AUTHOR=dos Santos Rafael Rodrigues , Marumo Matheo Bellini , Eckeli Alan Luiz , Salgado Helio Cesar , Silva Luiz Eduardo Virgílio , Tinós Renato , Fazan Rubens TITLE=The use of heart rate variability, oxygen saturation, and anthropometric data with machine learning to predict the presence and severity of obstructive sleep apnea JOURNAL=Frontiers in Cardiovascular Medicine VOLUME=Volume 12 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2025.1389402 DOI=10.3389/fcvm.2025.1389402 ISSN=2297-055X ABSTRACT=IntroductionObstructive sleep apnea (OSA) is a prevalent sleep disorder with a high rate of undiagnosed patients, primarily due to the complexity of its diagnosis made by polysomnography (PSG). Considering the severe comorbidities associated with OSA, especially in the cardiovascular system, the development of early screening tools for this disease is imperative. Heart rate variability (HRV) is a simple and non-invasive approach used as a probe to evaluate cardiac autonomic modulation, with a variety of newly developed indices lacking studies with OSA patients.ObjectivesWe aimed to evaluate numerous HRV indices, derived from linear but mainly nonlinear indices, combined or not with oxygen saturation indices, for detecting the presence and severity of OSA using machine learning models.MethodsECG waveforms were collected from 291 PSG recordings to calculate 34 HRV indices. Minimum oxygen saturation value during sleep (SatMin), the percentage of total sleep time the patient spent with oxygen saturation below 90% (T90), and patient anthropometric data were also considered as inputs to the models. The Apnea-Hypopnea Index (AHI) was used to categorize into severity classes of OSA (normal, mild, moderate, severe) to train multiclass or binary (normal-to-mild and moderate-to-severe) classification models, using the Random Forest (RF) algorithm. Since the OSA severity groups were unbalanced, we used the Synthetic Minority Over-sampling Technique (SMOTE) to oversample the minority classes.ResultsMulticlass models achieved a mean area under the ROC curve (AUROC) of 0.92 and 0.86 in classifying normal individuals and severe OSA patients, respectively, when using all attributes. When the groups were dichotomized into normal-to-mild OSA vs. moderate-to-severe OSA, an AUROC of 0.83 was obtained. As revealed by RF, the importance of features indicates that all feature modalities (HRV, SpO2, and anthropometric variables) contribute to the top 10 ranks.ConclusionThe present study demonstrates the feasibility of using classification models to detect the presence and severity of OSA using these indices. Our findings have the potential to contribute to the development of rapid screening tools aimed at assisting individuals affected by this condition, to expedite diagnosis and initiate timely treatment.