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Effect of high-intensity
intermittent rehabilitation
training on physical function, gut
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percutaneous coronary
intervention in patients with
coronary heart disease
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Background: Postoperative rehabilitation exercise training after percutaneous
coronary intervention (PCI) is crucial for coronary heart disease (CHD) patients
in restoring health and preventing recurrence, including high-intensity interval
training (HIIT). However, the impact of HIIT on cardiopulmonary function, gut
microbiome and metabolite remains underexplored.
Methods: This study included 60 patients with CHD who underwent
percutaneous coronary intervention (PCI). Participants were divided into two
groups: 33 in the moderate-intensity continuous training (MCT) group and 27
in the high-intensity interval training (HIIT) group. We assessed difference
between two training in cardiopulmonary function, 6-minute walk test (6MWT)
performance, biochemical indicators, plasma metabolites, and gut microbiome
feature at baseline and after 3 months training. Furthermore, we analyzed
6MWT association to gut microbiome and metabolites with group differences.
Results: The 6MWT showed significantly greater improvement in the HIIT group
compared to the MCT group (P=0.0024). Both groups showed reductions in
low-density lipoprotein (LDL) levels and increases in peak oxygen uptake (VO2
peak) after training, but the HIIT group demonstrated a larger effect size in
these measures. Moreover, subgroup analysis revealed that patients with a
history of myocardial infarction (MI) in the HIIT group experienced a more
substantial increase in VO2 peak compared to the MCT group (P= 0.04). In
addition, we identified 29 gut microbial species and 30 plasma metabolites
that were differentially enriched between the two groups, with some showing
a significant impact on 6MWT performance.
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Conclusions: High-intensity interval training significantly improves 6MWT
performance and exercise tolerance in cardiac rehabilitation patients, particularly
enhancing VO2 peak in those with a history of MI. HIIT also appears to
modulate the gut microbiome, increasing the abundance of Clostridiales and
decreasing traumatic acid content, which may contribute to the observed
improvements in exercise tolerance.

KEYWORDS

gut microbiome, metabolite, high-intensity interval training, coronary heart disease,
moderate-intensity continuous training
Introduction

Coronary heart disease (CHD) is one of the leading causes of

mortality worldwide, affecting over 110 million people each year

and contributing to significant healthcare costs. In Europe alone,

CHD is responsible for approximately 1.78 million deaths

annually, while in the United States, it accounts for about 36% of

all deaths (1–4). Similarly, CHD is also the major cause of death

in China,the premature cardiovascular mortality rate will reach

11% by 2050 (5, 6).

Percutaneous coronary intervention (PCI) has emerged as a

primary treatment for CHD, significantly alleviating symptoms

and improving the quality of life for patients over the past few

decades (7, 8).

Postoperative rehabilitation following PCI is crucial for

restoring health and preventing recurrence, including

pharmacological management, lifestyle modifications, and

exercise rehabilitation. Some studies have shown that high-

intensity interval training (HIIT) can enhance physical function

after PCI (9, 10), others have demonstrated the benefits of

moderate-intensity continuous training (MCT) for postoperative

recovery (11, 12). However, the question of which exercise

regimen is more effective for postoperative rehabilitation remains

unanswered.

With advances in metabolomics and metagenomics, recent

research has highlighted the close relationship between the gut

microbiome, metabolites, and cardiovascular disease (13–17).

Moreover, exercise has been shown to influence the abundance

and metabolic capacity of the gut microbiome. For instance,

Donati et al. reported that high-intensity exercise induced

beneficial shifts in gut microbiome composition, promoting a

healthier microbiome (18). Similarly, Denou et al. and Sun et al.

found that HIIT increased gut microbiome diversity and

metabolic capacity (19, 20). Despite this, there is limited

knowledge about the diversity and composition of the gut

microbiome and the alterations in plasma metabolites in CHD

patients after PCI.

Given these findings, it is essential to investigate whether

exercise training after PCI can modulate the gut microbiome and

contribute to better postoperative outcomes. This study aims to

explore the effects of a 12-week HIIT and MCT regimen on

postoperative physical function, gut microbiome composition,

and plasma metabolites in CHD patients after PCI, and to

examine the role of specific gut microbiome and metabolites in
02
postoperative recovery. The results will provide a theoretical basis

for optimizing exercise regimens and considering gut

microbiome-targeted therapies in CHD rehabilitation.
Materials and methods

Study design and participants

This clinical trial (NCT06575569) is a prospective, randomized,

parallel, controlled study with blinded evaluation. It investigates the

effects of high-intensity interval training (HIIT) on short-term

cardiopulmonary rehabilitation, quality of life, and exercise

tolerance gut microbiome composition and plasma metabolite in

patients after percutaneous coronary intervention (PCI). A total

of 60 patients with coronary heart disease (CHD) were recruited

from the First Affiliated Hospital of Nanjing Medical University.

All participants provided informed consent, and the study was

approved by the Ethics Committee (2022-SR-425.A2).
Selection criteria

Inclusion criteria were as follows: (1) Patients with CHD

confirmed by coronary angiography, showing at least one

coronary vessel with a stenosis greater than 70%. (2) Age

between 18 and 70 years, with stable sinus rhythm. (3) Left

ventricular ejection fraction (LVEF) greater than 40%. (4)

Informed consent and voluntary participation.

Exclusion criteria included: (1) Severe organic cardiac or

pulmonary diseases. (2) Physical movement disorders such as

hemiplegia. (3) History of mental illness. (4) Uncontrolled

hypertension or hemodynamic instability. (5) Severe nephropathy

or peripheral artery disease. (6) Bone and joint diseases

unsuitable for exercise. (7) Uncontrolled endocrine diseases. (8)

Recent use of antibiotics or anti-diarrheal medications within the

last 3 months.
Study groups

We recruited 60 patients with more than 75% stenosis of major

coronary arteries who had undergone coronary angiography.

Participants were consecutively enrolled and randomly (random
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number table method) assigned to two groups: 27 patients (45.0%)

to the HIIT group, including 15 with myocardial infarction (MI)

and 12 without MI, and 33 patients (55.0%) to the moderate-

intensity continuous training (MCT) group, including 13 with

MI and 20 without MI. The median age of participants was 58

years, with 83% male. Baseline and post-intervention data were

collected, including fecal, plasma samples, serum samples,

cardiopulmonary function tests, 6-minute walk tests, and

biochemical indicators.
Cardiopulmonary function testing

Cardiopulmonary function was evaluated using a

cardiopulmonary exercise function tester (model Smax58ce-sp,

Nanjing, China). Patients sat on a stationary bicycle (model

XRCISE CYCLE MED, Germany), warmed up for 5 min, and

then rested for 3 min. They were fitted with monitoring devices

for blood pressure and ECG. The initial power was set to 5W,

with a rate of 10W/min, and patients were instructed to pedal at

50–60 rpm until symptoms such as dyspnea or chest pain

occurred, at which point the exercise was terminated, and the

peak power was recorded as the maximum exercise load.
Exercise intervention programs

HIIT Group: After 2 weeks of adaptive training without adverse

events, patients continued with intensive interval training under

specialist supervision for 12 weeks. The program consisted of 30–

40 min of exercise per session, including a 5-minute warm-up

and a 5-minute cool-down period. The main exercise included

four intervals of 4 min at 85%–95% of maximum heart rate (HR)

reserve, followed by 3 min at 50%–70% of maximum HR reserve.

This cycle was repeated four times. Patients were provided with

exercise logs and encouraged to exercise regularly, supported by

cardiovascular nurses who provided health education materials.

Subject maximum heart rate HRmax = 196.86−0.74 × age (21).

MCT Group: Patients in this group received routine

postoperative care and follow-up. After 2 weeks of adaptive

training, they participated in a 12-week exercise program

consisting of 30–40 min per session, with intensity at 70%–75%

of maximum HR reserve. Warm-up and cool-down periods

included stretching, flexibility exercises, and low to medium

intensity activities (50%–70% HR reserve). Patients were also

given exercise logs and received health education materials.
Metagenomic data generation and
preprocessing

Participants were provided with swab tube to collect faecal

samples both at baseline and follow-up for DNA sequencing and

analysis. Once participants collected their faecal samples, samples

were put into sealing bags with an ice pack to keep the samples

frozen during transport back to the lab. All samples were stored
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at −80°C until analysis in the lab. Fecal DNA isolation was

performed using the QIAamp Fast DNA Stool Mini Kit (Qiagen,

cat. 51604). After DNA extraction, fecal DNA was used for

library preparation, and whole-genome shotgun sequencing was

performed on the Illumina NovaSeq-6000 plat- form (RRID:

SCR_020150). From the raw metagenomic sequencing data, low-

quality reads were discarded by the sequencing facility, and reads

belonging to human contaminations were removed by mapping

the data to the reference genomes using Bowtie2 (RRID:SCR _

016368; v2.4.5). After filtering, on average, 54.8 million

(SD = 14.7 million) paired reads per sample were obtained for

subsequent analysis.
Microbial taxonomies

Microbial taxonomic profiles were generated using

MetaPhlAn4 (version 4.0.3). MetaPhlAn4 relies on nearly 5.1

million unique clade-specific marker genes identified from

approximately 1M reference genomes, allowing unambiguous

taxonomic assignments, accurate estimation of organismal

abundance, and species-level resolution for bacteria, arc haea,

eukaryotes, and viruses. 351 microbial species present in more

than 20% of the samples were included for further analyses.
Plasma untargeted metabolomics

2 ml of plasma was collected and stored at −80°C until analysis.

During extraction, plasma samples were thawed on ice, vortexed

and spun down. 20 mg plasma samples were mixed with 500 μl

of 80% methanol and vortexed three times for 1 min. Then

samples incubated at 4°C for 1 h to precipitate proteins and

subsequently centrifuged at 14,000 g for 15 min.

The untargeted metabolome analysis of plasma samples was

performed using an LC-MS/MS system comprising a

ThermoFisher Vanquish UHPLC system coupled with an

Orbitrap Q ExactiveTMHF mass spectrometer. The raw data files

generated by UHPLC-MS/MS were processed using Compound

Discoverer 3.1 (CD3.1, ThermoFisher) software for peak

alignment, peak picking, and quantitation of each metabolite.

The normalized data was used to predict the molecular formula

based on additive ions, molecular ion peaks, and fragment ions.

The identified peaks were matched with databases such as

mzCloud, mzVault, and MassList to obtain accurate qualitative

and relative quantitative results. In total, 763 metabolites were

identified in the analyses. Metabolite annotations were performed

using databases such as KEGG, HMDB, and LIPIDMaps.
Statistical analysis

All statistical tests were performed using R (version 4.3.2).

Patient characteristics were presented as medians (IQRs) or

frequencies (proportions) for continuous and categorical

variables, respectively. Group differences were assessed using the
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Wilcoxon rank-sum test for continuous variables and Pearson’s

chi-square or Fisher’s exact test for categorical variables.

Subgroup analyses were conducted to evaluate the effects of HIIT

on phenotypes, particularly in patients with preoperative

myocardial infarction. Separately, we used multivariable linear

regression models to examine gut microbiome or metabolites

(predictors) with phenotypes (outcomes), adjusting for age and

sex (outcomes = predictor+age + sex). Statistical significance was

defined as p < 0.05.
Results

In this study, we recruited 60 patients diagnosed with coronary

heart disease (CHD) via coronary angiography. The patients were

randomly divided into two groups: a moderate-intensity

continuous training (MCT) group (n = 33) and a high-intensity

interval training (HIIT) group (n = 27). The baseline

characteristics and clinical features of the participants are

summarized in Table 1. Patients in the HIIT group were younger

and more likely to be male, and other clinical features showed no

significant differences between the two groups at baseline.

To assess the impact of different postoperative exercise training

methods on recovery after PCI, we compared changes in peak

oxygen uptake (VO2peak), 6-minute walk test (6MWT)

performance, blood glucose levels, high-density lipoprotein

(HDL), low-density lipoprotein (LDL), and lipoprotein(a) levels

before and after the 3-month exercise intervention (Table 2).

After adjusting for gender and age, the 6MWT showed

significant improvement in the HIIT group (P = 0.0024).

Additionally, both HIIT and MCT positively influenced LDL

levels and VO2peak, with the HIIT group showing a greater

reduction in LDL and a greater improvement in VO2peak,

although the differences were not statistically significant.

In a subgroup analysis focusing on patients with myocardial

infarction (MI), VO2peak was significantly better in the HIIT

group compared to the MCT group (P = 0.04) after adjusting for

gender and age. Besides, the HIIT group demonstrated greater

reductions in LDL and improvements in 6MWT performance

compared to the MCT group on patients with MI, although

these differences were not statistically significant (Table 3).

Furthermore, we examined the effects of different exercise

training methods on gut microbiome feature and plasma

metabolites. Exercise training increases the relative abundance of

the butyrate-producing taxa. Butyrate is the SCFA produced by

the fermentation of dietary fiber bacteria. Butyrate, as the main

fuel of colon cells, can promote the proliferation of colonic

epithelial cells, promote the integrity of the intestinal barrier, and

regulate the host immune system and gene expression.The alpha

diversity at the species level showed no significant differences

between the exercise groups at both baseline and after 3 months

of training (Pbaseline = 0.16, P3−month = 0.55, Figure 1a). Principal

coordinate analysis (PCoA) of the gut microbiome profiles also

showed no significant shifts in microbiome composition between

the HIIT and MCT groups (P = 0.11, Figure 1b). Next, we

further tested group difference of the relative abundance of 351
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gut microbial species. Our results showed 29 species exhibited

significant differences between the groups after 3 months of

training, and they did not differ at baseline (Figure 1c,

Supplementary Table S1). These species included Actinomyces_

israelii, Alistipes_senegalensis, Anaerofustis_stercorihominis, Blautia_

caecimuris, Butyricimonas_sp_Marseille_P3923, vi Christensenella_

minuta, Clostridia_unclassified_SGB6276, Clostridiaceae_bacterium_

OM08_6BH, Clostridiaceae_unclassified_SGB4769, Clostridiales_

unclassified_SGB15145, Clostridium_sp_AM42_4, Coprobacillus_

cateniformis, Coprobacter_fastidiosus, Coprococcus_comes,

Coprococcus_eutactus, Dielma_fastidiosa, Dorea_sp_AF24_7LB,

Eggerthella_sinensis, Eggerthellaceae_bacterium, Enterocloster_

lavalensis, Faecalimonas_umbilicata, GGB3571_SGB4778, GGB9561_

SGB14972, GGB9699_SGB15216, GGB9758_SGB15368, Lachnospira_

pectinoschiza, Phocaeicola_dorei, Streptococcus_intermedius,

Streptococcus_rubneri Intestinal, with 16 of these belonging to

the Clostridiales order, which has been linked to exercise in

previous studies (22, 23).

Additionally, we identified 30 plasma metabolites that showed

significant differences between the groups after 3 months of

training, and not at baseline (Figure 2a, Supplementary

Table S2). For example, traumatic acid levels did not differ

between the two groups in baseline (P = 0.273), while they were

significantly lower in the HIIT group compared to the MCT

group after the 3-month intervention (P = 0.019, Figure 2b).

To determine whether these gut microbiome changes or

metabolite alterations influenced postoperative rehabilitation

outcomes, we conducted correlation analyses between the 29

identified microbial species, the 30 metabolites, and the 6MWT

performance (Supplementary Table S3, S4). After adjusting for

gender and age, our results revealed that Actinomyces israelii,

Coprococcus eutactus, and Clostridiales unclassified SGB15145,

and traumatic acid significantly impacted 6MWT performance,

suggesting that specific gut microbial species and metabolites

may influence exercise tolerance and rehabilitation outcomes

following PCI (Figure 3).
Discussion

Coronary heart disease (CHD) is one of the most common

chronic cardiovascular conditions. While percutaneous coronary

intervention (PCI) effectively improve myocardial perfusion and

alleviate clinical symptoms, it do not reverse the underlying

pathophysiological changes associated with the disease (24).

Exercise rehabilitation is increasingly recognized as a crucial

strategy for improving outcomes in patients with cardiovascular

disease (25–27). Researches have demonstrated that different

types of exercise training, including high-intensity interval

training (HIIT) and the moderate-intensity continuous training

(MCT), can improve postoperative rehabilitation of CHD

patients after PCI (28–30). A large number of certificates shown

that VO2 peak is known for future cardiovascular event and

mortality force predictor, even a small increase in VO2 peak

leads to all the risk of cause-related and cause-specific mortality

is greatly reduced (31–33).
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TABLE 1 Basic characteristics.

Variable Overall, N = 60a MCT, N = 33a HIIT, N= 27a p-valueb

Gender 0.001

Female 10 (17%) 10 (30%) 0 (0%)

Male 50 (83%) 23 (70%) 27 (100%)

Age(years) 58 (51, 63) 59 (55, 64) 51 (47, 59) 0.003

MI 0.2

No 32 (53%) 20 (61%) 12 (44%)

Yes 28 (47%) 13 (39%) 15 (56%)

Stent_vessel 0.9

LAD 27 (45%) 13 (39%) 14 (52%)

LAD and LCX 5 (8.3%) 2 (6.1%) 3 (11%)

LAD, LCX and RCA 2 (3.3%) 2 (6.1%) 0 (0%)

LAD and RCA 10 (17%) 5 (15%) 5 (19%)

LCX 3 (5.0%) 2 (6.1%) 1 (3.7%)

LCX and RCA 6 (10%) 4 (12%) 2 (7.4%)

RCA 7 (12%) 5 (15%) 2 (7.4%)

NT_PROBNP (pg/ml) 98 (60, 374) 170 (61, 410) 88 (60, 241) 0.2

Peak oxygen uptake (ml/kg/min) 13.5 (10.6, 15.9) 12.7 (10.1, 15.5) 14.5 (11.3, 18.0) 0.1

LVEF (%) 63.0 (60.8, 64.6) 63.0 (60.9, 65.2) 63.0 (60.8, 64.4) 0.7

LVIDs (mm) 32 (30, 34) 30 (29, 34) 32 (30, 35) 0.4

LVIDd (mm) 48 (45, 51) 48 (45, 51) 49 (45, 52) 0.3

LPWD (mm) 10.00 (9.00, 10.00) 10.00 (8.00, 10.00) 10.00 (10.00, 10.50) 0.084

TBIL (ummol/L) 12.2 (10.9, 14.5) 12.0 (9.9, 14.4) 12.3 (11.2, 15.4) 0.4

DBIL (ummol/L) 4.95 (3.65, 5.53) 4.90 (3.50, 6.00) 5.00 (3.75, 5.30) 0.8

r_GT (U/L) 20 (15, 26) 19 (15, 23) 22 (18, 29) 0.12

Creatinine (ummol/L) 72 (65, 82) 71 (64, 79) 75 (68, 85) 0.11

Urea (umol/L) 340 (286, 399) 339 (288, 384) 344 (267, 425) 0.5

Previous_history_hypertension >0.9

No 33 (55%) 18 (55%) 15 (56%)

Yes 27 (45%) 15 (45%) 12 (44%)

Previous_history_diabetes 0.4

No 53 (88%) 28 (85%) 25 (93%)

YES 7 (12%) 5 (15%) 2 (7.4%)

Previous_history_smoking 0.051

No 37 (62%) 24 (73%) 13 (48%)

Yes 23 (38%) 9 (27%) 14 (52%)

Family history -CHD 0.2

No 57 (95%) 30 (91%) 27 (100%)

Yes 3 (5.0%) 3 (9.1%) 0 (0%)

Previous_use_betablockers 0.4

No 53 (88%) 28 (85%) 25 (93%)

Yes 7 (12%) 5 (15%) 2 (7.4%)

SBP (mmHg) 124 (117, 137) 124 (120, 137) 123 (116, 136) 0.5

DBP (mmHg) 80 (72, 86) 80 (72, 87) 76 (72, 86) 0.5

Heart_rate (bpm) 75 (68, 82) 75 (68, 85) 75 (69, 78) 0.5

Dyslipidaemic Agents 0.7

Atorvastatin 5 (8.3%) 2 (6.1%) 3 (11%)

Atorvastatin and Ezetimibe 8 (13%) 3 (9.1%) 5 (19%)

Atorvastatin and Aliciubicin 1 (1.7%) 1 (3.0%) 0 (0%)

Rosuvastatin 13 (22%) 7 (21%) 6 (22%)

Rosuvastatin and Ezetimibe 33 (55%) 20 (61%) 13 (48%)

ACEI/ARB 0.3

No 31 (52%) 19 (58%) 12 (44%)

Yes 29 (48%) 14 (42%) 15 (56%)

Beta_blockers 0.7

No 27 (45%) 14 (42%) 13 (48%)

Yes 33 (55%) 19 (58%) 14 (52%)

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin-receptor blocker; MI, myocardial infarction; LAD, left ascending coronary artery; LCX, left circumflex coronary artery; RCA,

right coronary artery; LVEF, left ventricular ejection fraction; LVID,left ventricular internal diameter; LPWD, left ventricular posterior wall; TBIL, total bilirubin; DBIL, direct bilirubin; r-GT, R-

glutamyl transpeptidase; CHD, coronary heart disease; SBP, systolic blood pressure; DBP, diastolic blood pressure.
an (%); Median (IQR).
bFisher’s exact test; Wilcoxon rank sum test; Pearson’s Chi-squared test.
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TABLE 2 Phenotypic differences across all individuals.

Mean ± Sd MCT HIIT Δ p_wilcox Δ p_wilcoxa

Baseline 3-month Δ Baseline 3-month Δ
Steps_6minute (meter) 420.3 ± 63.7 507.9 ± 58.5 87.7 ± 26.8 469.4 ± 59.5 597 ± 48.7 127.6 ± 41.1 8.1 × 10-5 2.4 × 10-3

Initial_oxygen_uptake (ml/kg/min) 12.7 ± 3.5 18.9 ± 4.6 6.2 ± 4 14.5 ± 3.8 22.4 ± 3.6 7.8 ± 3.7 0.04 0.16

Initial_prob (%) 47.8 ± 12.7 67.8 ± 15.1 20 ± 12.1 49.2 ± 13.2 71.7 ± 10.6 22.5 ± 12.4 0.41 0.63

Glucose (mmol/L) 5.2 ± 1.6 5.7 ± 1.2 0.5 ± 1.9 5.1 ± 0.8 5.5 ± 1 0.3 ± 0.9 0.35 0.63

LDL (mmol/L) 2.1 ± 0.5 1.5 ± 0.4 -0.6 ± 0.6 2.6 ± 0.9 1.4 ± 0.4 -1.3 ± 1 3.7 × 10-3 0.1

HDL (mmol/L) 1 ± 0.2 1.1 ± 0.2 0.2 ± 0.2 1 ± 0.2 1.1 ± 0.1 0.1 ± 0.2 0.41 0.4

Lipoprotein_a (mg/L) 273.5 ± 318.3 329.3 ± 343.5 55.8 ± 129.7 292.7 ± 327.7 312.4 ± 317.6 19.8 ± 146.5 0.44 0.77

LDL, low density lipoprotein; HDL, high density lipoprotein; Initial_prob, Initial predicted percent value for cardiopulmonary test.
aadjusted for gender and age.

TABLE 3 Phenotypic differences in individuals with MI.

Mean ± Sd MCT HIIT Δ p_wilcox Δ p_wilcoxa

Baseline 3-month Δ Baseline 3-month Δ
Steps_6minute (meter) 416 ± 61.5 506.5 ± 60.4 90.5 ± 24.6 467.7 ± 60 594.1 ± 53.8 121.3 ± 40.8 0.02 0.06

Initial_oxygen_uptake (ml/kg/min) 12.1 ± 3 17.1 ± 3.4 4.9 ± 2.4 14.5 ± 3.5 22.5 ± 3.8 8.3 ± 4.2 0.02 0.04

Initial_prob (%) 44.6 ± 13.3 61.9 ± 14.8 17.3 ± 9.6 48.8 ± 11.5 72.6 ± 11 24.5 ± 13.9 0.17 0.24

Glucose (mmol/L) 5.7 ± 1.9 5.7 ± 1 0 ± 2.1 4.9 ± 0.6 5.3 ± 0.8 0.3 ± 0.8 0.61 0.68

LDL (mmol/L) 2 ± 0.4 1.4 ± 0.3 −0.6 ± 0.4 2.5 ± 0.9 1.4 ± 0.5 −1.1 ± 1 0.23 0.68

HDL (mmol/L) 0.9 ± 0.2 1.1 ± 0.2 0.3 ± 0.3 0.9 ± 0.2 1.1 ± 0.1 0.1 ± 0.2 0.26 0.29

Lipoprotein_a (mg/L) 387.8 ± 390.5 432.6 ± 430.6 44.9 ± 154.6 303.5 ± 339.6 304.8 ± 347.5 15.7 ± 176.2 0.87 0.89

LDL, low density lipoprotein; HDL, high density lipoprotein; Initial_prob, Initial predicted percent value for cardiopulmonary test.
aadjusted for gender and age.
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Our results suggested HIIT significantly enhanced key

cardiopulmonary indicators compared to MCT, including VO2

peak and 6-minute walk test performance in patients with CHD,

especially those with a history of myocardial infarction.

Postoperative rehabilitation exercise training improves endothelial

cell regeneration in injured vessels and reduces chronic

inflammation by increasing the number of vascular endothelial

progenitor cells (34–36). Schmid et al. (37) observed an increase

in endothelial progenitor cells following exercise, while other

research indicates that high-intensity interval training (HIIT)

significantly reduces white blood cell count, red blood cell count,

hemoglobin percentage, and hematocrit values, thereby

improving the inflammatory response in the vascular

endothelium (38). Additionally, HIIT has been shown to enhance

the responsiveness of smooth muscle cells (39). Kramann et al.

(40) and Evrard et al. (41) demonstrated that adventitial

fibroblast-like cells are functionally implicated in plaque ECM

production, and aerobic exercise may regulate fibroblast

inflammasome-mediated pyroptosis to inhibit atherogenesis (42).

Wang et al. (43) found that HIIT reduces the expression of

macrophages and M1 macrophages by lowering the mRNA levels

of inflammatory factors (TNF-α, IL-6, and MCP-1) in mice.

HIIT also has an effect on the gut microbiome of CHD patients

after PCI. Our study revealed that patients high-intensity interval

training enriches more beneficial bacteria compared to the

moderate-intensity continuous training after PCI. Specific gut

microbiomes improved 6MWT, including Coprococcus eutactus

and Clostridiales unclassified SGB15145 species. These gut
Frontiers in Cardiovascular Medicine 06
microbiome plays a role in regulating endothelial cells via toll-

like receptors (TLR 2, 4) to inhibit inflammatory markers by

reducing lipopolysaccharides (LPSs). Reducing systemic

inflammation can slow the progression of atherosclerosis, prevent

the formation of vulnerable areas, and inhibit immune system

activation (44–47). Research suggests that these gut microbiomes

can reduce leukocyte infiltration and modulate the immune

response (48–50). Furthermore, abnormal phenotypic switching

of VSMCs in vessels is markedly alleviated by these gut

microbiomes and its metabolite butyrate (49).

Traumatic acid, identified as a potential plasma biomarker for

sarcopenia, has been negatively associated with this condition.

Plasma traumatic acid concentrations show a significant decline

across groups, from elderly subjects with sarcopenia to those

without, and to younger adults (51). It is well established that

exercise tolerance is positively correlated with muscle mass, and

active exercise can increase muscle mass. Several studies have

concluded that the pathophysiology of sarcopenia is linked to the

production of pro-inflammatory cytokines, prostaglandins, and

chronic inflammation (52, 53). As a plant wound hormone,

traumatic acid is an intermediate in prostaglandin synthesis and

plays a crucial role in maintaining stable physiological functions

and regulating skeletal muscle (52, 54–56). Lower levels of

traumatic acid are associated with reduced muscle mass, strength,

and gait speed. This is consistent with our findings that HIIT

improved the 6-minute walking distance. We propose that

traumatic acid could be a potential marker for exercise

tolerance.This study discusses the influence of different intensity
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FIGURE 1

(a) The alpha diversity at the species level between the exercise groups at both baseline and after 3 months of training. (b) Principal coordinate analysis
(PCoA) of the gut microbiome profiles in microbiome composition between the HIIT and MCT groups. (c) 29 species between the groups after 3
months of training.
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exercise on the cardiopulmonary function of patients, and revealing

the exercise can change the intestinal microbial and metabolic

indicators, and preliminary discusses the reasons behind the

exercise can change the cardiopulmonary function, for the future

research provides some theoretical evidence of exercise and

cardiopulmonary function mechanism, and provide new ideas for

clinical improvement of cardiopulmonary function. In this

regard, further and more detailed studies on the specific

modifications produced by physical activity on the microbiota

composition could be useful to explore new approaches for the

treatment of metabolic and inflammatory diseases in which the

microbiota plays a fundamental role.

However, our study also has some limitations, including a small

sample size, short follow-up, and uneven gender distribution. With

a sample size of 60 participants, our study may lack sufficient

statistical power to detect subtle or small-effect changes in the

gut microbiome, limiting the robustness of our conclusions.

Future research with a larger sample size would improve

statistical power, enhance the reliability of results, and allow for

more definitive conclusions regarding the observed effects. The
Frontiers in Cardiovascular Medicine 07
follow-up period in our study was relatively short, which may

not fully capture the long-term effects of interventions on the gut

microbiome. Microbiome changes often require more extended

periods to stabilize and reveal meaningful trends. Thus, our

findings primarily reflect short-term responses and may not

predict long-term outcomes. Longer follow-up periods in future

studies would provide a more comprehensive understanding of

the sustained effects of the interventions on gut microbiome

composition and diversity. The study’s uneven gender

distribution, particularly the absence of female participants in the

HIIT group, introduces potential bias. Gender differences in both

physiological responses and microbiome composition have been

documented, and the lack of female representation in certain

groups limits the applicability of the findings to a mixed-gender

population. This imbalance may also mask or exaggerate gender-

specific effects, which could influence the overall conclusions. To

improve generalizability, future studies should ensure balanced

gender representation across all groups, allowing for a more

accurate assessment of the intervention’s effects across genders.

In summary, while our findings contribute valuable insights,
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FIGURE 2

(a) 30 plasma metabolites between the groups after 3 months of training. (b) Traumatic acid levels between the two groups in baseline and after the 3-
month intervention.

FIGURE 3

6 minite steps association to Actinomyces israelii, Coprococcus eutactus, and Clostridiales unclassified SGB15145 adjusted gender and age using liner
model.
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these limitations should be considered when interpreting the

results. Future studies addressing these issues will provide a more

comprehensive and generalizable understanding of the gut

microbiome’s response to the studied interventions.
Conclusion

In summary, our study suggested that high-intensity interval

training (HIIT) can significantly improve the 6-minute walk test

(6MWT) and exercise tolerance compared to the moderate-

intensity continuous training (MCT) in patients after

percutaneous coronary intervention (PCI). Additionally, HIIT

also positively impacts gut microbiome and plasma metabolite,

some of which may help improve 6MWT and VO2peak, like

Coprococcus eutactus and Clostridiales unclassified SGB15145

species. The results provide a theoretical basis for optimizing

exercise regimens and considering gut microbiome-targeted

therapies in CHD rehabilitation.
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