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Cardiometabolic diseases (CMD) are leading causes of death and
disability worldwide, with complex pathophysiological mechanisms in which
inflammation plays a crucial role. This review aims to elucidate the molecular
and cellular mechanisms within the inflammatory microenvironment of
atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis,
oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines
such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate
immune cells contributing to foam cell formation and arterial wall thickening.
Hypertension involves the activation of the renin-angiotensin system (RAS)
alongside oxidative stress-induced endothelial dysfunction and local
inflammation mediated by T cells. In diabetic cardiomyopathy, a high-glucose
environment leads to the accumulation of advanced glycation end products
(AGEs), activating the Receptor for Advanced Glycation Endproducts (RAGE)
and triggering inflammatory responses that further damage cardiac and
microvascular function. In summary, the inflammatory mechanisms in different
types of metabolic cardiovascular diseases are complex and diverse;
understanding these mechanisms deeply will aid in developing more effective
individualized treatment strategies.
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Introduction

Cardiometabolic diseases (CMD) represent a complex cluster of disorders, primarily

encompassing atherosclerosis, coronary artery disease, and hypertension, all of which

are intricately linked to metabolic dysfunction (1–3). These diseases are frequently

associated with metabolic syndrome (MetS), a condition characterized by a constellation

of symptoms including central obesity, insulin resistance, hyperglycemia, dyslipidemia,

and hypertension (4–7). As societies continue to urbanize and modernize, the adverse

lifestyle practices have become increasingly prevalent, leading to a rising incidence of

cardiometabolic diseases globally (8–11). According to a large number of relevant
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literature findings, CMD have become one of the leading causes of

mortality worldwide, exerting a considerable burden on

individuals, families, and public health systems (12, 13). Given

that these diseases often progress insidiously, with many patients

remaining asymptomatic until severe cardiovascular events such

as myocardial infarction, heart failure, or stroke occur, there is

an urgent need to unravel the underlying mechanisms of CMD

to develop effective preventive and therapeutic strategies that can

improve patient outcomes and quality of life (14, 15).

The inflammatory microenvironment plays a critical role in the

onset and progression of CMD (16–18). A growing body of research

indicates that chronic low-grade inflammation in the cardiovascular

system is a pivotal driver of the onset and progression of these

diseases (19, 20). Inflammation impacts cardiovascular health

through its regulation of processes such as lipid uptake, glucose

metabolism, endothelial function, and vascular remodeling

(21–24). During the development of atherosclerosis, inflammatory

cells such as macrophages, T cells, and mast cells, along with

various inflammatory mediators they secrete—including cytokines

and chemokines—contribute to the formation and progression of

arterial plaques (25, 26). These cells and molecules form a

complex inflammatory network that affects multiple aspects of the

cardiovascular system, not only causing direct damage to blood

vessel walls but also modulating metabolic functions and activating

immune responses (17, 26). Despite substantial evidence

supporting the critical role of inflammation in CMD, the precise

mechanisms by which it is initiated and sustained, and how it

interacts with metabolic processes to accelerate disease progression,

remain inadequately understood and warrant further investigation.

To address these challenges, this review aims to systematically

explore the molecular mechanisms and cellular foundations

underpinning the development and maintenance of the

inflammatory microenvironment in cardiometabolic diseases. By

synthesizing current research advancements, the article seeks to

elucidate the specific roles of various inflammatory mediators in

CMD, and how their interplay with metabolic abnormalities

influences disease progression and outcomes. As our understanding

of these pathological mechanisms deepens, we hope to lay a robust

scientific foundation for future therapeutic innovations designed to

improve the prognosis of patients with cardiometabolic diseases and

alleviate the global health burden they pose. By enhancing our

understanding of the pathological mechanisms at play, we aim to

pave the way for the development of innovative interventions that

improve patient outcomes and reduce the global burden of

cardiometabolic diseases.
Metabolic factors are involved in the
occurrence and development of
cardiovascular diseases

Cardiovascular disease (CVD) is the leading cause of death

worldwide and is characterized by atherosclerosis, endothelial

dysfunction, inflammation, and oxidative stress (27–30). Metabolic

factors play a crucial role in the onset and progression of CVD,

primarily including hyperlipidemia, hyperglycemia, and insulin
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resistance (31). Mendelian randomization (MR) is an analytical

method that employs genetic variants as instrumental variables and

can be widely used to study the causal associations between

exposures and outcomes (32–35). In a MR study, MetS exhibits

significant causal relationships with various CVD (36). In clinical

trials, patients with MetS have a significantly higher risk of

developing CVD compared to those without MetS (37). In patients

with hypopituitarism, the high prevalence of MetS is primarily

linked to abdominal fat deposition, dyslipidemia, and insulin

resistance, with growth hormone replacement therapy showing

benefits for lipid profiles and body fat but potentially transiently

worsening glucose tolerance (38).
Recent molecular and cellular
mechanisms linking inflammation and
metabolism

The interplay between inflammation and metabolism is crucial

for physiological balance and disease pathogenesis, including type 2

diabetes (T2D), cardiovascular diseases, obesity, and autoimmune

disorders (39). Silent Information Regulator 2 Ortholog 1

(SIRT1) regulates inflammation through various pathways,

including affecting metabolic pathways, inflammatory cells and

mediators, as well as key signaling pathways, thus playing a

significant role in metabolic and immune diseases and serving as

a potential therapeutic target (40). Research indicates that small

dense low-density lipoprotein-cholesterol (sdLDL-C) and

remnant-like particle cholesterol (RLP-C) induce inflammation

by activating immune cells, while hyperlipidemia exacerbates

inflammatory responses, leading to dysregulated lipid metabolism

and alterations in lipoprotein profiles (41). These insights

provide new directions for developing targeted therapies for

chronic inflammatory and metabolic disorders, potentially

leading to more precise and effective treatments.

By targeting these key biological processes, it is possible to develop

more precise and effective interventions to improve patient health in

the future. Therefore, an in-depth understanding of the mechanisms

underlying the formation of the inflammatory microenvironment is

essential for disease prevention and treatment. This review will focus

on the formation mechanism of the inflammatory microenvironment

of atherosclerosis, hypertension and diabetic cardiomyopathy from

the perspective of molecular and cellular levels, focusing on the

specific factors affecting the inflammatory response.
Inflammatory mechanisms in
atherosclerosis

Initial events and the role of oxidized
Low-density lipoprotein

Atherosclerosis is a chronic inflammatory disease characterized

by the formation of lipid deposits, immune cell infiltration, and

fibrosis in the arterial wall, eventually leading to atherosclerotic

plaque formation (42, 43). One of the initial events in
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atherosclerosis is the accumulation of LDL in the subendothelial

space of arteries (44, 45). In these regions, LDL becomes

susceptible to oxidation by ROS, forming ox-LDL (46). ox-LDL

not only exhibits pro-inflammatory properties but also activates

various immune responses (46). ox-LDL binds to scavenger

receptors on endothelial cell (EC), macrophages, and smooth

muscle cells, triggering intracellular signaling pathways that

initiate inflammatory responses (47). For instance, ox-LDL

activates the Nuclear Factor kappa-light-chain-enhancer of

activated B cells (NF-κB) pathway, promoting the expression of

various pro-inflammatory cytokines and chemokines like IL-6

and TNF-α (47, 48). Ox-LDL has different effects on vascular

smooth muscle cells (VSMCs) and ECs (49, 50). In ECs, ox-LDL

activates the NF-κB pathway through Toll-like receptors (TLRs)

and other receptors, increasing the expression of pro-

inflammatory cytokines such as IL-6, Interleukin-8 (IL-8), and

Monocyte Chemoattractant Protein-1 (MCP-1), which attract

monocytes to the vessel wall and promote plaque formation (51).

In VSMCs, ox-LDL also activates the NF-κB pathway but

primarily promotes cell proliferation and migration, influencing

plaque stability or instability (52). Additionally, the phenotypic

switch of VSMCs from a contractile to a synthetic phenotype is

associated with NF-κB activation (52).
Inflammation amplification and immune
cell recruitment

The presence of ox-LDL and lipid accumulation in the arterial

wall further induces the overproduction of pro-inflammatory

cytokines (such as IL-6 and TNF-α) and chemokines, such as

Chemokine (C-C motif) ligand 2 (CCL2) and Chemokine (C-X-

C motif) ligand 10 (CXCL10) (53, 54). These molecules bind to

their respective receptors on EC and immune cells, further

amplifying the inflammatory response. IL-6 and TNF-α activate

the Janus Kinase—Signal Transducer and Activator of

Transcription (JAK-STAT) and NF-κB signaling pathways,

promoting inflammatory responses and stimulating the

proliferation and migration of vascular wall cells (55, 56).

Chemokines (like CCL2) recruit monocytes to the arterial wall,

enhancing the local immune response (57). CCL2 binds to the

Chemokine (C-C motif) receptor 2 (CCR2) on monocytes,

facilitating their adhesion to the endothelium and subsequent

infiltration into the vascular wall (57). As atherosclerosis

progresses, the accumulation of cholesterol and its

metabolites triggers additional inflammatory responses by

activating the NLR family, pyrin domain containing 3 (NLRP3)

inflammasome, a key intracellular inflammatory signaling

complex (58). Activation of the NLRP3 inflammasome leads to

Cysteine-aspartic protease 1 (caspase-1) activation, which

promotes the conversion of Pro-Interleukin-1β (pro-IL-1β) and

Pro-Interleukin-18 (pro-IL-18) into their mature forms,

Interleukin-1β (IL-1β) and Interleukin-18 (IL-18) (59, 60).

These cytokines further amplify local inflammation and induce

apoptosis and necrosis of vascular wall cells (60). Activation of

the inflammasome is also associated with plaque instability,
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potentially leading to plaque rupture and thrombosis, which can

trigger acute cardiovascular events such as myocardial infarction

and stroke (61).
Endothelial cell activation and foam cell
formation

In the early stages of atherosclerosis, EC become activated due

to various risk factors such as ox-LDL, hyperglycemia, and

hypertension (62). Activated EC express various adhesion

molecules, including intercellular adhesion molecule-1

(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and

Endothelial Selectin (E-selectin) (63). The upregulation of

ICAM-1 and VCAM-1 is a hallmark of endothelial cell

activation (64). These molecules bind to integrins on

monocytes, promoting firm adhesion of monocytes to the

endothelium and their subsequent infiltration into the

subendothelial space (65, 66). Endothelial cell activation also

involves the release of pro-inflammatory cytokines like IL-1β

and TNF-α, which further enhance endothelial adhesion and

permeability, promoting monocyte migration (67). Monocytes

that adhere to activated EC, guided by chemokines, cross the

endothelial layer and infiltrate the intima (68). Once in the

intima, monocytes differentiate into macrophages, which then

phagocytose large amounts of ox-LDL through scavenger

receptors (47). These macrophages, laden with excessive lipid,

transform into foam cells (69). The formation of foam cells is a

hallmark of atherosclerotic plaques and involves the release of

various inflammatory mediators, further promoting the

development of local inflammation (69, 70). The apoptosis and

death of foam cells contribute to plaque instability by releasing

large amounts of lipids and cellular debris, increasing the risk

of plaque rupture and thrombosis (71).
Smooth muscle cell phenotypic switching
and changes in plaque stability

In the progression of atherosclerosis, smooth muscle cells

undergo proliferation and a shift towards a synthetic phenotype

under the influence of inflammatory mediators (72). This process

involves a phenotypic change that enables smooth muscle cells to

produce extracellular matrix components such as collagen,

forming fibrous caps and thickening the arterial intima (73).

Smooth muscle cell proliferation and synthetic phenotype

transformation play a critical role in stabilizing plaques (74).

However, as the disease progresses, the apoptosis and necrosis of

smooth muscle cells can lead to the rupture of fibrous caps,

increasing plaque instability and the risk of cardiovascular

events (75). In summary, the inflammatory mechanisms of

atherosclerosis involve complex interactions among multiple cells

and molecules. In Figure 1, the molecules and cells involved in

the inflammatory microenvironment of atherosclerosis can be

seen. The oxidation of LDL, the release of pro-inflammatory

cytokines, the role of cholesterol metabolites, and the dynamic
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FIGURE 1

Diagram of inflammatory mechanisms in cardiometabolic diseases. LDL, low-density lipoprotein; ox-LDL, oxidized low-density lipoprotein; TNF-α,
Tumor Necrosis Factor-alpha; IL-6, Interleukin-6; ICAM-1, intercellular adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; NF-κB,
Nuclear Factor kappa-light-chain-enhancer of activated B cells; NLRP3, NLR family, pyrin domain containing 3; pro-IL-1β, Pro-Interleukin-1β; pro-
IL-18, Pro-Interleukin-18; IL-1β, Interleukin-1β; IL-18, Interleukin-18; ROS, reactive oxygen species; ACE, Angiotensin-Converting Enzyme; AGEs,
advanced glycation end products; RAGE, Receptor for Advanced Glycation Endproducts. This figure was created with BioRender.com.
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changes in EC, monocytes, and smooth muscle cells all contribute

significantly to the progression of this disease.
Inflammatory mechanisms in
hypertension

Role of RAS in hypertension-related
inflammation

Hypertension is a complex chronic disease with

pathophysiological mechanisms involving multiple aspects, with

inflammatory mechanisms receiving increasing attention in

recent years (76, 77). Inflammation not only serves as a

consequence of hypertension but also plays a crucial role in its

progression and maintenance. The Renin-Angiotensin System

(RAS) plays a pivotal role in the pathogenesis and progression of

hypertension, with Angiotensin II (Ang II) being the key effector

molecule (78). Ang II, by binding to the Angiotensin II type 1

receptor (AT1R), activates multiple signaling pathways, leading to

vasoconstriction, sodium and water retention, and increased
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blood pressure (79). These inflammatory mediators further

attract and activate immune cells, leading to vascular wall

inflammation. ROS, including superoxide, hydrogen peroxide,

and hydroxyl radicals, play significant roles in the inflammatory

mechanisms of hypertension (80). Ang II increases ROS

production via the nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase system, which can directly damage vascular

EC and activate inflammatory signaling pathways (81). In

hypertensive patients, the activity of antioxidant enzymes such as

superoxide dismutase (SOD) and glutathione peroxidase (GPx)

often decreases, leading to weakened ROS clearance and further

exacerbating oxidative stress and inflammation (82).
Oxidative stress and endothelial damage

Endothelial dysfunction is a critical aspect of inflammatory

mechanisms in hypertension (83). Upon exposure to Ang II, ROS,

and other stimuli, EC release molecules like endothelin-1 (ET-1)

and VCAM-1, which promote vasoconstriction and increase

leukocyte adhesion and infiltration, leading to vascular wall
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inflammation (84, 85). Under normal conditions, EC produce nitric

oxide (NO) through endothelial nitric oxide synthase (eNOS),

which has vasodilatory and anti-inflammatory effects (86, 87).

However, in hypertension, eNOS activity declines, reducing NO

production, resulting in vasoconstriction and heightened

inflammation (88). The immune system plays a crucial role in the

inflammatory mechanisms of hypertension, with lymphocytes,

particularly T cells, being significantly involved (89). In

hypertensive patients and animal models, there is significant

infiltration of T cells around blood vessels and in renal tissues (90).

These T cells release cytokines such as interferon-γ (IFN-γ) and

interleukin-17 (IL-17), further promoting local inflammatory

responses (91). T Helper 1 (Th1) cells primarily secrete IFN-γ,

which activates macrophages and promotes inflammation; T Helper

17 (Th17) cells mainly secrete IL-17, which is involved in

neutrophil recruitment and activation (91, 92). These cytokines

work together to cause chronic inflammation in blood vessels and

kidneys, further maintaining and exacerbating hypertension.

The inflammatory mechanisms in hypertension are a complex

process involving multiple interactions at both molecular and

cellular levels. Figure 1 shows the molecules and cells involved in

the inflammatory microenvironment of hypertension. At the

molecular level, activation of the RAS, particularly the pro-

inflammatory effects of Ang II, and exacerbation of oxidative

stress, are crucial drivers of inflammation. At the cellular level,

endothelial dysfunction and the involvement of lymphocytes,

particularly T cells, further promote local and systemic

inflammatory responses. A deeper understanding of these

mechanisms not only elucidates the pathophysiological basis of

hypertension but also provides a theoretical foundation for

developing new anti-inflammatory therapeutic strategies.
Inflammatory mechanisms in diabetic
heart disease

Advanced glycation end products and
inflammation in diabetic cardiomyopathy

Diabetes is classified into three primary types: type 1, type 2,

and gestational diabetes (93–96). Diabetes is a long-term

condition associated with various complications (97–105).

Among these, diabetic cardiomyopathy (DCM) is a common and

severe complication, characterized by myocardial dysfunction,

cardiac remodeling, and heart failure (106). Inflammation plays a

crucial role in the initiation and progression of DCM (107). In a

hyperglycemic state, excess glucose can undergo non-enzymatic

reactions with proteins, lipids, or nucleic acids to form advanced

glycation end products (AGEs) (108). The formation of AGEs is

a significant trigger of chronic inflammation in diabetic patients

(109). In high glucose conditions, glucose reacts with proteins

and lipids through the Maillard reaction to form Schiff bases,

which then undergo Amadori rearrangement to produce stable

AGEs (110). AGEs bind to their specific receptor, the receptor

for advanced glycation end products (RAGE), and activate

various pro-inflammatory signaling pathways (111). RAGE, a
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member of the immunoglobulin superfamily, is widely expressed

in cardiomyocytes, EC, and macrophages (112). The binding of

AGEs to RAGE can initiate multiple pro-inflammatory signaling

cascades (113). Upon AGE-RAGE binding, the IκB kinase (IKK)

complex is activated, leading to the phosphorylation and

degradation of the inhibitory protein Inhibitor of κB alpha

(IκBα) (114). This releases NF-κB, enabling its translocation to

the nucleus and initiating the transcription of pro-inflammatory

genes such as TNF-α and IL-6 (114). The AGE-RAGE complex

can also activate the mitogen-activated protein kinase (MAPK)

pathway (115). These kinases promote the expression of

inflammatory factors and contribute to apoptosis (115).
Insulin resistance and oxidative stress in
diabetic cardiomyopathy

Insulin resistance, a hallmark of T2D, is closely associated with

inflammatory responses (116). Insulin resistance induces oxidative

stress, leading to increased production of ROS, which in turn

activates the expression of pro-inflammatory factors (117). In

insulin-resistant states, the activity of NADPH oxidase and the

mitochondrial electron transport chain increases, leading to

elevated ROS production (118). ROS can activate multiple

signaling pathways, including NF-κB and MAPK, promoting the

expression of pro-inflammatory cytokines such as TNF-α, IL-1β,

and IL-6, which further exacerbate myocardial inflammation and

damage (119). Myocardial cells are severely damaged under the

dual impact of high glucose toxicity and inflammatory factors

(120). A high glucose environment directly causes metabolic

disturbances in cardiomyocytes, including imbalances in glycolysis

and fatty acid oxidation, leading to energy metabolism disorders

and cell damage (121). Pro-inflammatory cytokines such as TNF-

α and IL-6 activate apoptotic signaling pathways, including the

Caspase family and B-cell Lymphoma 2 (Bcl-2) family, leading to

myocardial cell apoptosis (122). High glucose and AGEs can

activate EC through the NF-κB pathway (123). The cardiac

microvascular system in diabetic patients is severely affected by

inflammation, leading to coronary microcirculatory disorders,

which further exacerbate myocardial ischemia and injury (124). As

depicted in Figure 1, in diabetic cardiomyopathy, a high-glucose

environment induces the formation of AGEs, which activate pro-

inflammatory pathways through the RAGE. Additionally, insulin

resistance increases pro-inflammatory factors related to oxidative

stress. Myocardial cells are damaged, and microvascular

inflammation leads to coronary microcirculatory dysfunction,

exacerbating heart injury.
The role of gut microbiota in obesity-
related cardiovascular metabolic disorders

Obesity-related CMD are closely associated with chronic

low-grade inflammation (125). Key mechanisms include

inflammation in adipose tissue, insulin resistance, and cardiac

inflammation (126). Recent research has highlighted the role of
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gut microbiota in the inflammatory microenvironment of CMD

(127). Impaired gut barrier function, reduced production of

short-chain fatty acids (SCFAs), and increased generation of

microbial metabolites like trimethylamine N-oxide (TMAO) are

all linked to the development and progression of CMD (128,

129). Future research needs to further explore individual

variations in gut microbiota, interactions with the host immune

system, and potential interventions based on gut microbiota.
Systems biology integration of multi-omics
data to elucidate mechanisms of CMD
inflammatory microenvironment

From a systems biology perspective, integrating multi-omics data

can provide a comprehensive theoretical framework and data support

for elucidating the mechanisms underlying the formation of the

inflammatory microenvironment in CMD. Firstly, genomics

analysis can reveal genetic variations associated with CMD

inflammation and identify potential risk genes (130). Secondly,

proteomics data can elucidate the functions and interaction

networks of key proteins in the inflammatory microenvironment,

revealing the roles of proteins in signal transduction and functional

regulation (131). Simultaneously, metabolomics research can

capture the dynamic changes in metabolites during the

inflammatory process, revealing the critical roles of metabolic

pathways in inflammation regulation (132). This integrated analysis

not only helps to uncover the complex regulatory network of the

CMD inflammatory microenvironment but also provides a

theoretical foundation and experimental basis for developing

precision intervention strategies based on specific targets, thereby

promoting the advancement of CMD-related research to a

deeper level.
Conclusion

This review has explored the complex inflammatory mechanisms

in CMD diseases, including atherosclerosis, hypertension, and DCM.

These conditions involve intricate interactions among various

inflammatory factors, cell types, and signaling pathways. In

atherosclerosis, ox-LDL and cytokines like IL-6 and TNF-α drive

foam cell formation and arterial thickening. Hypertension involves

RAS activation, oxidative stress, and T cell-mediated inflammation.

DCM results from AGEs accumulation, RAGE activation, and

cardiac inflammation induced by high glucose levels. By

understanding these mechanisms, we can develop targeted

treatments that manage and potentially reverse disease progression.

Personalized strategies based on specific inflammatory pathways are
Frontiers in Cardiovascular Medicine 06
crucial for improving patient outcomes, and precision medicine

offers promising avenues to enhance the quality of life and

prognosis for individuals with these conditions.
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