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Autophagy fine-tuning by
angiotensin-(1-9) in cultured
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Background: The renin-angiotensin system (RAS) plays a pivotal role in
regulating blood volume, systemic vascular resistance, and electrolyte balance,
serving as a key component of cardiovascular health. Recent findings highlight
the role of angiotensin II (Ang II) in inducing autophagy through angiotensin II
receptor type 1 (AT1R). Autophagy, a process of self-degradation and
turnover of cellular components, is a homeostatic response that eliminates
superfluous materials. Abnormal autophagy promotes cardiomyocyte loss and
is critical in hypertrophy and heart failure progression. The RAS’s
non-canonical axis, which includes the angiotensin 1-9 peptide [Ang-(1-9)],
has an anti-hypertrophic effect in cardiomyocytes via an unknown
mechanism. In the present study, we aimed to elucidate the effect of
Ang-(1-9) on cardiomyocyte autophagy.
Methods: We isolated and cultured neonatal ventricular cardiomyocytes and
then co-treated them with Ang-(1-9) in the presence of chloroquine (CQ),
Ang-II, and chemical inhibitors of different signaling pathways. After treatment,
total RNA and protein extracts were obtained to analyze the abundance of
different autophagy markers. Likewise, cells were fixed, and autophagy was
analyzed through epifluorescence microscopy.
Results: Our findings show that CQ leads to a reduction in autophagy markers,
such as microtubule-associated protein 1 light chain 3-II (LC3-II) and total LC3,
suggesting Ang-(1-9)’s regulatory role in basal autophagy levels. Furthermore,
Ang-(1-9) opposes Ang-II-induced autophagy and induces the phosphorylation
of the S234 residue of Beclin-1 (BCN1) via an angiotensin II receptor type 2
(AT2R)/Akt-dependent pathway.
Conclusions: This reduction of Ang-II-induced autophagy by Ang-(1-9) unveils a
novel aspect of its action, potentially contributing to its cardioprotective effects.
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Introduction

The renin-angiotensin system (RAS) regulates the cardiovascular

response to physiological triggers such as reduced blood pressure or

increased cardiac stress. Dysregulation of the RAS can contribute

significantly to the pathogenesis of various cardiovascular disorders

(1–4) Within the RAS, the angiotensin II (Ang-II)/angiotensin II

receptor type 1 (AT1R) axis is critical for regulating blood pressure

and influencing the development of cardiac hypertrophy and fibrosis

(2, 5). Beyond this well-known pathway, current research sheds light

on the non-canonical RAS axis, which features counterregulatory

peptides such as angiotensin-(1-9) [Ang-(1-9)], angiotensin-(1-7)

[Ang-(1-7)], and the angiotensin II receptor type 2 (AT2R) (2, 6).

Particularly noteworthy is Ang-(1-9), a nonapeptide derived from

Ang-I via angiotensin-converting enzyme 2 (ACE2) activity,

recognized for its cardioprotective effects (7–9). Elevated levels of

Ang-(1-9) have been associated with improved outcomes in

myocardial infarction and hypertension, notably after the

administration of angiotensin-converting enzyme (ACE) inhibitors

or AT1R blockers (1, 2, 10–13), highlighting its potential therapeutic

value in cardiovascular disease management. The cardioprotective

effects of Ang-(1-9) are characterized by the inhibition of cardiac

hypertrophy, a reduction in fibrosis, and a decrease in cardiovascular

inflammation (12, 14–18). These outcomes are believed to be

mediated through mechanisms involving AT2R and cardioprotective

kinases such as Akt (14, 15, 19, 20).

Macroautophagy (thereafter autophagy) is a fundamental

pathway for maintaining cellular homeostasis, playing an

essential role in the degradation and recycling of cellular

components such as protein aggregates, lipids, and dysfunctional

organelles (21). This process, which involves the sequestration of

these materials into a double-membraned vesicle known as the

autophagosome for subsequent degradation and repurposing,

proceeds through distinct phases: initiation, formation of the

autophagosome precursor (highlighted by the crucial conversion

of LC3-I to LC3-II protein), expansion and maturation of the

autophagosome, and its fusion with the lysosome for substrate

breakdown and recycling (21, 22). The importance of autophagy

in heart health has become increasingly apparent, given its role

in preserving the balance of cellular components. Cardiomyocyte

loss through apoptosis or necroptosis significantly affects the

progression of heart-related diseases, including heart failure (23).

While autophagy supports cardiomyocyte health and overall

cardiovascular function by clearing damaged cellular elements

(24–27), over-activated autophagy may lead to cell death (28).

Conversely, insufficient autophagy diminishes the cell’s capacity

to manage and eliminate damaged proteins and organelles,

underscoring the need for a balanced autophagic activity to

ensure cardiovascular health and stability.

The interplay between the RAS and autophagy reveals a

multifaceted relationship, the nuances of which remain largely

unknown. While certain studies indicate that Ang-I-induced

autophagy could mitigate cardiac dysfunction, others highlight a

protective aspect through Ang-II’s suppression of autophagy

(29–34). This complexity introduces an intricate layer to

understanding how RAS influences autophagic regulation.
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Our research posits that Ang-(1-9) modulates autophagy in

cultured rat cardiomyocytes, outlining a potential pathway for

Ang-(1-9)’s cardioprotective effects. Our findings show that Ang-

(1-9), via AT2R, not only suppresses basal autophagy but also

counteracts Ang-II-induced autophagy. This contribution enriches

our understanding of Ang-(1-9)’s cardioprotective attributes,

shedding light on the still obscure relationship between RAS

modulation and autophagic processes in cardiac health.
Materials and methods

Reagents

Anti-phospho-mTOR (#5536), mTOR (#2983), phospho-

p70S6 K (#9234), LC3B (#2775), phospho-Akt (#4060), Akt

(#2920), phosphor-ERK-1/2 (#4370), ERK-1/2 (#9107), and

Beclin-1 (#4122) antibodies were acquired from Cell Signaling

Technology (Danvers, MA, USA). Anti-phospho-Beclin-1-ser295

(#PA5-35394) and phospho-Beclin-1-ser234 (#PA5-35393)

antibodies were purchased from Thermo Fisher Scientific

(Waltham, MA, USA). Anti-p62 antibody was purchased from

Abnova Co. (Jhouzih St, Taipei, Taiwan). Anti-GAPDH (G9545)

antibody and Bafilomycin A1 (Baf-A) were purchased from

Sigma-Aldrich Co. (St. Louis, MO, USA). Secondary antibodies

were obtained from Calbiochem (Burlington, ON, Canada).

Protein Phosphatase Inhibitor Cocktail IV and Protein Protease

Inhibitor Cocktail (EDTA-free) were purchased from Abcam

(Cambridge, MA, USA). Bovine Serum Albumin (BSA) was

purchased from Winkler Ltda. (Santiago, Chile). TRIzol Reagent,

Fetal Bovine Serum (FBS), Newborn Calf Serum (NBCS), and

M-MLV reverse transcriptase were obtained from Thermo Fisher

Scientific (Waltham, MA, USA). Bradford’s solution and PVDF

membranes were from Bio-Rad Laboratories (Hercules, CA, USA).

Westar Supernova substrate was obtained from Cyanagen

(Bologna, Italy). SensiFAST SYBR Hi-ROX was purchased from

Bioline Meridian Biosciences (London, UK). Dulbecco’s Modified

Eagle Medium (DMEM), Medium 199 (M199), 5-bromo-2′-
deoxyuridine (BrdU), Chloroquine (CQ), PD123319, Akt inhibitor

VIII (Akti), and U0126 (U0) reagents were obtained from Sigma-

Aldrich (St. Louis, MI, USA). Ang-II and Ang-(1-9) peptides were

acquired from GL Biochem (Shanghai, China) Ltda. CytoBuster

and other organic and inorganic compounds, acids, and solvents

were obtained from Merck (Darmstadt, Germany).
Cardiomyocyte culture and inhibitor
treatments

Neonatal rat ventricular myocytes (NRVMs) were isolated from

the hearts of 1- to 3-day-old Sprague Dawley rats, as described

previously (35). Cells were plated and cultured for 24 h in

DMEM: M199 (4:1) containing 5% FBS, 10% NBCS, 100 μM

BrdU, and antibiotics. To evaluate different effects, NRVMs were

cultivated for 24 h and treated with Ang-II for 24 h, with Ang-

(1-9) for 6 h, CQ for 4 h, and PD, Akti-1/2 (Akti), U0 for
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30 min. After treatments, cells were harvested in TRIzol or

CytoBuster containing phosphatase and protease inhibitors for

harvesting mRNA or protein.
Western blot analysis

NRVMs were washed with PBS and lysed using CytoBuster, a lysis

buffer. Protein concentration was determined using the Bradford

method. Then, equal amounts of protein from cells were separated

by SDS-PAGE (10% polyacrylamide gels), electrotransferred to

PVDF (polyvinylidene difluoride) membranes, and blocked with 5%

fat-free milk in Tris-buffered saline (pH 7.6) containing 0.1% (v/v)

Tween-20 (TBST). Membranes were sequentially incubated with the

following primary antibodies: anti-LC3B (1:1000), anti-phospho-Akt

(1:2000), anti-Akt (1:2000), anti-phospho-ERK-1/2 (1:2000), anti-

ERK-1/2 (1:2000), anti-GAPDH (1:10000) anti-p62 (1:2000) anti-

phospho-Beclin-1-Ser295 (1:250) and phospho-Beclin-1-Ser234

(1:250), and horseradish peroxidase-linked secondary antibodies

[1:5000 in 5% (w/v) BSA in TBST]. Luminescence was detected

using an ECL solution, visualized and digitized using a C-DiGit Blot

Scanner (LI-COR Biosciences, Nebraska, USA), and quantified with

Image Studio Lite Software (v.5.2; Li-Cor). Protein content was

normalized to GAPDH level; phosphoproteins content was

normalized to the corresponding total protein.
Real-time PCR analysis

Total RNA was extracted from cultured cardiomyocytes using

the TRIzol reagent. RNA samples were quantified, and their 260/

280 absorbance was measured by NanoDrop (Thermo Fisher

Scientific, Waltham, MA, USA). Reverse transcription was

performed using 1 µg of RNAand M-MLV reverse transcriptase.

RT-qPCR was performed using cDNA amplified, specific primers

designed for rats (Table 1) and SensiFAST SYBR Hi-ROX Master

Mix in a StepOnePlus Real-Time PCR System. Each sample was

run in triplicate. Data for each transcript was normalized to

Ywas and Hmbs RNA as an internal control, with the 2^-ΔΔCt

value method (36–38).
Immunofluorescence assays

NRVMs were cultured on gelatin-coated coverslips and fixed

with PBS containing 4% paraformaldehyde, incubated for 15 min
TABLE 1 Primer sequences for PCR.

Targeted gene Forward primer (5′–3′)
LC3B CGTCCTGGACAAGACCAAGT

BCN1 TGTGTGCAGCAGTTCAAAGA

ATG5 CAACCGGAAACTCATGGAAT

ATG12 GCCTCGGAGCAGTTGTTTAT

Gabarapl1 TCGTGGAGAAGGCTCCTAAA

Ywas ACTTGACATTGTGGACATCGGA
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in ice-cold, permeabilized with Triton X-100 0.1% for 15 min,

and blocked with 1% BSA in PBS for 1 h. The cells were

incubated overnight with antibodies against LC3B (1:400) and

then with the secondary antibodies Alexa Fluor 488-conjugated

anti-rabbit-IgG (1:600). As co-staining, to tag and visualize

F-actin and nuclei, the cells were incubated with red-phalloidin

and Hoechst 33,342 (blue), respectively. Epifluorescence images

were taken with an Olympus IX71 Inverted Microscope

(Olympus, Hicksville, New York, USA). The background was

subtracted from images using the ImageJ software.
Statistical analysis

Data are presented as mean ± SEM, using Student’s t-test for

pairwise comparisons and one-way or two-way analysis of

variance with Dunnet’s or Tukey’s post-test (respectively) for

multiple comparisons. The value of P < 0.05 was statistically

significant. Statistical analysis of all experiments was performed

using GraphPad Prism 8 (GraphPad, La Jolla, CA, USA).
Results

Effect of Ang-(1-9) on autophagy

Initially, we aimed to evaluate the influence of Ang-(1-9) on

baseline autophagy levels. Isolated NRVMs were subjected to

treatment with 10 mM Ang-(1-9) for periods of 3 and 6 h,

subsequently undergoing lysis for the assessment of autophagy

indicators, LC3-II (Figure 1A) and p62 (Figure 1B), via Western blot

analysis and LC3-II via indirect immunofluorescence (Supplementary

Figure S1A). The treatment with Ang-(1-9) did not result in

significant alterations in LC3-II and p62 levels. Since autophagy is a

dynamic process, we utilized chloroquine (CQ), which inhibits the

fusion of autophagosomes with lysosomes by elevating lysosomal

pH. In case autophagy is activated, CQ induces the accumulation of

autophagosomes (39), enabling a clear assessment of the autophagic

flux. This dual treatment led to a marked reduction in both LC3-II

and total LC3 levels (Figure 1C), with a significant 45% decrease in

LC3-II protein levels [NT: 1.00 ± 0.26; Ang-(1-9): 0.57 ± 0.14; CQ:

2.79 ± 0.33; Ang-(1-9)/CQ: 1.54 ± 0.21], indicating a potent reduction

in the basal autophagic flux by Ang-(1-9). Additionally, to confirm

these results, avoiding potential misinterpretations caused by

lysosomal neutralization, we use bafilomycin A1 (Baf-A) and we

observed a basal reduction in LC3-II levels in conjunction with an
Reverse primer (5′–3′)
CCATTCACCAGGAGGAAGAA

CACTGCCTCCAGTGTCTTCA

ACAGGACGGAACAGCTTCTG

GGACCAGTTTACCATCACTGC

TCTCAGGTGGATCCTCTTCC

GTGGGACAGCATGGATGACA
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FIGURE 1

Angiotensin-(1-9) impairs autophagy in neonatal rat ventricular cultured cardiomyocytes. Cardiomyocytes in low serum were treated with 10 μM Ang-
(1-9) for 3 and 6 h. Protein levels of LC3-II (A) and p62 (B) were monitored by Western blot and quantified. The graphs represent the average ± SEM of
n= 3. No statistical significance was achieved for LC3-II and p62 levels. (C) Cardiomyocytes were treated for 24 h with 10 μM Ang-(1-9) in the
presence or absence of 30 μM CQ for the last 4 h. Protein levels of LC3-II and total LC3 were monitored by Western blot and quantified. The
graphs represent the average ± SEM of n= 5. (D) Total RNA was purified from cardiomyocytes treated or untreated with 10 μM Ang-(1-9) for 24 h.
cDNA was synthesized and Lc3b, Bcn1, Atg5, Atg12 and Gabarapbl1 (Gab) genes were amplified though PCR. Endogenous Ywas and Hmbs genes
were used as controls (n= 4). **p < 0.01, ***p < 0.001 CQ vs. basal; #p < 0.05 Ang-(1-9) vs. NT. NT, non-treated.
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increase in p62 (Supplementary Figures S1B,C). This strategy allowed

us to corroborate the Ang-(1-9) effect on autophagic flux observed

with CQ.

Further analysis through RT-qPCR was conducted to

examine if the observed autophagic flux modulation was

related to alterations in the expression of essential autophagy-

related genes such as Lc3b, Bcn1, Atg5, Atg12, and

Gabarapbl1 (Gab). The absence of significant changes in gene

expression post Ang-(1-9) treatment points to the peptide’s

influence on autophagy extending beyond these specific

genetic markers (Figure 1D). Thus, our data highlight a

suppression of autophagic flux in cardiomyocytes post-Ang-

(1-9) administration, observable regardless of gene expression

alterations. Consequently, we examined the interaction

between Ang-(1-9) and the canonical RAS on autophagy.

While the effect of Ang-II on autophagy is extensively

documented across various models, such as vascular smooth

muscle cells and cardiomyocytes (40, 41), the interplay

between Ang-(1-9) and Ang-II in modulating autophagy
Frontiers in Cardiovascular Medicine 04
remains largely unexplored, marking a significant gap

in our understanding of their combined impact on

cardiovascular health.
Modulation of Ang-II-induced autophagy
by Ang-(1-9)

We investigated the effect of varying Ang-II concentrations

(from 10 to 500 nM) on cardiomyocyte autophagy over a 24-h

treatment period. Through Western blot analysis, we observed

significant changes in the levels of LC3-II (Figure 2A) and p62

(Figure 2B) following treatment with just 10 nM of Ang-II.

Specifically, LC3-II protein levels exhibited a roughly 60%

increase compared to the basal state, while p62 levels decreased

in the presence of Ang-II, signaling the activation of autophagy.

To confirm these results, we observed a significant increase in

LC3-II levels in the presence of Baf-A (Supplementary Figure S2).
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FIGURE 2

Angiotensin-(1-9) blocks angiotensin II-induced autophagy in neonatal rat ventricular cultured cardiomyocytes. Cardiomyocytes were cultured by
24 h in the presence of different concentrations of Ang-II (10–500 nM) and levels of LC3-II (A) and p62 (B) were determined through Western-
blot and quantified. The graphs represent the average ± SEM. (C) Cells were cultured by 24 h with 10 nM Ang II in the presence of different
concentrations of Ang-(1-9) (10–100 μM), and LC3-II levels were determined by Western-blot (n= 5). (D) LC3-II and p62 protein levels at
cardiomyocytes cultured by 24 h with 10 nM Ang-II and 10 μM Ang-(1-9) were determined by Western-blot. (E) Confocal images of indirect
immunofluorescence and detection of autophagosome’s LC3 dot pattern (green), and nuclei staining (blue, Hoescht 33342) in cardiomyocytes
cultured by 24 h with 10 nM Ang-II and 10 μM Ang-(1-9). Scale bar = 2 µm. Graphs represent the average ± SEM from at least n= 3 of protein
levels. Data were relativized to GAPDH levels and normalized by NT condition. *p < 0.05 condition vs. 0 h or NT; **p < 0.01 condition vs. 0 h or
NT, ***p < 0.001 condition vs. 0 h or NT, #p < 0,05 and & p < 0.01 Ang-(1-9)/Ang-II vs. Ang-II. One-way ANOVA and Dunnet’s post-test.
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To explore how Ang-(1-9) might modulate Ang-II-induced

autophagy, cardiomyocytes were treated with 10 nM Ang-II for

24 h and exposed to varying Ang-(1-9) concentrations, ranging

from 10 to 100 μM, during the last 6 h. Treatment with both 10

and 100 μM Ang-(1-9) led to a statistically significant decrease in

LC3-II protein levels (Figures 2C,D) when compared to the

effects observed with Ang-II alone. An effect that was also

observed when autophagosome accumulation was assessed by

microscopy (Figure 2E). Particularly in case of p62 protein levels,

there was an observed trend towards an increase following Ang-

(1-9) treatment, though this change did not reach statistical

significance (Figure 2D). These results illustrate the contrasting

roles of the canonical and non-canonical RAS on cardiomyocyte

physiology, showcasing their complex interplay in modulating

autophagic activity.
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Signaling pathways and autophagic
modifications induced by Ang-(1-9) in
cardiomyocytes

To understand the mechanism underlying Ang-(1-9) effect on

autophagy, we examined the intracellular signaling pathways

triggered by Ang-(1-9) in cardiomyocytes, with a focus on the

AT2R/Akt/ERK signaling axis. Early signaling events were probed

by exposing cardiomyocytes to 10 μM Ang-(1-9) for intervals

ranging from 10 to 60 min, tracking Akt and ERK1/2

phosphorylation via Western blot (Figures 3A,B). Ang-(1-9)

elicited a time-dependent elevation in p-Akt and p-ERK1/2, with

ERK1/2 activation preceding Akt. Notably, a significant spike in

ERK1/2 phosphorylation was detected as early as 10 min,

persisting through the 15-min mark. Akt phosphorylation saw an
frontiersin.org
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FIGURE 3

Ang-(1.9) activates the AT2R/Akt/ERK signaling pathway and modifies the cardiomyocyte autophagic tone through AT2R activation. Cardiomyocytes
were cultured from 10 to 60 min with 10 μM Ang-(1-9) to determine the phosphorylation of (A) AKT and ERK1/2 through Western blot. (B) Graphs
represent the average ± SEM from n= 3 of protein levels. Data were relativized to total AKT and ERK1/2, respectively, and normalized by basal
conditions. *p < 0.05 condition vs. 0 h; **p < 0.01 condition vs. 0 h, ***p < 0.001 condition vs. 0 h. One-way ANOVA and Dunnet’s post-test. Cells
were treated for 30 min with the AT2R antagonist, PD123319 (2 μM) before stimulation with 10 μM Ang-(1-9) for 15 min and (C) p-AKT, and
(D) p-ERK1/2 were determined through Western blot. Graphs represent the average ± SEM from n= 3 of protein levels. Data were relativized to
total AKT, and total ERK1/2, respectively, and normalized by basal conditions. *p < 0.05 Ang-(1-9) vs. basal; **p < 0.01 Ang-(1-9) vs. basal,
****p < 0.0001 Ang-(1-9) vs. basal, #p < 0.05 PD vs. Control. Two-way ANOVA with Tukey’s post-test. (E) Confocal images of indirect
immunofluorescence and detection of autophagosome’s LC3 dot pattern (green), actin cytoskeleton (red, phalloidin), and nuclei staining (blue,
Hoescht 33342) in cardiomyocytes cultured by 24 h with 10 μM Ang-(1-9) in the presence or absence of 2 μM PD123319 (PD). Scale bar = 2 µm.
(F) LC3-II was detected through Western blot. Graph represents the average ± SEM.
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uptick from the 15 to 30-min interval post-Ang-(1-9) treatment.

The involvement of AT2R was further confirmed by pre-treating

cardiomyocytes with the AT2R antagonist PD123319 (2 μM)

prior to Ang-(1-9) exposure, which significantly mitigated the

activation of p-Akt and p-ERK1/2 (Figures 3C,D), albeit not

entirely for p-ERK1/2, suggesting that ERK activation by Ang-

(1-9) also proceeds via alternative pathways (42, 43).

The effect of AT2R inhibition on autophagy, following Ang-

(1-9) addition, was also explored. NRVMs cultured with 10 μM

Ang-(1-9) in the presence or absence of 2 μM PD123319

(Figure 3E), as well as inhibitors of Akt and ERK1/2, 5 µM Akti

and 10 µM UO126 respectively (Supplementary Figure S3), were

examined. Confocal imaging of indirect immunofluorescence

staining showed that the reduction in LC3 autophagosome

puncta, induced by Ang-(1-9), was obstructed by PD123319

treatment (Figure 3E), and basal LC3-II protein levels were

restored (Figure 3F). This indicates that the Ang-(1-9)-induced

reduction in autophagic flux necessitates AT2R activation.

A comparable outcome was observed following Akt and ERK

inhibition (Supplementary Figure S3).

In conclusion, our findings reveal that Ang-(1-9) activates the

AT2R/Akt/ERK signaling pathway, influencing the autophagic

landscape in cardiomyocytes. Blocking AT2R, Akt, and ERK1/2

effectively halts these signaling cascades and the accompanying

autophagic alterations, illuminating the regulatory mechanisms

at play.
Role of Ang-(1-9) on the major autophagy
agent beclin-1 (BCN1)

Beclin-1 (BCN1) is a key autophagy regulator, acting as an

essential initiator of autophagosome formation (44, 45) and as a

scaffold for recruiting other autophagy-related proteins and lipids

to construct the autophagosome membrane (46–50). We aimed

to uncover the effects of Ang-(1-9) on BCN1 expression and its

regulation via phosphorylation to understand the underlying

regulatory mechanisms.

We observed that treatment with 10 μM Ang-(1-9) led to

elevated BCN1 levels in cardiomyocytes (Figure 4A), both

untreated and those previously exposed to Ang-II, indicating a

nuanced interaction between Ang-II and Ang-(1-9) in

modulating BCN1 expression (Figure 4B). Further investigations

into the phosphorylation of BCN1 at serine 234 (p-S234) and

serine 295 (p-S295), which are associated with autophagy

inhibition (45, 51), revealed dynamic, time-dependent changes in

phosphorylation at these sites. Specifically, phosphorylation at

p-S234 remained consistent between 5 and 15 min, while p-S295

peaked at 10 min of treatment, suggesting a temporal pattern to

BCN1 phosphorylation (Figure 4C).

Finaly, cardiomyocytes were pre-treated with inhibitors 2 μM

PD123319, 5 μM Akti, or 10 μM UO126 prior to a 10 min Ang-

(1-9) exposure to assess its influence on p-S234 and p-S295

levels (Figures 4D,E). These inhibitors differentially affected

BCN1 phosphorylation in response to Ang-(1-9), with p-S234

phosphorylation being reliant on the AT2R, Akt, and ERK1/2
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signaling pathways (Figure 4D). In contrast, p-S295

phosphorylation remained unchanged in the presence of these

inhibitors, suggesting its independence from the AT2R/Akt/

ERK1/2 axis (Figure 4E). These results offer valuable insights

into the complex mechanisms underlying Ang-(1-9)-induced

cellular responses in cardiomyocytes and emphasize its

therapeutic potential.
Discussion

Maintaining a balanced activation of autophagy is vital for

regulating cardiomyocyte function and overall heart physiology.

Constitutive autophagy is fundamental for preserving cellular

homeostasis within the heart, ensuring the proper functioning

and longevity of cardiac cells (21). Any disruption in this

equilibrium is linked to a variety of cardiovascular diseases, such

as coronary artery disease and heart failure (22, 52, 53).

The relationship between autophagy and cardiac hypertrophy

is complex, with evidence suggesting that increased autophagy

can lead to either pathological hypertrophy or a reversion of

hypertrophy. Under physiological conditions, autophagy supports

cardiac function by removing damaged organelles and misfolded

proteins (54, 55). However, the activation of autophagy in

pathological conditions such as pressure overload or

neurohumoral stimuli shows divergent outcomes. On one hand,

studies indicate that enhanced autophagic activity can mitigate

the development of cardiac hypertrophy. For instance, Zhao et al.

demonstrated that promoting autophagy through the AKT/

mTOR pathway can inhibit pressure overload-induced cardiac

hypertrophy, suggesting a protective role for autophagy in this

context (56). Furthermore, autophagy is protective during the

transition from hypertrophy to heart failure (57). Conversely,

excessive autophagy can lead to detrimental effects, including cell

death and impaired cardiac function. For example, studies have

reported that excessive autophagic flux can exacerbate cardiac

hypertrophy and contribute to heart failure (58, 59). Similarly,

research by Cao et al. highlighted that overexpression of BCN1,

an essential autophagy regulator, can lead to maladaptive

hypertrophic growth, which can be antagonized by a histone

deacetylase inhibitor, indicating that a finely tuned autophagic

response is necessary to prevent pathological remodeling in

response to cardiac overload (60). This paradoxical effect is

summarized by Li et al., who noted that while autophagy is

crucial for maintaining cardiac homeostasis, its dysregulation can

promote pathological hypertrophy (61). The balance between

sufficient and excessive autophagy is critical; while moderate

activation may prevent hypertrophy, excessive autophagy can

lead to cellular dysfunction and hypertrophic progression (62).

LC3-II is a crucial protein in the autophagy pathway, essential

for autophagosome formation. During autophagy induction, LC3-I

undergoes lipidation to LC3-II, attaching itself to the

autophagosomal membrane. Concurrently, p62, serving as a

selective autophagy receptor, binds and directs cellular

constituents towards degradation. Typically, as autophagy

progresses, p62 levels decrease as it is consumed along with the
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FIGURE 4

Angiotensin-(1-9) induces BCN1 expression and inhibitory phosphorylations. (A) Cardiomyocytes were cultured for 3 and 6 h with 10 μM Ang-(1-9) and
levels of BCN1 were detected through Western blot. The graph represents the average ± SEM of n= 3. (B) Cells were cultured by 24 h with 10 nM Ang-
II and 10 μM Ang-(1-9) (the last 6 h) and BCN1 protein levels were detected through Western blot. The graph represents the average ± SEM from at
least n= 3 of protein levels. Data were relativized to GAPDH levels and normalized by NT condition. (C) Cells were treated for 5–60 min with 10 μM
Ang-(1-9) and time-dependent phosphorylation of S234 and S295-BCN1 residues were detected by Western blot. The graph represents the
average ± SEM of n= 4. Cardiomyocytes were treated with 2 μM PD123319 (PD), 5 μM Akti-1/2 (Akti) or 10 μM UO126 (UO) for 30 min before to
10 μM Ang-(1-9) by 10 min to detect through Western-blot the levels of phospho-S234-BCN1 (D) and phospho-S295-BCN1 (E) Graphs represent
the average ± SEM of n= 4. *p < 0.05; **p < 0.01; ***p < 0.001 and ****p < 0.0001 condition vs. 0 h or NT. One-way ANOVA and Dunnet’s post-test.

Bustamante et al. 10.3389/fcvm.2025.1408325
targeted cargo within lysosomes. Therefore, a rise in LC3-II

alongside a fall in p62 levels often signals active autophagy,

indicative of increased autophagosome formation and enhanced

degradation of cellular components (63).

Since autophagy is a dynamic and continuous process

involving not only autophagosome formation but also the

subsequent steps of maturation, fusion with lysosomes, and

degradation, we evaluated the autophagic markers in the

presence of the autophagic flux blocker CQ. This strategy

revealed that Ang-(1-9) reduces basal autophagy, evidenced by

the increase of LC3-II and the reduction of p62 levels.

To our knowledge, this is the first time that Ang-(1-9) has been

linked to the regulation of autophagy, joining other members of the
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RAS involved in the control of this catabolic process, such as Ang-

(1-7) (64, 65) and Ang-II (41). The RAS is widely known for its

important role in the onset and progression of heart failure (4,

66, 67). In the canonical pathway, ACE generates Ang-II from

Ang-I, exerting deleterious effects on the myocardium and

vasculature through the AT1R (68, 69). Conversely, ACE2

generates Ang-(1-7) from Ang-II (66, 67, 70, 71) and Ang-(1-9)

from Ang-I (7).

Ang-(1-7) and Ang-(1-9) act through the Mas receptor (MasR)

or the AT2R, respectively, to antagonize the harmful actions of

Ang-II, stimulating vasodilation and anti-inflammatory responses

(72, 73). Previous research has demonstrated that the autophagy

process can be influenced by the RAS receptors, specifically
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AT1R and AT2R. Notably, activation of the AT2R receptor is

thought to enhance autophagy across various tissues, a

mechanism critical for cell health and longevity (29, 33, 42,

74–77). In our study, we found that Ang-(1-9) acting through

AT2R, not only reduces basal autophagy in cardiomyocytes but

also modulates autophagy levels in response to Ang-II exposure

(Figure 2). This observation highlights the complex role of RAS

in regulating cardiovascular physiology and underscores the

importance of AT2R in the autophagic pathway.

Ang-II is known to activate autophagy through the AT1R

across various cell types, including cardiomyocytes and

podocytes, highlighting its broad impact (33, 78). Specifically, in

the context of cardiac health, AT1R plays a crucial role during

myocardial ischemia/reperfusion incidents, engaging signaling

pathways like p38-MAPK and reactive oxygen species (ROS)

signaling to regulate autophagy (34, 79–82). Moreover, Ang-II-

induced autophagy in cardiomyocytes engages the PI3K-Akt-

mTOR signaling pathway (83). Interestingly, the inhibition of

miR-128 activates the PIK3R1/Akt/mTOR pathway, thereby

countering the autophagy induced by Ang-II (84). Additionally,

the Ang-(1-7)/MasR signaling axis can also inhibit Ang-II-

induced autophagy by reducing ROS levels (81). Ang 1-7 also

exhibits strong anti-inflammatory and anti-fibrotic properties,

playing a crucial role in mitigating cardiac remodeling,

hypertrophy, and fibrosis associated with hypertension and heart

failure, and reduces thrombosis and vascular calcification

demonstrating protective effects against atherosclerosis and

aneurysm formation in preclinical models (85, 86).

Conversely, the AT2R exerts an opposing effect on

autophagy within cardiomyocytes. Activation of AT2R leads

to autophagy inhibition, a response that contrasts with the

autophagy induction seen with AT1R (33). This inhibition of

autophagy was shown in a rat model of heart hypertrophy,

suggesting the involvement of a PI3K-dependent signaling

mechanism (87, 88). Ang-(1-9), which predominantly interacts

with AT2R, has been shown to significantly reduce cardiac

fibrosis and prevent cardiomyocyte hypertrophy. The underlying

mechanisms likely involve the regulation of mitochondrial

dynamics and intracellular calcium levels, as well as the

inhibition of the calcineurin/NFAT signaling pathway (17, 89).

Our study advances the understanding of the complex interplay

between AT2R and Ang-II-induced autophagy. This work sheds

light on the sophisticated regulatory networks influencing

cardiovascular health and disease. Notably, our research pioneers

in identifying a link between Ang-(1-9) and autophagy regulation

via AT2R, mediated through the Akt/ERK signaling pathway.

This breakthrough marks a significant step forward in

understanding the complex roles of angiotensin derivatives in

cardiomyocyte biology.

Our results show that Ang-(1-9) inhibits cardiac hypertrophy

despite activating the Akt2/mTOR pathway, a signal typically

linked to cardioprotection, but also with increased protein

synthesis and hypertrophy. Akt, particularly the Akt2 isoform, is

integral to cellular signaling and has been associated with either

promoting or inhibiting cardiac hypertrophy. While the

activation of the Akt pathway can lead to hypertrophic responses
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in cardiomyocytes via the mTOR signaling pathway (90),

Akt2-deficient mice exhibited normal cardiac morphology and

function, but a trend to develop spontaneous hypertrophy with

aging and increased hypertrophic response to isoproterenol

compared with wild type mice (91). Moreover, the three Akt

kinase isoforms (Akt1, Akt2, and Akt3) uniquely influence

cardiac responses to different stimuli. For instance, Akt1-KO

mice resist hypertrophy from swimming training but show

enhanced hypertrophy following 7 days of TAC surgery (92). In

contrast, while WT and Akt2-KO mice have similar responses to

TAC, Akt2-KO mice experience larger infarcts after permanent

LAD occlusion at 7 days due to higher apoptosis rates, despite

initial infarct sizes being comparable at 24 h (92, 93). The role of

Akt is further complicated by the involvement of other signaling

pathways, which can modulate the hypertrophic response (94).

These findings suggest that the effect of Akt2 is strongly

dependent upon the cellular and physiological context and that

under specific conditions, Akt2 activation may lead to responses

different from cardiac hypertrophy.

The evidence supporting the activation of the Akt/ERK

pathway by Ang-(1-9) is limited but consistent. For instance,

Mendoza-Torres et al. observed an AT2R/Akt pathway activation

after treatment with Ang-(1-9) in isolated rat hearts during

reperfusion, which promotes a reduction in cell death, an

improvement of left ventricle function after myocardial

infarction, and a decrease in infarct size. The inhibition of Akt

blocked the cardioprotection given by Ang-(1-9) both in vitro

and ex vivo (15). These findings are consistent with our results

and other studies showing that AT2R mediates Akt activation

(20, 95) and supports the idea that Ang-(1-9) could play the

counter-regulatory to Ang-II and protective heart effect through

AT2R and Akt regulating the autophagy activation. The

participation of ERK has also been observed in rats with

adriamycin-induced cardiomyopathy where Ang-(1-9) improves

left ventricular function through an AT2R/ERK1/2 and

p38MAPK-dependent mechanism (96). An alternative explanation

that may contribute to the beneficial effect of Ang-(1-9) on

autophagy depends on its ability to increase ACE2 levels and

consequently decrease Ang-II levels, thus reducing basal autophagy

levels (97).

To further study the mechanism through which Ang-(1-9)

regulates autophagy, we evaluated BCN1, a key regulator in the

initial steps of autophagy and a target of multiple post-

translational control (51). BCN1 has a pivotal function in

maintaining cellular homeostasis, and its involvement is

extensively documented across a spectrum of diseases, including

cancer (98–101), and cardiovascular disorders (102).

Phosphorylation and ubiquitination of BCN1 at multiple

residues fine-tune the response to autophagy-modulating

stimuli and help in maintaining the balance between pro-

survival autophagy and pro-apoptotic responses (103, 104).

Phosphorylation of BCN1 can be produced by diverse protein

kinases, including ULK1 (105, 106), CAMKII (107), AMPK (108,

109), Akt (45) and FAK (110). BCN1 phosphorylation can

enhance or inhibit its activity, depending on the specific

phosphorylation sites and the kinases involved, as the S234 and
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S295 phosphorylations Akt-mediated evaluated in this work (45).

The precise phosphorylation pattern can be context-dependent

and is critical in modulating autophagy in response to various

cellular signals, including nutrient availability, stress, and growth

factor signaling (51).

BCN1 is characterized by three major functional domains that

play critical roles in autophagy: a) Intrinsically disordered

N-terminal region and BCL-2 homology domain (111): The

dissociation of BCN1 from BCL-2/BCL-XL proteins is crucial for

initiating autophagy (44, 103, 112). This interaction, importantly,

does not influence the anti-apoptotic functions of BCL-2/BCL-XL

(113, 114); b) Coiled-coil domain (CCD): This domain enables

BCN1 to interact with either UVRAG or ATG14, leading to the

formation of two distinct class III PI3K complexes: Complex 1 (C1)

and Complex 2 (C2). Within these complexes, the catalytic lipid

kinase subunit VSP34 phosphorylates phosphatidylinositol,

crucial for autophagy and membrane trafficking (115). The

phosphorylation site S234 within this domain (residues 174–266)

impairs BCN1’s ability to form C1 or C2 complexes (116). It

suggests that the negative regulation of autophagy by Ang-(1-9)

could be due to increased S234 phosphorylation, which inhibits the

formation of these complexes. However, this hypothesis was not

explored in our study; c) β-α Autophagy-specific (BARA) Domain

(residues 266–450): This domain interacts with membranes (48).

Located within this domain, the inhibitory phosphorylation at S295

could affect BCN1’s membrane association (48, 50, 115). This, in
FIGURE 5

Summary scheme. Ang-(1-9) triggers Akt activation via AT2R and leads the
autophagy levels.
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combination with S234 phosphorylation, may alter BCN1’s

subcellular localization and function, a topic for future investigation.

Figure 5 provides a summary of our findings. In our model,

Ang-(1-9) triggers Akt activation via AT2R. This activation leads

to the phosphorylation of BCN1 at S234 and S295, which in turn

reduces autophagy levels (45, 108, 117). The phosphorylation by

Akt enhances BCN1’s association with the adaptor protein

14-3-3 and the intermediate filament vimentin, anchoring it to

the cytoskeleton and thereby inhibiting autophagy (45). This

interaction may interfere with the cell’s ability to respond to

other pro-autophagic signals. Notably, within the context of

chemotherapy, phosphorylation at BCN1’s S234/S295 has been

observed to promote caspase activation, leading to increased

apoptosis and further suppression of autophagy (118). While the

interplay between apoptosis and autophagy in our model

presents an area for future investigation, these findings contribute

to a deeper understanding of the complex mechanisms by which

Ang-(1-9) influences cellular processes, laying the groundwork

for further exploration into its role in cardiomyocyte biology and

beyond. Additionally, our study provides valuable insights into

the role of Ang-(1-9) in autophagy regulation through in vitro

experiments, we recognize the importance of complementing

these findings with animal studies. Future investigations using in

vivo models will be essential to further validate our results and to

explore the wider physiological and therapeutic implications of

Ang-(1-9) in cardiovascular health.
phosphorylation of BCN1 at S234 and S295 which in turn reduces the
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Conclusions

The results presented in this work show that basal autophagy is

inhibited in cardiomyocytes by action of Ang-(1-9) through AT2R,

and the kinase Akt.

Besides, Ang II-induced autophagy is restrained in presence of

Ang-(1-9), This reduction unveils a novel aspect of Ang-(1-9)

action, that potentially contributing to cardioprotective effects of

this nonapeptide.
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SUPPLEMENTARY FIGURE S1

(A) Confocal images of indirect immunofluorescence and detection of
autophagosome’s LC3 dot pattern (green), and nuclei staining (blue,
Hoescht 33342) in cardiomyocytes cultured by 24 h with 10 μM Ang-(1-9).
Scale bar = 2 μm. Cardiomyocytes were cultured by 24 h in the presence
or absence of 10 μM Ang-(1-9) and 50 nM Baf-A (the last 6 h) and levels of
LC3-II (B) and p62 (C) were determined through Western-blot and
quantified. The graphs represent the average ± SEM of n= 3.

SUPPLEMENTARY FIGURE S2

Cardiomyocytes were cultured by 24 h in the presence of different
concentrations of Ang-II (10–500 nM) and 50 nM Baf-A (the last 6 h) and
levels of LC3-II were determined through Western-blot and quantified.
The graph represents the average ± SEM of n= 3 of data in Baf-A
presence. *p < 0.05 condition vs. Baf-A. One-way ANOVA and Dunnet’s
post-test.

SUPPLEMENTARY FIGURE S3

Confocal images of indirect immunofluorescence and detection of
autophagosome’s LC3 dot pattern (green), actin cytoskeleton (red,
phalloidin), and nuclei staining (blue, Hoescht 33342) in cardiomyocytes
cultured by 24 h with 10 mM Ang-(1-9) in the presence or absence of
5 mM Akti-1/2 (Akti) or 10 mM UO126. The cells were pre-incubated
during 30 min before the stimuli with the respective inhibitors. Scale
bar = 2 μm. NT, non-treated.
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