM20, UBA52, UBB, WDR12, and YWHAH.

Furthermore, we conducted the LASSO regression analyses to

construct the LASSO risk model using the 18 selected MRDEGs,

and analysis data were output by drawing a diagram for the

LASSO regression model and a LASSO variable trajectory

diagram (Figures 6E,F). A total of 12 MRDEGs were included in

the LASSO risk model, namely AGPS, CA2, CAT, LTA4H,
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FIGURE 3

Selection of MRDEGs in AMI. (A) Volcano plot of the DEGs between the AMI group and control group. (B) Heatmap of 34 MRDEGs between the AMI
group and control group. (C) Group comparison of MRDEGs between the AMI group and control group. (D) Correlation heatmap of the 28 MRDEGs
using Spearman’s correlation analysis. (E) Chromosomal mapping of the 28 MRDEGs. AMI, acute myocardial infarction; DEGs, differentially expressed
genes; MRDEGs, mitophagy-related differentially expressed genes. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4

Functional enrichment analyses of the MRDEGs. (A) GO and KEGG enrichment analyses of the MRDEGs depicted in a bar graph. (B–D) Network
diagrams of GO and KEGG enrichment analyses of MRDEGs, respectively. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; MRDEGs, mitophagy-related differentially expressed genes.
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MYO9B, PRDX6, PYGB, SIRT3, TFEB, TOM1, UBA52, and UBB.

These 12 MRDEGs were selected as the key genes for our follow-

up study. In addition, we also divided the AMI patients to low-

and high-risk groups on the basis of the median risk score. The

calculation of risk score was conducted as follows:

RiskScore ¼ 1:331� AGPSþ 0:727� CA2þ 0:416� CAT

þ 0:596� LTA4H þ�0:743�MYO9Bþ 0:475

� PRDX6þ 0:69� PYGBþ 0:527� SIRT3

þ�0:119� TFEBþ�0:516� TOM1þ 1:739

� UBA52þ 0:748� UBB
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3.4 Performance of the key MRDEGs for
AMI diagnosis

To evaluate the diagnostic performance of the key genes

selected by the LASSO risk model for AMI, a logistic regression

diagnostic model and a nomogram were used to reveal the

contributions of the expression of the 12 selected MRDEGs to

AMI (Figure 7A). The results showed that SIRT3 expression level

significantly benefits AMI diagnosis, while TFEB showed the

lowest contribution to AMI diagnosis compared with the other

key genes. On the calibration curve, the solid line showed the

fitting of the optimal theoretical probability and the dashed line
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FIGURE 5

GSEA in the AMI datasets. (A) GSEA of the combined datasets between the AMI and control samples, including six main biological characteristics,
namely (B) GRAHAM Cml dividing vs normal quiescent, (C) LI Wilms Tumor Anaplastic, (D) BLANCO Melo Bronchial Epithelial Cells Influenza A Del
Ns1 Infection, (E) SARRIO Epithelial Mesenchymal Transition, (F) NAKAJIMA Eosinophil, and (G) LEONARD Hypoxia and other pathways. GSEA,
gene set enrichment analysis; AMI, acute myocardial infarction.
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showed the evaluation of probability predicted by the model in

AMI cases, and we found a favorable predictive effect of the

model when compared to the actual results (Figure 7B).

Subsequently, the decision curve analysis evaluated the efficacy of

this model for AMI diagnosis, which verified the benefit of the

model for AMI diagnosis (Figure 7C). We then performed the

functional similarity analyses of the 12 key MRDEGs, among

which UBB showed the highest functional similarity compared

with other MRDEGs, which suggested that UBB might play a key

role in AMI (Figure 7D).
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3.5 Gene set variation analysis based
on key genes

GSVA was used to explore the difference of the

h.all.v7.4.symbols.gmt gene set and four pathways exhibited

differential distribution between the two risk groups, including

adipogenesis, Myc targets, oxidative phosphorylation, and UV

response (Figure 8A and Supplementary Table 4). The group

comparison map showed the upregulation of these pathways in

the high-risk group compared to the low-risk group (Figure 8B).
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FIGURE 6

LASSO risk model construction and screening of key genes. (A) Forest plot of the 28 MRDEGs in the logistic regression model. (B) Plot of model
training error using the random forest algorithm. (C) Scatterplot of the random forest model based on analysis of the MeanDecreaseGini.
(D) Cross-validation error plot. (E) Diagnostic model plot of the LASSO regression model. (F) Variable trajectory plot of the LASSO regression
model. LASSO, least absolute shrinkage and selection operator. MRDEGs, mitophagy-related differentially expressed genes.
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FIGURE 7

Diagnostic ability of the key genes in AMI. (A) A nomogram of the key genes in the AMI LASSO risk diagnosis model. (B) Calibration curve of the key
genes in the LASSO risk diagnosis model. (C) DCA plot of the key genes of the LASSO risk diagnosis model. (D) Functional similarity analysis of the key
genes. LASSO, least absolute shrinkage and selection operator; AMI, acute myocardial infarction.
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3.6 Immune infiltration analysis

ssGSEA was conducted to explore the immune infiltration

patterns in the two risk groups in AMI by calculating the

infiltrating abundance of 28 types of immune cells. The results

revealed that the infiltration levels of immune cells such as gamma

delta T cells and natural killer (NK) cells showed a lower

proportion in the high-risk group compared with the low-risk

group (Figure 9A). The correlation between the infiltration levels

of different immune cells in the AMI samples was then analyzed

and presented. For example, the results showed that the infiltration

levels of natural killer cells were positively correlated with type 2

T helper cells (Th2 cells) and CD56dim natural killer cells, and

negatively correlated with macrophages and immature B cells. The

abundance of gamma delta T cells was positively correlated with

memory B cells and eosinophils, and negatively correlated with

central memory CD4 T cells. The abundance of memory B cells

was positively correlated with eosinophils, Mast cells, and
Frontiers in Cardiovascular Medicine 11
CD56dim natural killer cells, and negatively correlated with

plasmacytoid dendritic cells, CD56bright natural killer cells,

macrophages, immature B cells, and effector memory CD8 T cells

(Figure 9B). Furthermore, we found the expression of the 12

selected key genes was significantly correlated with the infiltration

level of 21 or 25 types of immune cells excluding gamma delta

T cells, CD56dim natural killer cells, myeloid-derived suppressor

cells (MDSCs), and activated B cells in the low-risk group, and

including all 25 types of immune cells in the high-risk group. For

example, the immune cell infiltration levels of activated CD4

T cells were negatively correlated with TFEB expression in the low-

risk AMI group (p < 0.05) (Figure 9C). In the high-risk AMI

group, for example, the infiltration level of activated B cells was

positively correlated with the expression of UBA52 (Figure 9D).

Furthermore, CIBERSORT was also applied to calculate the

infiltration levels of immune cells in the two risk groups. We

found the enrichment of 20 immune cells (abundance >0)

including B cells, T cells, plasma cells, NK cells, and others. As
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FIGURE 8

GSVA of enriched pathways in the high-risk and low-risk groups. (A) Heatmap and (B) group comparison diagram showing the difference in enriched
pathways in the high- and low-risk groups via GSVA. *p < 0.05, **p < 0.01, ***p < 0.001. GSVA, gene set variation analysis; AMI, acute
myocardial infarction.
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FIGURE 9

Analysis of immune cell infiltration in the high- and low-risk groups via ssGSEA. (A) Heatmap showing the difference in immune infiltration between
the high- and low-risk groups. (B) Correlation analysis of immune cell infiltration abundance in the AMI samples. Correlation between the infiltration
levels of immune cells and the expression of key genes in the (C) low-risk group and (D) the high-risk group. *p < 0.05; **p < 0.01; ***p < 0.001. AMI,
acute myocardial infarction; ssGSEA, single-sample GSEA.
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shown in Figure 10A, neutrophils, macrophages, NK cells, and

B cells were enriched in the AMI samples. Moreover, the

correlation heatmap visualized the relationships between the

infiltrating immune cells in the low- and high-risk groups

(Figures 10B,C). Linear regression analysis demonstrated a

remarkable correlation between key genes and infiltrating

immune cells in the low- and high-risk groups (Figures 10D,E).
3.7 Analysis of interaction networks for
key MRDEGs

We further delved into the potential regulatory mechanisms of

the 12 key MRDEGs. The starBase database predicted the miRNAs
Frontiers in Cardiovascular Medicine 13
that could possibly bind to the 12 MRDEGs. The mRNA–miRNA

interaction networks included 10 key genes (AGPS, CA2, CAT,

MYO9B, PRDX6, PYGB, SIRT3, TOM1, UBA52, and UBB) and

56 miRNAs, and 64 pairs of mRNA–miRNA interaction

relationships were contained in the network (Figure 11A).

CHIPBase database was used to search the TFs that could

potentially bind to the 12 key genes, and 35 TFs were screened,

with a total of 75 TF-mRNA interaction pairs (Figure 11B). In

addition, the starBase platform predicted the RBPs that could

bind to the key MRDEGs. The RBP–mRNA interaction network

was composed of eight key genes (AGPS, CAT, LTA4H, MYO9B,

PRDX6, and PYGB) and 60 RBPs, with 119 mRNA–RBP

interaction pairs (Figure 11C). We then predicted the drugs or

small molecule compounds with possible interactions with the 12
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FIGURE 10

Immune cell infiltration analysis of the AMI dataset samples via CIBERSORT. (A) Stacking diagram of immune cell infiltration between the high- and
low-risk groups. The correlation heatmap illustrating the correlations among infiltrating immune cells in (B) the low-risk group and (C) the high-risk
group. Linear regression analysis revealing a significant correlation between key genes and infiltrating immune cells in the (D) low- and (E) high-risk
groups. *p < 0.05, **p < 0.01, ***p < 0.001. AMI, acute myocardial infarction.
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FIGURE 11

Interaction network analysis of the key genes. (A) The mRNA–miRNA interaction network of the key genes and potential binding miRNAs predicted by
the starBase database. (B) The mRNA–TF interaction network of the key genes and potential TFs predicted by the CHIPBase database. (C) The mRNA–
RBP interaction network of the key genes and potential RBPs predicted by the starBase database. (D) The mRNA–drug interaction networks of the key
genes and potentially interacting molecular compounds as predicted by the CTD database. (E,F) The PPI network of the 12 key genes was constructed
using the STRING database and Cytoscape software. miRNA, microRNA; TF, transcription factor; RBP, RNA-binding protein; CTD, Comparative
Toxicogenomics Database; PPI, protein–protein interaction.

Sheng et al. 10.3389/fcvm.2024.1501608

Frontiers in Cardiovascular Medicine 15 frontiersin.org

https://doi.org/10.3389/fcvm.2024.1501608
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Sheng et al. 10.3389/fcvm.2024.1501608
key MRDEGs using the CTD database. The drug–mRNA

interaction network was constructed, which contained seven key

genes (AGPS, CA2, CAT, PYGB, TFEB, UBA52, and UBB) and

23 molecules, with a total of 32 drug–mRNA interaction

relationships (Figure 11D). Finally, the interaction among the 12

key genes was explored and a PPI network was constructed, and

genes such as PRDX6, CAT, UBA52, and UBB showed close

associations with other genes in the interaction network

(Figures 11E,F).
3.8 Spatial protein structures of 12 MRDEGs

The protein structures of the 12 key genes were analyzed

respectively, and visualized in Figures 12A–L. The confidence

score per residue (pLDDT) on the AlphaFold platform is

between 0 and 100. Regions in red were below 50 pLDDT and

might be isolated unstructured regions, with very low model
FIGURE 12

The spatial protein structures of the key genes. Protein structures of (A) AGPS
(I) TFEB, (J) TOM1, (K) UBA52, (L) and UBB on the AlphaFold website.
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confidence; while regions with a pLDDT between 50 and 70 were

marked yellow, and indicated the low confidence of model;

regions with a pLDDT between 70 and 90 were in light blue,

and model confidence was normal. A pLDDT above 90 (marked

in blue) indicated very high model confidence. The visualization

of the spatial protein structures of these key genes may provide

clues for exploring their biological function.
3.9 Validation of the expression of the 12
MRDEGs in AMI

Furthermore, we investigated the expression of the 12 key

MRDEGs in the plasma samples of patients with an AMI

(n = 20) and healthy control individuals (n = 20). The results of

the RT-qPCR analysis showed that the mRNA expression of

AGPS, CA2, CAT, LTA4H, PRDX6, PYGB, SIRT3, UBA52, and

UBB was downregulated in the AMI group compared with the
, (B) CA2, (C) CAT, (D) LTA4H, (E) MYO9B, (F) PRDX6, (G) PYGB, (H) SIRT3,
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controls, while the mRNA levels of MYO9B, TFEB, and TOM1

were upregulated in the patients with an AMI relative to the

controls (Figures 13A–L).
4 Discussion

Cardiovascular diseases lead to an estimated 17.9 million

deaths annually across the world, and more than four out of five

cardiovascular deaths are caused by an AMI and stroke (46).

Despite the improved prognosis due to advances in

anticoagulation, antiplatelet, thrombolytic, and interventional

therapies, the clinical outcomes are negatively affected by

complications such as cardiac ischemia/reperfusion and other

pathologies, and some patients still progress to heart failure.

Cardiac troponin I (cTnI) and cardiac troponin T (cTnT) are

commonly used diagnostic biomarkers for AMI. However, their

levels can be elevated in some other diseases, which limits their

diagnostic specificity (47). Therefore, understanding AMI
FIGURE 13

Validation of the expression of the key genes in the patients with an AMI and h
(A) AGPS, (B) CA2, (C) CAT, (D) LTA4H, (E) MYO9B, (F) PRDX6, (G) PYGB, (H
collected from patients with an AMI (n= 20) and healthy individuals (n
experiments. *p < 0.05; **p < 0.01; ***p < 0.001, unpaired t-test.
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heterogeneity and exploring promising novel biomarkers are of

vital significance to improve the diagnosis for timely treatment of

patients with an AMI.

AMI has been revealed to cause mitochondrial Ca2+ overload,

oxidative stress, and induce mitochondrial dysfunction and the

death of cardiomyocytes (10). Increasing evidence has shown

that mitophagy, as a response to acute tissue stress, is critically

involved in immunity and the pathogenesis of AMI (17).

Mitophagy can play a protective role against AMI by removing

damaged mitochondria and maintaining mitochondrial and

myocardial homeostasis (48). A recent study has identified five

mitophagy-related hub genes (SQSTM1, UBC, MFN2, ATG5, and

TOMM20) for AMI diagnosis using RandomForest and support

vector machine-recursive feature elimination (SVM-RFE)

algorithms (49). Wu et al. explored ferroptosis-related genes in

AMI and screened seven biomarkers for AMI diagnosis based on

ROC curves and experimental validation, including ALOX5,

CAMKK2, KDM6B, LAMP2, PTEN, PTGS2, and ULK1 (50). In

this study, we explored mitophagy-related key genes involved in
ealthy controls. RT-qPCR was performed to examine the mRNA levels of
) SIRT3, (I) TFEB, (J) TOM1, (K) UBA52, (L) and UBB in plasma samples
= 20). Data are shown as the mean ± SD from three independent
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AMI. We screened the DEGs in AMI using AMI datasets and

intersected the DEGs with mitophagy-related genes to obtain

MRDEGs in AMI. Functional enrichment analyses were then

performed for the selected MRDEGs to identify the biological

functions and enriched pathways. Through machine learning

methods including logistic regression analysis, RandomForest

analysis, and LASSO analysis, we identified 12 key genes for AMI

diagnosis. The diagnostic efficacy of the model in AMI was

validated by a nomogram. Furthermore, immune infiltration

analysis was conducted to reveal the immune landscape in two

risk groups of AMI patients. Additionally, we established

interaction networks of the key genes and analyzed their spatial

protein structures. The findings of our study might deepen our

understanding of the role of mitophagy in AMI pathogenesis and

provide novel mitophagy-related biomarkers for AMI diagnosis.

In our study, a total of 12 key genes (AGPS, CA2, CAT, LTA4H,

MYO9B, PRDX6, PYGB, SIRT3, TFEB, TOM1, UBA52, and UBB)

were selected based on the logistic regression analysis, random

forest, and LASSO algorithms. Some of the key genes have

previously been reported as protective or risk factors for patients

with an AMI, while their value as diagnostic biomarkers is rarely

reported. For example, CA2 is a critical target for the treatment

of myocardial infarction (51). LTA4H is an independent risk

factor for sudden cardiac death (52). SIRT3 upregulation is

related to autophagy activation and is a drug target to attenuate

mitochondrial dysfunction in myocardial infarction (53). TFEB

overexpression was demonstrated to alleviate cardiac remodeling

following infarction (54). PRDX6 protects from ventricular

remodeling post-infarction (55). In our study, we identified the

differential expression of these key genes compared with the

healthy controls, which was consistent with the previous studies.

The involvement of genes such as AGPS, MYO9B, PYGB, TOM1,

UBA52, and UBB in myocardial infarction is first reported in this

study. A LASSO risk model was generated, and AMI samples

were divided into high- and low-risk groups. The diagnosis value

of the 12 MRDEGs was evaluated using a nomogram, and the

diagnostic accuracy of the model was verified. SIRT3 was a

promising biomarker for AMI diagnosis. Previous studies have

demonstrated that SIRT3 acts as a protective factor against

ischemic heart injury, and might prevent myocardial injury by

targeting mitochondrial dysfunction (56, 57). Thus, SIRT3 is

suggested as a diagnostic biomarker and therapeutic target for

patients with an AMI.

Furthermore, the GSVA results showed that adipogenesis, Myc

targets, oxidative phosphorylation, and UV response were the four

hallmark pathways between the two risk groups, which was in line

with the previous findings that myocardial infarction is

accompanied by the regulation of adipogenesis and the

regulation of mitochondrial function contributes to preventing

myocardial fat deposition (58). In addition, oxidative stress

caused by dramatically increased ROS levels could promote

adipogenesis and affects mitochondrial function maintenance

(59), contributing to AMI progression. Myc is an increasingly

recognized biomarker in mitochondrial diseases. Studies have

revealed that Myc could drive the differentiation of adipocytes in

the heart and is increased following cardiac ischemia to induce
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adipogenesis (60). These findings imply that oxidative stress and

adipogenesis have a role in the pathogenesis of AMI in the high-

risk group. According to the GO functional enrichment analyses,

the MRDEGs were enriched in MFs such as ubiquitin or

ubiquitin-like protein ligase binding, which was consistent with

the previous findings that mitophagy eliminates dysfunctional or

redundant mitochondria via either ubiquitin-independent or

ubiquitin-dependent pathways (61). In addition, gene set

enrichment analysis was conducted and revealed that the

pathways related to transcriptional regulation of immune cell

activity and ischemic injury were differentially expressed between

the patients with an AMI and the control individuals, suggesting

the importance of modulating the immune system and targeting

ischemia in AMI.

Mitophagy is increasingly recognized as an effective way to

control the immune system by directly regulating mitochondrial

antigen presentation and immune cell homeostasis (18). Studies

have revealed that mitochondrial dysfunction in immune cells

can enhance the inflammatory response and suppress repair

following myocardial infarction (62). Thus, utilizing mitophagy

might provide novel therapeutic opportunities for AMI. In our

study, we found different immune cell infiltration patterns in the

high- and low-risk groups of AMI samples. Furthermore, we

revealed a significant correlation between the expression of the

key genes and the immune cell infiltration levels in the high- and

low-risk groups, which indicated that the key MRDEGs were

associated with the immune process in AMI.

The interaction networks of the key genes were also investigated.

MiRNAs, transcription factors, and RBPs are important regulators of

mRNA expression (63–65). The interaction networks among the key

MRDEGs themselves or with miRNAs, TFs, RBPs, and drug

compounds were generated. For example, miR-497-5p has been

revealed to contribute to heart failure following an MI (66). In this

study, we observed that miR-497-5p was predicted to regulate both

AGPS and PYGB, which were also downregulated in AMI and

might serve as targets of miR-497-5p in AMI. These findings

regarding the regulatory network of key genes might deepen our

understanding of the molecular basis of mitophagy in AMI

progression and therapy.

This study also had some limitations. First, we explored the key

mitophagy-related biomarkers in AMI based on publicly available

data, and their diagnostic value should be validated in other

datasets and using further experiments in the future. Second, the

potential mechanisms of the selected key genes in AMI require

further investigation. Third, although we have demonstrated the

difference in immune infiltration patterns between the two risk

groups, the difference in therapeutic response in the two risk

groups remains unclear. Future research is needed to elucidate

the potential mechanisms of the key genes for AMI diagnosis

and therapy.
5 Conclusions

In conclusion, we identified 12 key mitophagy-related

biomarkers in AMI and constructed a risk model for AMI
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diagnosis that had good performance. The association between

immune cell infiltration and different AMI risk groups was

explored, and mitophagy-related biomarkers were related to the

immune response in AMI patients, which might provide clues

for understanding the roles of MRGs in AMI. Future research is

also required to elucidate the molecular mechanisms of these key

MRDEGs in AMI.
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