
TYPE Original Research
PUBLISHED 14 March 2025
DOI 10.3389/fcvm.2025.1389402
EDITED BY

Jesus Lazaro,

University of Zaragoza, Spain

REVIEWED BY

J. S. Murguia,

Autonomous University of San Luis Potosí,

Mexico

Beatrice Cairo,

University of Milan, Italy

José Javier Reyes-Lagos,

Universidad Autónoma del Estado de México,

Mexico

*CORRESPONDENCE

Rubens Fazan

rfazan@usp.br

†These authors have contributed equally to

this work

RECEIVED 21 February 2024

ACCEPTED 03 March 2025

PUBLISHED 14 March 2025

CITATION

dos Santos RR, Marumo MB, Eckeli AL,

Salgado HC, Silva LEV, Tinós R and Fazan Jr R

(2025) The use of heart rate variability, oxygen

saturation, and anthropometric data with

machine learning to predict the presence and

severity of obstructive sleep apnea.

Front. Cardiovasc. Med. 12:1389402.

doi: 10.3389/fcvm.2025.1389402

COPYRIGHT

© 2025 dos Santos, Marumo, Eckeli, Salgado,
Silva, Tinós and Fazan. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Cardiovascular Medicine
The use of heart rate variability,
oxygen saturation, and
anthropometric data with
machine learning to predict the
presence and severity of
obstructive sleep apnea
Rafael Rodrigues dos Santos1, Matheo Bellini Marumo2,
Alan Luiz Eckeli3, Helio Cesar Salgado1,
Luiz Eduardo Virgílio Silva4, Renato Tinós2† and
Rubens Fazan Jr1*†

1Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão
Preto, Brazil, 2Department of Computing and Mathematics, Faculty of Philosophy, Sciences and Letters,
University of Sao Paulo, Ribeirão Preto, Brazil, 3Department of Neuroscience and Behavior Sciences,
Division of Neurology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirão Preto,
Brazil, 4Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia,
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Introduction: Obstructive sleep apnea (OSA) is a prevalent sleep disorder with a
high rate of undiagnosed patients, primarily due to the complexity of its
diagnosis made by polysomnography (PSG). Considering the severe
comorbidities associated with OSA, especially in the cardiovascular system, the
development of early screening tools for this disease is imperative. Heart rate
variability (HRV) is a simple and non-invasive approach used as a probe to
evaluate cardiac autonomic modulation, with a variety of newly developed
indices lacking studies with OSA patients.
Objectives: We aimed to evaluate numerous HRV indices, derived from linear
but mainly nonlinear indices, combined or not with oxygen saturation indices,
for detecting the presence and severity of OSA using machine learning models.
Methods: ECG waveforms were collected from 291 PSG recordings to calculate
34 HRV indices. Minimum oxygen saturation value during sleep (SatMin), the
percentage of total sleep time the patient spent with oxygen saturation below
90% (T90), and patient anthropometric data were also considered as inputs to
the models. The Apnea-Hypopnea Index (AHI) was used to categorize into
severity classes of OSA (normal, mild, moderate, severe) to train multiclass or
binary (normal-to-mild and moderate-to-severe) classification models, using
the Random Forest (RF) algorithm. Since the OSA severity groups were
unbalanced, we used the Synthetic Minority Over-sampling Technique
(SMOTE) to oversample the minority classes.
Results: Multiclass models achieved a mean area under the ROC curve (AUROC)
of 0.92 and 0.86 in classifying normal individuals and severe OSA patients,
respectively, when using all attributes. When the groups were dichotomized
into normal-to-mild OSA vs. moderate-to-severe OSA, an AUROC of 0.83 was
obtained. As revealed by RF, the importance of features indicates that all
feature modalities (HRV, SpO2, and anthropometric variables) contribute to the
top 10 ranks.
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Conclusion: The present study demonstrates the feasibility of using classification
models to detect the presence and severity of OSA using these indices. Our
findings have the potential to contribute to the development of rapid screening
tools aimed at assisting individuals affected by this condition, to expedite
diagnosis and initiate timely treatment.

KEYWORDS

obstructive sleep apnea, autonomic modulation of the heart, heart rate variability, oxygen
saturation, machine learning
Introduction

Obstructive sleep apnea (OSA) is the most prevalent sleep

disorder, characterized by repetitive events of partial and/or total

obstruction of the superior airway during sleep. These obstructive

events cause recurrent episodes of hypoxia and hypercapnia,

leading to marked physiological disturbances (1). The gold-

standard diagnostic method for OSA is polysomnography (PSG), a

comprehensive exam that simultaneously records multiple

physiological signals during sleep, enabling the analysis of sleep

stages and their disturbances (2, 3). The diagnosis and severity

assessment of OSA are determined using the Apnea-Hypopnea

Index (AHI), a quantitative measure based on the number of

apnea and hypopnea events per hour of total sleep time. This

index is calculated by clinical specialists who analyze PSG

recordings (4). Nonetheless, the time-consuming nature and

associated costs of PSG tests contribute to a substantial backlog of

subjects awaiting examination, leading to an increased likelihood

of underdiagnosis for OSA from individual to population (5). The

recent COVID-19 pandemic worsened this scenario, reducing the

number of PSG exams, mainly during lockdown periods (6).

It is well determined that OSA is associated with the

development of several comorbidities, especially the ones related

to the cardiovascular system. On the other hand, due to poor

sleeping, patients with OSA show a general decrease in the

quality of life and have an increased risk of being involved in

work and traffic accidents, putting their own and other lives in

danger (7–9). Since the diagnostic of OSA is a bottleneck in this

scenario, the development of new diagnostic techniques for OSA

is of utmost relevance.

An increasingly valuable tool in screening for cardiovascular

and systemic diseases is the examination of heart rate variability

(HRV). It is a non-invasive approach that evaluates time series of

cardiac intervals derived from the electrocardiogram and can

provide insights into the autonomic nervous system’s modulation

of cardiac function (10). Many studies reported HRV as an

important marker of cardiovascular risk, and a marked

increasing number of approaches to studying HRV have been

proposed in the near past (10–12). A robust body of studies has

highlighted alterations in HRV indices in OSA (11, 13).

However, most of these studies are limited to evaluating

“traditional” HRV indices derived from conventional linear

methods. Notably, there is a scarcity of literature exploring the

use of more recent nonlinear approaches for HRV assessment

(13). Given the complex dynamics of biological systems,
02
techniques capable of addressing their non-stationarity,

stochasticity, and nonlinear characteristics can be highly

beneficial (14–16). Since HRV fluctuations exhibit nonlinear

dynamics, linear methods are inherently limited in fully

capturing the information contained in such signals (17).

Therefore, there is a consensus that using a comprehensive set of

HRV indices derived from both linear and nonlinear methods is

the most effective approach for characterizing health and

disease (18–20).

Another tool that has recently taken a vital role in medicine and

biomedical sciences is artificial intelligence, in particular, machine

learning. Machine learning models automatically identify patterns

in a dataset and use them to make decisions (21–23). Machine

learning can be pretty robust in leveraging big and complex data,

allowing the creation of predictive models in several clinical

settings, including diagnosis and treatment decisions, gene

expression analysis, drug response, pharmacokinetics, and so on

(24, 25). Hence, machine learning has emerged as a promising tool

to assist clinicians in decision-making.

The present study aims to evaluate the utility of a

comprehensive set of HRV indices in predicting the classification

of individuals with suspected OSA into different severity levels

(no OSA, mild OSA, moderate OSA, severe OSA) or in a binary

classification based on an AHI cutoff of 15 (normal-to-mild OSA

vs. moderate-to-severe OSA). To conduct this evaluation,

machine learning models were trained using a comprehensive set

of linear and nonlinear HRV indices, along with demographic

and anthropometric variables. Additionally, we investigate how

models incorporating HRV indices perform compared to models

using only SpO₂ indices or a combination of both. We

hypothesize that a thorough HRV profiling during sleep can

function as a screening tool to identify individuals more likely to

have OSA, thereby assisting in the management of the waiting

list for PSG exams.
Methods

Data acquisition

Four hundred thirty-eight (438) PSG exams, performed between

2015 and 2022 in the University Hospital of the Ribeirao Preto

Medical School from the University of Sao Paulo, were collected.

All the protocol was approved by the Human Research Ethics

Committee of the same hospital (Protocol: 42058720.6.000.5440/
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4.550.2327). The PSG exam records high-resolution waveforms such

as the electroencephalogram (EEG), electrooculogram (EOG),

electromyogram (EMG), electrocardiogram (ECG), thoracic and

abdominal respiratory inductive plethysmography straps, pulse

oximetry (SpO2), nasal pressure transducer system and nasal and

mouth thermocouple airflow sensor to monitor the airflow,

microphone to detect snores, sensor to determine body position,

and a video camera to monitor the patient during sleep. The

signals were exported to a European Data Format (EDF) file for

further analysis.

The ECG waveforms (sampled at 512 Hz) were read from the

EDF files and analyzed using the software LabChart (ECG

module for LabChart, ADInstruments, Dunedin, New Zealand).

Six segments of 15 min were obtained from each patient, one for

each of the first 6 h of ECG recording during sleep. Segments

were selected based on the quality of the ECG signal by visual

inspection of the best 15 min periods of the ECG within each

hour, i.e., periods with the most minor interferences from

external noise, movement artifacts, arrhythmias, or gasps.

Following, each segment’s RR intervals (RRi) were calculated,

and a series of RRi were generated for each segment. The RRi

series were corrected for spurious values (e.g., beat misdetections

and ectopic beats) using PyBioS software with the following

procedure: for each RRi series, the baseline was estimated using a

moving median window of size W. Upper and lower tolerance

threshold lines were then created by shifting the baseline series

up and down by a percentage T of the baseline average (26). RRi

values lying below the lower or above the upper tolerance line

were replaced using linear interpolation. Corrections were at

most 2.5% of total estimated beats (27).
Inclusion/exclusion criteria

The inclusion criteria for the study were patients at least 18

years old, with a minimum time of PSG recording of 6 h. The

exclusion criteria were exams with corrupted files, poor ECG

signal quality, RRi series with more than 2.5% spurious values,

CPAP titration, or a diagnosis of central sleep apnea. After

applying the inclusion and exclusion criteria, 291 out of the 438

PSG exams were eligible. A total of 147 exams were excluded

due to corrupted file (n = 6), poor ECG quality (n = 75),

insufficient collected time (n = 22), age less than 18 (n = 4),

CPAP titration (n = 3), missing data in the PSG report (n = 37).
Heart rate variability

Linear and nonlinear HRV indices were calculated for each

patient’s six corrected RRi series. As linear methods, we used

both time- and frequency-domain indices (10). In the time

domain, the mean of RRi, the standard deviation of normal-to-

normal intervals (SDNN), and the root mean square of the

successive RRi differences (RMSSD) were calculated. In the

frequency domain, the spectral analysis of RRi was used. For this

approach, the RRi series were resampled at 3 Hz using cubic
Frontiers in Cardiovascular Medicine 03
spline interpolation and divided into segments of 512 values

overlapped by 50%. Following, after the application of a Hanning

window, the segments had their spectra calculated by the

periodogram (Fourier transform) and were integrated into bands

of very low (VLF; <0.04 Hz.), low (LF; 0.04–0.15 Hz), and high

frequencies (HF; 0.15–0.4 Hz). The mean power over all

512-point segments represented the full 15 min segment. Spectral

powers were presented in absolute values (“abs”) and normalized

units (LFnu and HFnu). The LF/HF ratio was also calculated (28).

Several indices were used from the “family” of nonlinear

methods. Detrended fluctuation analysis (DFA), which estimates

the fractal (or self-similarity) scaling present on the time series,

was calculated for the scaling range 5 < n < 15 (α1), where n is

the window size of RRi values considered (29). Also, seven

entropy measures were calculated. Entropy is generally

characterized as an unpredictability/irregularity analysis of time

series, with different nuances among the entropy estimators (30).

In this study, we calculated sample entropy (SampEn; sequence

length m = 2; tolerance r = 0.15), fuzzy entropy (FuzzyEn;

sequence length m = 2; tolerance r = 0.15; fuzzy exponent n = 2),

distribution entropy (DistEn; sequence length m = 3; number of

bins M = 512), attention entropy (AttEn), dispersion entropy

(DispEn; sequence length m = 3; number of classes nc = 6), phase

entropy (PhaseEn; number of sectors k = 16), and permutation

entropy (PermEn; sequence length m = 3; noise added to deal

with equal values). All the entropy mentioned above measures

had their formalism and parameters described in detail

elsewhere (31–37).

Besides fractal and entropy, two symbolic dynamics analysis

methods were calculated in our study. Briefly, the method Max-

Min, proposed by Porta and co-workers (38, 39), split the full

range of RRi values into 6 equal bins, ranging from the

maximum to the minimum RRi, and each RRi value is assigned

a symbol (0–5) according to the bin it belongs. Next, “words”

composed of a sequence of 3 consecutive symbols are created

and classified into one out of four families, namely 0V (zero

variation), 1V (one variation), 2LV (two-like variation), and 2UV

(two-unlike variation). The percentage of occurrence of each

pattern is calculated, generating the indices Symb-0V, Symb-1V,

Symb-2LV, and Symb-2UV. Another symbolic approach used is

the binary method (19). This approach is similar to Max-Min,

differing by how RRi values are converted into symbols. In the

binary approach, each RRi is assigned a binary symbol (0 or 1),

depending on the sign of the difference between the RRi and its

successive RRi. Following this, “words” composed of three

successive symbols are classified into one of three families, and

their percentage of occurrence is calculated. This results in the

generation of the indices Bin-0V, Bin-1V, and Bin-2 V. Both

symbolic dynamics approaches were previously shown to be

associated with the autonomic modulation of the heart and

could be considered a nonlinear alternative to the spectral

analysis (19, 39, 40).

Heart rate fragmentation (HRF), a recent and interesting HRV

method proposed by Costa and co-workers (18, 41), was also

evaluated in the present study. HRF consists of analyzing the

inflection points in the RRi series, i.e., changes from HR
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1389402
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


dos Santos et al. 10.3389/fcvm.2025.1389402
acceleration to deceleration and vice-versa. The symbolic dynamics

approach proposed for HRF assigns each RRi difference a binary

symbol (1 when RRi is decreasing and −1 when RRi is

increasing; the value 0 was considered when there are no

differences). The transitions between two consecutive different

symbols, i.e., all except 1–1, −1 to −1, and 0–0, characterize an

inflection point. Then, words of 4 consecutive symbols are

evaluated, and the percentage of words with zero (W0), one

(W1), two (W2), or three (W3) inflection points is calculated.

The overall percentage of inflection points (PIP) was also

obtained. Although the HRF approach adopted here is based on

a symbolic dynamics analysis (except for PIP), we did not

include HRF in the symbolic dynamics methods to clearly

distinguish their interpretation. The HRF was intended to

evaluate the degradation of heart rate dynamics, which appears

as a fragmented heart rate.

Other important HRV approaches, such as asymmetry and

acceleration/deceleration (AC/DC) capacity, were also used.

Asymmetry methods estimate whether the changes in the RRi

series are similar when the series is time-reversed. Here, we

calculated three asymmetry methods, namely Porta’s, Guzik’s,

and Ehlers’ indices. Porta’s and Guzik’s indices return a value of

50% for perfectly symmetric RRi series, representing the balance

between positive and negative variations within the series

(42, 43). In contrast, Ehlers’ index is based on the skewness of

RRi differences, in which values near 0 represent a symmetric

(time-reversible) series (43). On the other hand, the AC/DC

calculates from the RRi series the average magnitude (capacity)

of the heart to accelerate and decelerate (44).

Altogether, the aforementioned methods yield 34 indices for

HRV analysis. The mean values of each HRV index were

obtained from each of the six hourly RRi segments.
PSG reports

PSG reports were provided by a certified sleep medicine

physician, and some scores related to the presence and severity

of OSA, as well as anthropometric information, were selected.

The PSG scores collected were the AHI, the minimum oxygen
TABLE 1 Anthropometric and PSG report information about normal and OSA
each group. The other variables represent the median (1st–3rd quartiles).

Variable Normal (n= 47) Mild (n= 63)
Sex (men) 12 (25.5%) 27 (42.9%)

Age (years) 41 (30–55) 52 (42–63)*

Height (m) 1.62 (1.56–1.68) 1.66 (1.57–1.7)

Weight (kg) 71.5 (60–82) 82 (74–94)*

BMI 26.7 (23.9–30.7) 31.04 (28.0–33.7)*

AHI 2.6 (1.2–3.7) 10.0 (7.5–12.7)*

T90 (%) 0.07 (0–1.30) 1.10 (0.2–9.03)*

SatMin (%) 88 (83–91) 86 (81–88)

AHI, apnea-hypopnea index; BMI, body mass index; SatMin, minimum oxygen saturation durin

*p < 0.05 vs. Normal.
**p < 0.05 vs. Normal and Mild.

***p < 0.05 vs. Normal, Mild and Moderate.
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saturation value during sleep (SatMin), and the percentage of

total sleep time the patient stayed with oxygen saturation below

90% (T90). The AHI is based on the number of apnea/hypopnea

events in each hour, averaged over the entire sleep time. An

obstructive apnea event can be defined as a reduction >90% of

the thermistor airflow lasting at least 10 s, associated with a

respiratory effort, while hypopnea is characterized by a reduction

>30% of the nasal pressure airflow in a period >10 s, associated

with an oxygen desaturation >3% or arousal (4). The AHI was

used to classify the level of severity of OSA. Patients with an

AHI between 5 and 15 were considered mild-OSA patients;

between 15 and 30 moderate; and above 30 severe-OSA patients.

Individuals with an AHI below 5 were considered normal (45).

As anthropometric data, the patient’s gender, age, height, weight,

and body mass index (BMI = kg/m²) were obtained.
Machine learning

The machine learning (ML) models were implemented in

Python using the sci-kit-learn library (46). Models were trained

to classify the patient’s OSA class using three different input sets

of features: (1) HRV indices + anthropometric data; (2) SpO2

indices + anthropometric data; and (3) HRV + SpO2

indices + anthropometric data. Both multiclass (normal, mild,

moderate, severe) and binary (normal-to-mild, moderate-to-

severe) classification models were evaluated, with the later

utilizing an AHI cutoff of 15 (47).

The models were created using the random forest (RF)

algorithm, trained with 100 trees and without a depth limit. The

performance of models was assessed by a 10-fold cross-validation

scheme (48). Since our dataset is unbalanced (see Table 1), we

used the Synthetic Minority Over-sampling Technique (SMOTE)

technique (49, 50) to oversample the classes with fewer samples.

Synthetic data is created by SMOTE based on a set of random

samples of the minority classes and their k-nearest neighbors

(here, k = 5), generating the artificial data by randomly choosing

a point in the linear interpolation space between them.

To assess the importance of each feature, the feature

importance assigned by the RF algorithm using the entire dataset
individuals in different severity classes. Sex is the number of men (%) for

Moderate (n = 70) Severe (n= 111)
30 (42.9%) 49 (44.1%)*

56.5 (38.75–65)* 56 (46–63)*

1.65 (1.57–1.72) 1.63 (1.58–1.73)

85.5 (76.2–99.6)* 98 (79.2–115)*,**,***

31.01 (27.5–37.4)* 34.72 (29.3–40.6)*,**,***

21.1 (17.7–25)*,** 57.7 (40.8–75.9)*,**,***

2.75 (0.30–9.40)* 19.80 (3.5–51)*,**,***

83 (77–86)* 74 (63–82)*,**,***

g sleep; T90, percentage of sleep time where oxygen saturation <90%.
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was evaluated. RF computes feature importance by measuring the

impurity decrease associated with each feature within each

decision tree created in the model.
Statistical analysis

The differences in clinical and anthropometric variables among

the four groups of OSA were tested using Chi-squared (gender

differences) and Kruskal–Wallis with Dunn’s post-hoc tests (other

variables). To evaluate the performance of the classification

models, the area under the receiver operating characteristic curve

(AUROC) was calculated. AUROC = 0.5 represents a random

model, while AUROC= 1 points to a perfect classification model

(20–24). The AUROC 95% confidence intervals were calculated

using bootstrap with 2,000 repetitions. The difference between

AUROC values was tested using the DeLong test followed by

multi-comparison correction for a false positive rate (51–53).
Results

Table 1 summarizes the characteristics of the 291 individuals

included in the study. The summary of variables used as inputs

for the machine learning models is presented in Table 2.
TABLE 2 Summary of features used as input attributes to create machine
learning models in OSA prediction and severity.

Type of
variable

Features

HRV: linear methods MeanRR, SDNN, RMSSD; VLFabs, LFabs, HFabs, LFnu,
HFnu, LF/HF

HRV: nonlinear
methods

DFA-α1; SampEn, FuzzyEn, DispEn, PhaseEn, DistEn,
PermEn, AttEn; Symb-0V, Symb-1V, Symb-2LV, Symb-
2UV; Bin-0V, Bin-1V, Bin-2V; HRF-PIP, HRF-W0, HRF-
W1, HRF-W2, HRF-W3; Porta’s, Guzik’s, Ehlers’; AC, DC

Oxygen Saturation SatMin, T90

Anthropometric Gender, Age, Height, Weight, BMI

HRV, heart rate variability; SatMin, minimum oxygen saturation during sleep; T90,

percentage of sleep time where oxygen saturation <90%; BMI, body mass index. For a
description of HRV features, see the text.

TABLE 3 AUROC (95% confidence interval) of the multiclass and binary mod

Model HRV+ Anthrop. SpO2

Multiclass
Normal 0.91 (0.86–0.95) 0.86

Mild 0.74 (0.67–0.81) 0.74

Moderate 0.70 (0.63–0.77) 0.62

Severe 0.84 (0.79–0.88) 0.80

Binary
0.79 (0.74–0.84) 0.77

HRV, heart rate variability; SpO2, oxygen saturation indices; AUROC, area under the ROC curv

*p < 0.05 vs. SpO2 model.

**p < 0.05 vs. SpO2 and HRV models.
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Classification models

Table 3 shows the AUROC results obtained for both models.

The AUROC for normal and severe classes were the best,

independently of the input dataset. In contrast, the OSA

moderate class always had the worst performance. The model

created using all features (HRV + SpO2 + Antrop.) resulted in

higher AUROC for normal and severe classes compared to the

SpO2 model. For the moderate class, combining HRV and SpO2

showed superior AUROC compared to either HRV or SpO2

alone. For the mild class, however, no statistical differences were

observed between the three models.

Table 4 shows the top 10 most important features for

the models trained using all features available (i.e.,

HRV + SpO2 + Anthrop.) and either four or two classes. The

oxygen saturation indices (SatMin and T90) were always the top

2 attributes. Anthropometric data, such as weight and BMI, were

always in the top 5 attributes. Among HRV indices, VLFabs

appear in the top 5 for both multiclass and binary models, while

HRF-W0 and DFA- α1 were always in the top 10. Other HRV

indices present in the top 10 list were Bin-0V, Bin-1V, HRF-W0,

and SampEn. The attribute that contributed the most to one

model was T90, reaching a maximum percentage of 8.2%.
Discussion

In this study, we analyzed a set of non-invasive indices derived

from different data sources for the creation of machine-learning

predictive models of OSA. The combination of indices (HRV,

SpO2) and anthropometric variables contributed to a consistent

and strong performance across OSA severity classes, achieving

AUROC values as high as 0.83 in the binary classification.
Predictors of OSA

The features considered as inputs to the machine learning

models were chosen based on three main factors: (1) the clinical

relevance that those indices can bring related to the

pathophysiology of OSA; (2) the low cost and facility to obtain

the feature, particularly when compared to the PSG exam; and
els created from different input datasets.

+ Anthrop. HRV+ SpO2 + Anthrop.

(0.79–0.92) 0.92 (0.87–0.96)*

(0.68–0.80) 0.78 (0.71–0.84)

(0.54–0.70) 0.75 (0.68–0.81)**

(0.74–0.85) 0.86 (0.82–0.90)*

(0.71–0.82) 0.83 (0.78–0.88)**

e.
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TABLE 4 Top 10 attributes for the multiclass and binary models. Values
represent the percentage contribution of each feature to the total
impurity decrease [rank within the model].

Attribute 4 Classes 2 Classes
SatMin 6.7% [1] 6.4% [2]

T90 5.9% [2] 8.2% [1]

Weight 5.2% [3] 4.5% [3]

VLFabs 4.7% [4] 4.5% [4]

BMI 4% [5] 4.3% [5]

DFA-α1 2.8% [6] 2.6% [9]

Age 2.5% [7] 3.1% [8]

BIN-1V 2.5% [8] -

HRF-W0 2.4% [9] 3.8% [6]

Height 2.4% [10] -

SampEn - 3.4% [7]

Bin-0V - 2.5% [10]
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(3) the lack of studies reporting the predictive value of these

features with OSA patients.

In OSA, personal information and anthropometric data have

demonstrated clinical relevance, and many are included in risk

factor calculation. It’s well documented in the literature that

male, obese, and older individuals have a high chance of OSA

development (54). Standard oxygen saturation indices are also

well studied in OSA. As hypoxia is one of the central

physiological disturbances in patients with OSA, indices that a

pulse oximeter can detect are clinically relevant in this

population (55, 56). The assessment of these parameters has been

proposed in several questionnaires and screening tools seeking to

differentiate between OSA and healthy individuals (55, 57).

Techniques involving ECG-derived features aiming to analyze

OSA have been studied for almost 40 years, and lately, HRV has

been surging as a widely studied tool in this disease (58, 59). It is

already established that certain HRV indices exhibit significant

differences when comparing patients with OSA to healthy

subjects, likely attributed to alterations in cardiac autonomic

modulation induced by OSA (60). However, most studies

involving HRV and OSA have focused on traditional indices

derived from the time and frequency domain, with the predictive

value of most nonlinear indices being unknown in this condition

(11, 13). In the present study, we demonstrated that some

nonlinear HRV features are ranked in the top 10 most important

for predicting OSA, although none of them rank in the top 5.
Machine learning predictions of OSA
presence and severity

Artificial intelligence models have already been used in sleep

medicine, and studies aiming at building screening tests for

patients with OSA using machine learning predictive models can

be widely found in the literature (61). In the present study, we

demonstrated an improvement in AUROC when HRV, SpO₂,

and anthropometric data were combined, compared to models

that used only HRV and SpO2 features. Some studies corroborate

our findings. A recent study made by Park & Kim in a large
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sample of Koreans with OSA showed an AUROC of 0.69 for the

RF algorithm, using linear HRV indices and anthropometric data

for an AHI cutoff of 15 (62). Using HRV, SpO2 indices, and

anthropometric data, Li and co-workers achieved an AUROC of

0.97 in differentiating OSA from normal subjects using a feed-

forward neural network algorithm (63). Similarly, Zhu and co-

workers used HRV and SpO2 indices to detect OSA and showed

that the combination of HRV and SpO2 values had a higher

performance than using HRV indices alone (64). This reinforces

that the combination of these indices could be integrative for

developing screening and classification models, thereby

enhancing their performance.

Despite the differences between methodologies, many studies

using HRV and other clinical indices to create classification

models for OSA used binary OSA categorization based on

different AHI cutoffs. Ravelo-Garcia and co-workers showed that

the combinations of HRV and SpO2 indices enhanced the metrics

of classifiers compared to those created with HRV indices alone,

achieving an AUROC of 0.91 for an AHI cutoff of 10 (65). Baty

and co-workers used the principal component analysis to select

some HRV linear indices to classify OSA individuals and achieved

an AUROC of 0.82 with an AHI cutoff of 18 (66). In our study,

an AHI cutoff of 15 was considered because AHI > 15 is the

clinical threshold established for diagnosing OSA, even when no

associated symptoms are present (47).

Creating models based solely on two classes is a strategic

approach, aiming to develop a screening tool focused on

detecting OSA in its most severe stages. This strategy is intended

to prioritize cases that would benefit from increased attention

from the healthcare team. It is well-documented that patients

with high AHI values can be at a higher risk of developing

comorbidities (67). Moreover, severe patients remaining

untreated can be at higher risk of presenting cardiovascular

events in the future (68). Our best binary model provided an

AUROC of 0.83, showing great potential as a screening tool for

the most urgent cases, identifying the patients that could be

prioritized for a complete PSG evaluation.

It’s important to note that, as a retrospective study with data

collected from a specialized sleep ambulatory, it was not

surprising that the dataset contains a higher number of patients

with OSA than normal subjects. Therefore, normal individuals

composed the minority class in our group (16.15% of the sample

considering an AHI < 5, and 37.8% of the sample considering an

AHI < 15). Since machine learning models are sensitive to class

imbalance, SMOTE technique was implemented to avoid bias,

seeking to improve the models’ performance and reliability. This

technique has been applied to several clinical studies, including

OSA, being important in trials that could have an imbalanced

number of individuals, showing an improvement in classifier

models for different scenarios (62, 69–71).
Ranking of the features by their importance

The importance of the features obtained with RF revealed that

SatMin, T90, weight, and BMI consistently ranked among the top 5
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features. This is consistent with the clinical importance of these

indices described previously. Moreover, the two SpO2 indices

were always the two most important features in all models,

consistent with the clinical importance of these variables for OSA

diagnosis (55). Nevertheless, the importance assigned to SpO2-

derived attributes (5.9%–8.2%) does not stand out compared to

the importance associated with the other features (2.4%–5.2%).

Notably, the list of top 10 features comprises a combination of

all three types of variables, i.e., SpO2, HRV, and anthropometric.

Among the HRV indices, VLFabs stands out for consistently

being in the top 5 list. The VLF band of the spectral analysis

does not have a clear definition of its physiological meaning.

Studies have attributed its value to thermoregulation, the activity

of the renin-angiotensin-aldosterone system, and other humoral

factors (28). A study by Francis and co-workers showed that

changes in periodic breathing and oxygen desaturation can also

affect the VLF component, which can be a finding in apneic

patients (72). Several other studies have highlighted the

significance of the VLF band in the context of OSA (73). Apneic

patients exhibit higher VLF compared to normal individuals, and

it has been suggested that this alteration can be reversed through

therapeutic strategies for OSA (72, 74–76). The study from Baty

and co-workers also demonstrated the VLF band as an essential

feature in classifying patients with OSA (66). These findings

suggest that VLFabs carries valuable information about the

condition of OSA. Therefore, it should be considered in the

development of OSA risk factors.

In addition to VLFabs, the W0 pattern of the HRF method was

also present in all top 10 feature rankings. The HRF is a recent

approach that requires additional investigation to further elucidate

its biological meaning. HRF indices with the most inflection

points (W3 and PIP) are associated with a high cardiovascular

risk (18). Nevertheless, the authors who introduced HRF

emphasized that the interpretation for each index may vary among

different diseases (41). In OSA, W0 may be particularly affected

by the cyclic variation found in the ECG (58). Studies made by

Guzik and co-workers and Jiang and co-workers, employing an

asymmetry approach that quantifies the length of acceleration and

deceleration runs, confirm that patients with severe OSA exhibit a

high number of long runs for both acceleration and deceleration

(20, 77). With long sequences of acceleration and/or deceleration

runs, the RRi will be changing in the same direction (up or down)

most of the time, creating a high number of “fluent” patterns in

HRF (W0). This particularity of OSA may explain the higher

importance associated with W0 and also with VLF power of RRi

spectra, all reflecting patterns of slow oscillations of heart rate.

Other HRV nonlinear indices that appear in all the top 10 lists

of features include DFA-α1, SampEn, and BIN-1V. These indices

are often associated with the analysis of the system’s complexity,

and some of them have been evaluated in studies of OSA

(12, 28, 73, 78). A previous study from our research group

demonstrated that HRV nonlinear indices were sensitive in

detecting differences between OSA classes (particularly severe

cases) and normal individuals, with significant correlations

observed between these HRV indices and the AHI (79). While

the physiological interpretation of these indices may not be
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entirely clear, they are acknowledged to offer valuable

information about the organism’s health status, closely tied to

the concept of “physiological complexity” (15, 80). Therefore, the

physiological changes induced by OSA can also be observed at a

system level, as calculated by these HRV nonlinear indices,

contributing to a better assessment of OSA.
Limitations

We acknowledge important limitations in the present study.

Firstly, the classes of severity of OSA exhibit an unbalanced

number of samples. While the SMOTE technique aids in

addressing this limitation, it generates artificial data, introducing

the possibility of producing noisy instances that may not be

entirely comparable to real data. Secondly, several relevant pieces

of patient information were not available, including

comorbidities, medication usage, and personal history (e.g., level

of physical activity, smoking, alcohol consumption, race, etc.).

We recognize that these factors may play a crucial role in the

disease, and their impact on predictive models should be assessed

in future studies. Thirdly, the selection of RRi segments was

based on a visual quality assessment to avoid artifacts, without

considering the sleep stage or the presence of respiratory events.

This proof-of-concept study encourages follow-up studies with

data collected during the waking period, which may be more

compelling in some cases. However, it is important to emphasize

that, even if the models derived from electrocardiographic

recordings collected during sleep do not replicate with data

collected during the waking period, a Holter electrocardiographic

recording, conducted overnight, is undeniably simpler, easier,

and more cost-effective than a PSG. Therefore, the models

obtained in the present study emerge as valuable screening tools

for patients suspected of having OSA.
Conclusion

The present study demonstrated that a comprehensive set of

HRV features, combined with SpO2 and patient information, can

be used to train highly effective predictive models for OSA

classification. These models showed strong performance across

different OSA severity levels, highlighting their potential as

reliable diagnostic tools. Given the non-invasive nature and ease

of obtaining the evaluated features, they offer a promising

approach for quick and cost-effective screening of patients

suspected of having OSA. This combination of HRV, SpO2,

and anthropometric data could enable early detection and

stratification of OSA severity, facilitating timely interventions and

improving patient outcomes.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1389402
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


dos Santos et al. 10.3389/fcvm.2025.1389402
Ethics statement

The studies involving humans were approved by Research

Ethics Committee of HC-FMRP/USP (Protocol:

42058720.6.000.5440/4.550.2327). The studies were conducted in

accordance with the local legislation and institutional

requirements. The ethics committee/institutional review board

waived the requirement of written informed consent for

participation from the participants or the participants’ legal

guardians/next of kin because the data was collected in a

retrospective manner from exams previously conducted in the

University Hospital.
Author contributions

RS: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Software,

Visualization, Writing – original draft, Writing – review &

editing. MM: Data curation, Formal analysis, Investigation,

Validation, Writing – review & editing. HS: Writing – review &

editing. AE: Data curation, Writing – review & editing. LS:

Conceptualization, Data curation, Formal analysis, Methodology,

Software, Validation, Writing – review & editing. RT: Data

curation, Formal analysis, Investigation, Supervision, Validation,

Writing – review & editing. RF: Conceptualization, Methodology,

Project administration, Resources, Supervision, Visualization,

Writing – review & editing.
Frontiers in Cardiovascular Medicine 08
Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. We acknowledge

the funding agencies FAPESP (2020/06043-7), CAPES

(88887.596933/2021-00), and CNPq (139305/2019-0 & 423999/

2021-4) for the financial support.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep
apnea. Physiol Rev. (2010) 90(1):47–112. doi: 10.1152/physrev.00043.2008

2. Kapur VK, Auckley DH, Chowdhuri S, Kuhlmann DC, Mehra R, Ramar K, et al.
Clinical practice guideline for diagnostic testing for adult obstructive sleep apnea: an
American academy of sleep medicine clinical practice guideline. J Clin Sleep Med.
(2017) 13(3):479–504. doi: 10.5664/jcsm.6506

3. Jafari B, Mohsenin V. Polysomnography. Clin Chest Med. (2010) 31(2):287–97.
doi: 10.1016/j.ccm.2010.02.005

4. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for
scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring
of sleep and associated events. J Clin Sleep Med. (2012) 8(5):597–619. doi: 10.5664/
jcsm.2172

5. Flemons WW, Douglas NJ, Kuna ST, Rodenstein DO, Wheatley J. Access to
diagnosis and treatment of patients with suspected sleep apnea. Am J Respir Crit
Care Med. (2004) 169(6):668–72. doi: 10.1164/rccm.200308-1124PP

6. Grote L, McNicholas WT, Hedner J. Sleep apnoea management in Europe during
the COVID-19 pandemic: data from the European sleep apnoea database (ESADA).
Eur Respir J. (2020) 55(6):2001323. doi: 10.1183/13993003.01323-2020

7. Sassani A, Findley LJ, Kryger M, Goldlust E, George C, Davidson TM. Reducing
motor-vehicle collisions, costs, and fatalities by treating obstructive sleep apnea
syndrome. Sleep. (2004) 27(3):453–8. doi: 10.1093/sleep/27.3.453

8. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep
apnea and cardiovascular disease: an American heart association/American college of
cardiology foundation scientific statement from the American heart association
council for high blood pressure research professional education committee, council
on clinical cardiology, stroke council, and council on cardiovascular nursing. In
collaboration with the national heart, lung, and blood institute national center on
sleep disorders research (national institutes of health). Circulation. (2008)
118(10):1080–111. doi: 10.1161/CIRCULATIONAHA.107.189420

9. Borsoi L, Armeni P, Donin G, Costa F, Ferini-Strambi L. The invisible costs of
obstructive sleep apnea (OSA): systematic review and cost-of-illness analysis. PLoS
One. (2022) 17(5):e0268677. doi: 10.1371/journal.pone.0268677
10. Electrophysiology TF. Heart rate variability: standards of measurement,
physiological interpretation and clinical use. Task force of the European society of
cardiology and the North American society of pacing and electrophysiology.
Circulation. (1996) 93(5):1043–65. doi: 10.1161/01.CIR.93.5.1043

11. Tobaldini E, Nobili L, Strada S, Casali KR, Braghiroli A, Montano N. Heart rate
variability in normal and pathological sleep. Front Physiol. (2013) 4:294. doi: 10.3389/
fphys.2013.00294

12. Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, et al. Advances
in heart rate variability signal analysis: a joint position statement by the e-cardiology
ESC working group and the European heart rhythm association co-endorsed by the
Asia Pacific heart rhythm society. Ep Europace. (2015) 17(9):1341–53. doi: 10.1093/
europace/euv015

13. Sequeira VCC, Bandeira PM, Azevedo JCM. Heart rate variability in adults with
obstructive sleep apnea: a systematic review. Sleep Sci. (2019) 12(3):214–21. doi: 10.
5935/1984-0063.20190082

14. Borowska M. Entropy-Based algorithms in the analysis of biomedical signals.
Stud Logic Grammar Rhetoric. (2015) 43(1):21–32. doi: 10.1515/slgr-2015-0039

15. Goldberger AL, Peng CK, Lipsitz LA. What is physiologic complexity and how
does it change with aging and disease? Neurobiol Aging. (2002) 23(1):23–6. doi: 10.
1016/S0197-4580(01)00266-4

16. Silva LEV, Silva CAA, Salgado HC, Fazan R. The role of sympathetic and vagal
cardiac control on the complexity of heart rate dynamics. Am J Physiol Heart Circ
Physiol. (2017) 312(3):H469–77. doi: 10.1152/ajpheart.00507.2016

17. Silva LEV, Lataro RM, Castania JA, Silva CAA, Salgado HC, Fazan R, et al.
Nonlinearities of heart rate variability in animal models of impaired cardiac control:
contribution of different time scales. J Appl Physiol. (2017) 123(2):344–51. doi: 10.
1152/japplphysiol.00059.2017

18. Costa MD, Davis RB, Goldberger AL. Heart rate fragmentation: a new approach
to the analysis of cardiac interbeat interval dynamics. Front Physiol. (2017) 8:255.
doi: 10.3389/fphys.2017.00255

19. Cysarz D, Van Leeuwen P, Edelhäuser F, Montano N, Somers VK, Porta A.
Symbolic transformations of heart rate variability preserve information about
frontiersin.org

https://doi.org/10.1152/physrev.00043.2008
https://doi.org/10.5664/jcsm.6506
https://doi.org/10.1016/j.ccm.2010.02.005
https://doi.org/10.5664/jcsm.2172
https://doi.org/10.5664/jcsm.2172
https://doi.org/10.1164/rccm.200308-1124PP
https://doi.org/10.1183/13993003.01323-2020
https://doi.org/10.1093/sleep/27.3.453
https://doi.org/10.1161/CIRCULATIONAHA.107.189420
https://doi.org/10.1371/journal.pone.0268677
https://doi.org/10.1161/01.CIR.93.5.1043
https://doi.org/10.3389/fphys.2013.00294
https://doi.org/10.3389/fphys.2013.00294
https://doi.org/10.1093/europace/euv015
https://doi.org/10.1093/europace/euv015
https://doi.org/10.5935/1984-0063.20190082
https://doi.org/10.5935/1984-0063.20190082
https://doi.org/10.1515/slgr-2015-0039
https://doi.org/10.1016/S0197-4580(01)00266-4
https://doi.org/10.1016/S0197-4580(01)00266-4
https://doi.org/10.1152/ajpheart.00507.2016
https://doi.org/10.1152/japplphysiol.00059.2017
https://doi.org/10.1152/japplphysiol.00059.2017
https://doi.org/10.3389/fphys.2017.00255
https://doi.org/10.3389/fcvm.2025.1389402
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


dos Santos et al. 10.3389/fcvm.2025.1389402
cardiac autonomic control. Physiol Meas. (2015) 36(4):643–57. doi: 10.1088/0967-
3334/36/4/643

20. Guzik P, Piskorski J, Awan K, Krauze T, Fitzpatrick M, Baranchuk A.
Obstructive sleep apnea and heart rate asymmetry microstructure during sleep. Clin
Auton Res. (2013) 23(2):91–100. doi: 10.1007/s10286-013-0188-8

21. Choi RY, Coyner AS, Kalpathy-Cramer J, Chiang MF, Campbell JP. Introduction
to machine learning, neural networks, and deep learning. Transl Vis Sci Technol.
(2020) 9(2):14. doi: 10.1167/tvst.9.2.14

22. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for
biologists. Nat Rev Mol Cell Biol. (2022) 23(1):40–55. doi: 10.1038/s41580-021-00407-
0

23. Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised
machine learning algorithms for disease prediction. BMC Med Inform Decis Mak.
(2019) 19(1):281. doi: 10.1186/s12911-019-1004-8

24. Handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi H. Edoctor:
machine learning and the future of medicine. J Intern Med. (2018) 284(6):603–19.
doi: 10.1111/joim.12822

25. van IJzendoorn DGP, Szuhai K, Briaire-de Bruijn IH, Kostine M, Kuijjer ML,
Bovée JVMG. Machine learning analysis of gene expression data reveals novel
diagnostic and prognostic biomarkers and identifies therapeutic targets for soft
tissue sarcomas. PLoS Comput Biol. (2019) 15(2):e1006826. doi: 10.1371/journal.
pcbi.1006826

26. Silva LEV, Fazan R, Marin-Neto JA. Pybios: a freeware computer software for
analysis of cardiovascular signals. Comput Methods Programs Biomed. (2020)
197:105718. doi: 10.1016/j.cmpb.2020.105718

27. Rincon Soler AI, Silva LEV, Fazan R, Murta LO. The impact of artifact
correction methods of RR series on heart rate variability parameters. J Appl Physiol.
(2018) 124(3):646–52. doi: 10.1152/japplphysiol.00927.2016

28. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms.
Front Public Health. (2017) 5:258. doi: 10.3389/fpubh.2017.00258

29. Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling
exponents and crossover phenomena in nonstationary heartbeat time series. Chaos.
(1995) 5(1):82–7. doi: 10.1063/1.166141

30. Ribeiro M, Henriques T, Castro L, Souto A, Antunes L, Costa-Santos C, et al.
The entropy universe. Entropy. (2021) 23(2):222. doi: 10.3390/e23020222

31. Richman JS, Moorman JR. Physiological time-series analysis using approximate
entropy and sample entropy. Am J Physiol Heart Circ Physiol. (2000) 278(6):
H2039–2049. doi: 10.1152/ajpheart.2000.278.6.H2039

32. Rostaghi M, Azami H. Dispersion entropy: a measure for time-series analysis.
IEEE Signal Process Lett. (2016) 23(5):610–4. doi: 10.1109/LSP.2016.2542881

33. Li P, Liu C, Li K, Zheng D, Liu C, Hou Y. Assessing the complexity of short-term
heartbeat interval series by distribution entropy. Med Biol Eng Comput. (2015)
53(1):77–87. doi: 10.1007/s11517-014-1216-0

34. Chen W, Wang Z, Xie H, Yu W. Characterization of surface EMG signal based
on fuzzy entropy. IEEE Trans Neural Syst Rehabil Eng. (2007) 15(2):266–72. doi: 10.
1109/TNSRE.2007.897025

35. Bandt C, Pompe B. Permutation entropy: a natural complexity measure for
time series. Phys Rev Lett. (2002) 88(17):174102. doi: 10.1103/PhysRevLett.88.
174102

36. Rohila A, Sharma A. Phase entropy: a new complexity measure for heart rate
variability. Physiol Meas. (2019) 40(10):105006. doi: 10.1088/1361-6579/ab499e

37. Yang J, Choudhary GI, Rahardja S, Fränti P. Classification of interbeat interval
time-series using attention entropy. IEEE Trans Affect Comput. (2023) 14(1):321–30.
doi: 10.1109/TAFFC.2020.3031004

38. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, et al. Entropy,
entropy rate, and pattern classification as tools to typify complexity in short heart
period variability series. IEEE Trans Biomed Eng. (2001) 48(11):1282–91. doi: 10.
1109/10.959324

39. Porta A, Tobaldini E, Guzzetti S, Furlan R, Montano N, Gnecchi-Ruscone T.
Assessment of cardiac autonomic modulation during graded head-up tilt by
symbolic analysis of heart rate variability. Am J Physiol-Heart Circ Physiol. (2007)
293(1):H702–8. doi: 10.1152/ajpheart.00006.2007

40. Silva LEV, Geraldini VR, de Oliveira BP, Silva CAA, Porta A, Fazan R.
Comparison between spectral analysis and symbolic dynamics for heart rate
variability analysis in the rat. Sci Rep. (2017) 7(1):8428. doi: 10.1038/s41598-017-
08888-w

41. Costa MD, Davis RB, Goldberger AL. Heart rate fragmentation: a symbolic
dynamical approach. Front Physiol. (2017) 8:827. doi: 10.3389/fphys.2017.00827

42. Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H. Heart rate
asymmetry by Poincaré plots of RR intervals. Biomed Tech. (2006) 51(4):272–5.
doi: 10.1515/BMT.2006.054

43. Porta A, Casali KR, Casali AG, Gnecchi-Ruscone T, Tobaldini E, Montano N,
et al. Temporal asymmetries of short-term heart period variability are linked to
autonomic regulation. Am J Physiol Regul Integr Comp Physiol. (2008) 295(2):
R550–557. doi: 10.1152/ajpregu.00129.2008
Frontiers in Cardiovascular Medicine 09
44. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Mäkikallio T, Ulm K, et al.
Deceleration capacity of heart rate as a predictor of mortality after myocardial
infarction: cohort study. Lancet. (2006) 367(9523):1674–81. doi: 10.1016/S0140-6736
(06)68735-7

45. American Academy of Sleep Medicine. Sleep-related breathing disorders in
adults: recommendations for syndrome definition and measurement techniques in
clinical research. Sleep. (1999) 22(5):667–89. doi: 10.1093/sleep/22.5.667

46. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: machine learning in python. J Mach Learn Res. (2011) 12(85):2825–30.

47. Sateia MJ. International classification of sleep disorders-third edition: highlights
and modifications. Chest. (2014) 146(5):1387–94. doi: 10.1378/chest.14-0970

48. Lo Vercio L, Amador K, Bannister JJ, Crites S, Gutierrez A, MacDonald ME,
et al. Supervised machine learning tools: a tutorial for clinicians. J Neural Eng.
(2020) 17(6):062001. doi: 10.1088/1741-2552/abbff2

49. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority
over-sampling technique. J Artif Intell Res. (2002) 16:321–57. doi: 10.1613/jair.953

50. Elreedy D, Atiya AF. A comprehensive analysis of synthetic minority
oversampling technique (SMOTE) for handling class imbalance. Inf Sci. (2019)
505:32–64. doi: 10.1016/j.ins.2019.07.070

51. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Stat Soc Ser B. (1995) 57(1):289–300.
doi: 10.1111/j.2517-6161.1995.tb02031.x

52. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two
or more correlated receiver operating characteristic curves: a nonparametric approach.
Biometrics. (1988) 44(3):837–45. doi: 10.2307/2531595

53. Sun X, Xu W. Fast implementation of DeLong’s algorithm for comparing the
areas under correlated receiver operating characteristic curves. IEEE Signal Process
Lett. (2014) 21(11):1389–93. doi: 10.1109/LSP.2014.2337313

54. Gharibeh T, Mehra R. Obstructive sleep apnea syndrome: natural history,
diagnosis, and emerging treatment options. Nat Sci Sleep. (2010) 2:233–55. doi: 10.
2147/NSS.S6844

55. Del Campo F, Crespo A, Cerezo-Hernández A, Gutiérrez-Tobal GC, Hornero R,
Álvarez D. Oximetry use in obstructive sleep apnea. Expert Rev Respir Med. (2018)
12(8):665–81. doi: 10.1080/17476348.2018.1495563

56. Azarbarzin A, Sands SA, Stone KL, Taranto-Montemurro L, Messineo L, Terrill
PI, et al. The hypoxic burden of sleep apnoea predicts cardiovascular disease-related
mortality: the osteoporotic fractures in men study and the sleep heart health study.
Eur Heart J. (2019) 40(14):1149–57. doi: 10.1093/eurheartj/ehy624

57. Costa J C, Rebelo-Marques A, Machado JN, Gama JMR, Santos C, Teixeira F,
et al. Validation of NoSAS (neck, obesity, snoring, age, sex) score as a screening
tool for obstructive sleep apnea: analysis in a sleep clinic. Pulmonology. (2019)
25(5):263–70. doi: 10.1016/j.pulmoe.2019.04.004

58. Guilleminault C, Connolly S, Winkle R, Melvin K, Tilkian A. Cyclical variation
of the heart rate in sleep apnoea syndrome: mechanisms, and usefulness of 24 h
electrocardiography as a screening technique. Lancet. (1984) 1(8369):126–31.
doi: 10.1016/S0140-6736(84)90062-X

59. Ucak S, Dissanayake HU, Sutherland K, de Chazal P, Cistulli PA. Heart rate
variability and obstructive sleep apnea: current perspectives and novel technologies.
J Sleep Res. (2021) 30(4):e13274. doi: 10.1111/jsr.13274

60. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural
mechanisms in obstructive sleep apnea. J Clin Invest. (1995) 96(4):1897–904.
doi: 10.1172/JCI118235

61. Goldstein CA, Berry RB, Kent DT, Kristo DA, Seixas AA, Redline S, et al.
Artificial intelligence in sleep medicine: background and implications for clinicians.
J Clin Sleep Med. (2020) 16(4):609–18. doi: 10.5664/jcsm.8388

62. Park P, Kim JW. A classifying model of obstructive sleep apnea based on heart
rate variability in a large Korean population. J Korean Med Sci. (2023) 38(7):e49.
doi: 10.3346/jkms.2023.38.e49

63. Li Z, Li Y, Zhao G, Zhang X, Xu W, Han D. A model for obstructive sleep apnea
detection using a multi-layer feed-forward neural network based on
electrocardiogram, pulse oxygen saturation, and body mass index. Sleep Breathing.
(2021) 25(4):2065–72. doi: 10.1007/s11325-021-02302-6

64. Zhu J, Zhou A, Gong Q, Zhou Y, Huang J, Chen Z. Detection of sleep apnea
from electrocardiogram and pulse oximetry signals using random forest. Appl Sci.
(2022) 12(9):4218. doi: 10.3390/app12094218

65. Ravelo-García AG, Kraemer JF, Navarro-Mesa JL, Hernández-Pérez E, Navarro-
Esteva J, Juliá-Serdá G, et al. Oxygen saturation and RR intervals feature selection for
sleep apnea detection. Entropy. (2015) 17(5):2932–57. doi: 10.3390/e17052932

66. Baty F, Boesch M, Widmer S, Annaheim S, Fontana P, Camenzind M, et al.
Classification of sleep apnea severity by electrocardiogram monitoring using a novel
wearable device. Sensors. (2020) 20(1):286. doi: 10.3390/s20010286

67. Loke YK, Brown JWL, Kwok CS, Niruban A, Myint PK. Association of
obstructive sleep apnea with risk of serious cardiovascular events: a systematic
review and meta-analysis. Circ Cardiovasc Qual Outcomes. (2012) 5(5):720–8.
doi: 10.1161/CIRCOUTCOMES.111.964783
frontiersin.org

https://doi.org/10.1088/0967-3334/36/4/643
https://doi.org/10.1088/0967-3334/36/4/643
https://doi.org/10.1007/s10286-013-0188-8
https://doi.org/10.1167/tvst.9.2.14
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1186/s12911-019-1004-8
https://doi.org/10.1111/joim.12822
https://doi.org/10.1371/journal.pcbi.1006826
https://doi.org/10.1371/journal.pcbi.1006826
https://doi.org/10.1016/j.cmpb.2020.105718
https://doi.org/10.1152/japplphysiol.00927.2016
https://doi.org/10.3389/fpubh.2017.00258
https://doi.org/10.1063/1.166141
https://doi.org/10.3390/e23020222
https://doi.org/10.1152/ajpheart.2000.278.6.H2039
https://doi.org/10.1109/LSP.2016.2542881
https://doi.org/10.1007/s11517-014-1216-0
https://doi.org/10.1109/TNSRE.2007.897025
https://doi.org/10.1109/TNSRE.2007.897025
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1103/PhysRevLett.88.174102
https://doi.org/10.1088/1361-6579/ab499e
https://doi.org/10.1109/TAFFC.2020.3031004
https://doi.org/10.1109/10.959324
https://doi.org/10.1109/10.959324
https://doi.org/10.1152/ajpheart.00006.2007
https://doi.org/10.1038/s41598-017-08888-w
https://doi.org/10.1038/s41598-017-08888-w
https://doi.org/10.3389/fphys.2017.00827
https://doi.org/10.1515/BMT.2006.054
https://doi.org/10.1152/ajpregu.00129.2008
https://doi.org/10.1016/S0140-6736(06)68735-7
https://doi.org/10.1016/S0140-6736(06)68735-7
https://doi.org/10.1093/sleep/22.5.667
https://doi.org/10.1378/chest.14-0970
https://doi.org/10.1088/1741-2552/abbff2
https://doi.org/10.1613/jair.953
https://doi.org/10.1016/j.ins.2019.07.070
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.2307/2531595
https://doi.org/10.1109/LSP.2014.2337313
https://doi.org/10.2147/NSS.S6844
https://doi.org/10.2147/NSS.S6844
https://doi.org/10.1080/17476348.2018.1495563
https://doi.org/10.1093/eurheartj/ehy624
https://doi.org/10.1016/j.pulmoe.2019.04.004
https://doi.org/10.1016/S0140-6736(84)90062-X
https://doi.org/10.1111/jsr.13274
https://doi.org/10.1172/JCI118235
https://doi.org/10.5664/jcsm.8388
https://doi.org/10.3346/jkms.2023.38.e49
https://doi.org/10.1007/s11325-021-02302-6
https://doi.org/10.3390/app12094218
https://doi.org/10.3390/e17052932
https://doi.org/10.3390/s20010286
https://doi.org/10.1161/CIRCOUTCOMES.111.964783
https://doi.org/10.3389/fcvm.2025.1389402
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


dos Santos et al. 10.3389/fcvm.2025.1389402
68. Marin JM, Carrizo SJ, Vicente E, Agusti AGN. Long-term cardiovascular
outcomes in men with obstructive sleep apnoea-hypopnoea with or without
treatment with continuous positive airway pressure: an observational study. Lancet.
(2005) 365(9464):1046–53. doi: 10.1016/S0140-6736(05)71141-7

69. Waqar M, Dawood H, Dawood H, Majeed N, Banjar A, Alharbey R. An efficient
SMOTE-based deep learning model for heart attack prediction. Sci Program. (2021)
2021:e6621622. doi: 10.1155/2021/6621622

70. Ishaq A, Sadiq S, Umer M, Ullah S, Mirjalili S, Rupapara V, et al. Improving the
prediction of heart failure patients’ survival using SMOTE and effective data
mining techniques. IEEE Access. (2021) 9:39707–16. doi: 10.1109/ACCESS.2021.
3064084

71. Mencar C, Gallo C, Mantero M, Tarsia P, Carpagnano GE, Foschino Barbaro
MP, et al. Application of machine learning to predict obstructive sleep apnea
syndrome severity. Health Inf J. (2020) 26(1):298–317. doi: 10.1177/
1460458218824725

72. Francis DP, Davies LC, Willson K, Ponikowski P, Coats AJ, Piepoli M. Very-low-
frequency oscillations in heart rate and blood pressure in periodic breathing: role of
the cardiovascular limb of the hypoxic chemoreflex. Clin Sci. (2000) 99(2):125–32.
doi: 10.1042/cs0990125

73. Qin H, Steenbergen N, Glos M, Wessel N, Kraemer JF, Vaquerizo-Villar F, et al.
The different facets of heart rate variability in obstructive sleep apnea. Front
Psychiatry. (2021) 12:642333. doi: 10.3389/fpsyt.2021.642333
Frontiers in Cardiovascular Medicine 10
74. Nastałek P, Bochenek G, Kania A, Celejewska-Wójcik N, Mejza F, Sładek K.
Heart rate variability in the diagnostics and CPAP treatment of obstructive sleep
apnea. Adv Biomed. (2019) 1176:25–33. doi: 10.1007/5584_2019_385

75. Noda A, Hayano J, Ito N, Miyata S, Yasuma F, Yasuda Y. Very low-frequency
component of heart rate variability as a marker for therapeutic efficacy in patients
with obstructive sleep apnea: preliminary study. J Res Med Sci. (2019) 24:84.
doi: 10.4103/jrms.JRMS_62_18

76. Shiomi T, Guilleminault C, Sasanabe R, Hirota I, Maekawa M, Kobayashi T.
Augmented very low frequency component of heart rate variability during
obstructive sleep apnea. Sleep. (1996) 19(5):370–7. doi: 10.1093/sleep/19.5.370

77. Jiang J, Chen X, Zhang C, Wang G, Fang J, Ma J, et al. Heart rate acceleration
runs and deceleration runs in patients with obstructive sleep apnea syndrome. Sleep
and Breathing. (2017) 21(2):443–51. doi: 10.1007/s11325-016-1437-6

78. Liang D, Wu S, Tang L, Feng K, Liu G. Short-term HRV analysis using
nonparametric sample entropy for obstructive sleep apnea. Entropy. (2021)
23(3):267. doi: 10.3390/e23030267

79. Dos Santos RR, da Silva TM, Silva LEV, Eckeli AL, Salgado HC, Fazan R.
Correlation between heart rate variability and polysomnography-derived scores of
obstructive sleep apnea. Front Networks Physiol. (2022) 2:958550. doi: 10.3389/
fnetp.2022.958550

80. Seely AJ, Macklem PT. Complex systems and the technology of variability
analysis. Crit Care. (2004) 8(6):R367–84. doi: 10.1186/cc2948
frontiersin.org

https://doi.org/10.1016/S0140-6736(05)71141-7
https://doi.org/10.1155/2021/6621622
https://doi.org/10.1109/ACCESS.2021.3064084
https://doi.org/10.1109/ACCESS.2021.3064084
https://doi.org/10.1177/1460458218824725
https://doi.org/10.1177/1460458218824725
https://doi.org/10.1042/cs0990125
https://doi.org/10.3389/fpsyt.2021.642333
https://doi.org/10.1007/5584_2019_385
https://doi.org/10.4103/jrms.JRMS_62_18
https://doi.org/10.1093/sleep/19.5.370
https://doi.org/10.1007/s11325-016-1437-6
https://doi.org/10.3390/e23030267
https://doi.org/10.3389/fnetp.2022.958550
https://doi.org/10.3389/fnetp.2022.958550
https://doi.org/10.1186/cc2948
https://doi.org/10.3389/fcvm.2025.1389402
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	The use of heart rate variability, oxygen saturation, and anthropometric data with machine learning to predict the presence and severity of obstructive sleep apnea
	Introduction
	Methods
	Data acquisition
	Inclusion/exclusion criteria
	Heart rate variability
	PSG reports
	Machine learning
	Statistical analysis

	Results
	Classification models

	Discussion
	Predictors of OSA
	Machine learning predictions of OSA presence and severity
	Ranking of the features by their importance
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


