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Background: Heart failure with mildly reduced ejection fraction (HFmrEF) has
emerged as the predominant subtype of heart failure (HF). This study aimed to
develop artificial intelligence (AI)-electrocardiography (ECG) to identify and
predict the prognosis of patients with HFmrEF.
Methods: We collected 104,336 12-lead ECG datasets from April 2009 to
December 2021 in a tertiary centre. The AI-ECG encompasses a novel model
that combines an automatic labelling preprocessing method with a
transformer architecture incorporating a triplet loss for HFmrEF analysis.
Results: The receiver operating characteristic analyses revealed that the area
under the curve of AI-ECG for identifying all types of HF was acceptable
[0.873, 95% confidence interval (CI): 0.864–0.893], while that for identifying
patients with HFmrEF was relatively lower (0.824, 95% CI: 0.794–0.863) than
that for those with HF with reduced ejection fraction (EF) (0.875, 95% CI:
0.844–0.912) and those with normal EF (0.870, 95% CI: 0.842–0.894). The
analysis of ECG features showed significant increases in QRS duration
(p=0.001), QT interval (p= 0.045), and corrected QT interval (p= 0.041) with
increasing “Severity by Euclidean distance”. Following the predictability analysis
with another group of 953 patients for improvements of follow-up EF in
HFmrEF, the patients were grouped into three clusters based on the AI-
Euclidean distance; Cluster 1 had the most severe cases and poorer outcomes
than Clusters 2 (p < 0.001) and 3 (p < 0.001).
Conclusions: AI-ECG presents an innovative approach for the prognostic
stratification of cardiac contractility in patients with HFmrEF. In patients with
HFmrEF, disease progression can be predicted using AI-ECG.
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GRAPHICAL ABSTRACT
Introduction

Heart failure (HF) withmildly reduced ejection fraction (HFmrEF)

is defined as left ventricular (LV) ejection fraction (EF) between 41%

and 49% (1); its prevalence is 10%–25% among patients with HF,

and it is currently receiving attention for its clinical implications,

including its complexity, heterogeneity, and dynamic features (2).

Patients with HFmrEF have unique heterogeneous characteristics

that may be enhanced with HF with improved EF (HFimpEF) or

may be exacerbated by HF with reduced ejection fraction (HFrEF)

(3, 4). Therefore, factors predicting LVEF improvement or

deterioration in HFmrEF can be considered important variables (5).

Patients with HFmrEF had a relatively better LV systolic function

than those with HFrEF. However, based on previous studies, it is

difficult to conclude whether the prognosis of HFmrEF is absolutely

better than that of HFrEF (6). Their EFs often change over time

compared to those with other types of HF, and patients who

progress from HFmrEF to HFrEF show a poorer prognosis than

those who remain with the same type of HFmrEF or transition to

HFimpEF (7). Therefore, predicting LV contractility before disease

progression has significant implications for the clinical prognosis in

these populations. The echocardiographic evaluation of LV EF is

important in the serial follow-up of patients with HFmrEF. Because

the clinical status is often not correlated with the current cardiac
Frontiers in Cardiovascular Medicine 02
contractility, the diagnosis is sometimes delayed, and the regular

examination with echocardiography is less effective in terms of time

and cost in some patients. Thus, it would be helpful to identify the

LV EF before performing echocardiography; however, to date,

clinical or diagnostic devices to identify patients with HFmrEF

other than echocardiography have not been developed.

Deep learning models have been introduced to detect HF using

various electrocardiography (ECG) features (8–10). Several ECG

signals have different characteristics according to HF types because

their findings are associated with the process of cardiac remodelling

and structural changes. It is possible to identify the types of HF using

artificial intelligence (AI)-based ECG. AI-ECG has been validated for

detecting HFrEF and HFpEF. However, there is a lack of data on

identifying HFmrEF and predicting its prognosis using AI-ECG.

Therefore, in this study, we aimed to develop AI-ECG to identify

HFmrEF and to predict the prognosis of patients with HFmrEF.
Materials and methods

Study design and population

The study design is shown in Figure 1. The study population

included adult patients aged over 18 years who had performed
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FIGURE 1

Development, validation, and schematic strategy of the dataset creation and analysis.
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ECGs within 3 months among those who underwent

echocardiography on initial examination for clinical evaluation or

health check-up. Among them, we excluded subjects with atrial

fibrillation and other non-sinus rhythms such as junctional or

cardiac pacing rhythm to simplify the analysis and concentrated

on specific signal characteristics within a controlled group. From

the 48,440 patients in the study cohort, 104,336 ECGs obtained

at a single tertiary centre, Inha University Hospital in South

Korea from April 2009 to December 2021 were retrospectively

collected and used to develop AI-ECG. According to the current

criteria, patients who experienced clinical symptoms of dyspnea

that were accompanied by signs of pulmonary edema or effusion

on chest x-ray and elevated N-terminal pro-brain natriuretic

peptide were defined as HF (11). Among them, patients whose

LVEF was 40% or less on initial echocardiography were classified

by HFrEF, and those with LVEF between 41% and 49% were

classified by HFmrEF. There were 6,819 ECGs for HFrEF, 9,077

for HFmrEF, and 88,440 for a population whose LVEF was

≥50%, regardless of HF symptoms. For all subjects, ECG data

between April 2009 and December 2020 were used for training

and validation, and those between January 2021 and December

2021 were used for holdout tests. This study was performed in

accordance with the Declaration of Helsinki, and the study

protocol was approved by the Institutional Review Board of Inha

University Hospital (IRB number: 2023-03-024). The institutional

review board waived the need for the informed consent of the

patients because of the retrospective nature.
AI-ECG model for mildly reduced EF
analysis

Our proposed method is schematically shown in Supplementary

Figure 1 and has three novel features. First, we employed a technique

for learning the R-peak positions through automatic labelling and
Frontiers in Cardiovascular Medicine 03
machine learning. Second, our deep learning model based on

transformer architecture (12) used in BERT (13) and GPT (14)

incorporated both triplet (15) and cross-entropy losses to extract a

representation vector of the input ECG and enabled the

classification of patients with HFrEF (EF ≤40), HFmrEF (41 ≤EF
≤49), and normal EF (EF ≥50%). Third, we analysed the

characteristics of HFmrEF ECG from the extracted vectors. The

smaller the Euclidean distance between the representation vector

of the ECGs of patients with HFmrEF and the average

representation vector of the ECGs of those with normal EF, the

higher the similarity between the ECGs of the respective patients

with HFmrEF and ECGs of most patients with normal EF.

Euclidean distance is a measure of the straight-line distance

between two points in space, calculated by summing the squares

of the differences in each coordinate and taking the square root of

the result. Hence, we defined the difference between the Euclidean

distance of the representation vector of the ECGs of patients with

HFmrEF and that of the average representation vector of those

with normal EF and HFrEF as “Severity by Euclidean distance”.

Further details on the first and second distinctive features are

provided in the Supplementary Material.

Furthermore, we performed an additional analysis to assess the

potential of our model to predict whether LVEF improved at over

50% on follow-up echocardiography in patients with HFmrEF. For

this analysis, we categorised patients into groups based on the

severity of AI-ECG findings, referred to as “Clusters”. We

included 953 patients with HFmrEF whose ECG and

echocardiographic data were not used for the training, validation,

or holdout tests. These patients underwent initial ECG and

echocardiography between January 2010 and March 2022. On

initial echocardiography, LVEF was 41%–49%, which was

compatible with HFmrEF. Regardless of the etiology of HF,

patients with HFmrEF had visited the hospital regularly and had

been prescribed the optimal medication for HFmrEF. They

performed follow-up echocardiography 3–18 months after the
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initial evaluation. Cluster groupings ranged from 1 to 3, indicating

varying degrees of AI-ECG severity, with Cluster 1 representing the

most severe.
Statistical analyses

Continuous variables are presented as the mean ± standard

deviation, and categorical variables are presented as percentages

and frequencies. The clinical and ECG components were

compared using a one-way analysis of variance and χ2 test for

continuous and categorical variables, respectively. The

performance of the AI model was evaluated using receiver

operating characteristic (ROC) curves to predict the accuracy,

sensitivity, specificity, and F1 score of the dataset. The F1 score

(balanced F-score) is the harmonic mean of precision and recall.

For all variables, statistical significance was set at p < 0.05. All

statistical analyses were performed using SPSS software (version

25.0; IBM Corp, Armonk, NY, USA).
Results

Baseline clinical and ECG characteristics

The baseline clinical characteristics and ECG components of

the patients in the training, validation, and test sets are presented

in Table 1. The mean age of patients was 63.0 ± 15.9 years, and

55.8% were males. The proportions of patients with
TABLE 1 Characteristics of the patients and laboratory results in the training

Characteristics All
(n= 104,336)

Training set
(n = 77,574)

Clinical variables
Age 63.0 ± 15.9 62.0 ± 15.8

Sex, male, n (%) 58,246 (55.8) 42,976 (55.4)

BMI, kg/m2 24.4 ± 11.0 24.8 ± 15.6

HTN, n (%) 5,928 (5.7) 3,501 (4.5)

DM, n (%) 5,542 (5.3) 2,891 (3.7)

CKD, n (%) 2,427 (2.3) 1,249 (1.6)

Dyslipidaemia, n (%) 2,203 (2.1) 1,222 (1.6)

Stroke, n (%) 5,659 (5.4) 2,693 (3.5)

MI, n (%) 3,757 (3.6) 1,792 (2.3)

PAD, n (%) 898 (0.9) 534 (0.7)

Echocardiography
LVEF (%) 59.7 ± 9.5 59.7 ± 9.5

Electrocardiography
Ventricular rate 78.4 ± 19.9 78.0 ± 19.5

PR interval 164.1 ± 28.3 163.8 ± 28.1

QRS duration 93.8 ± 17.4 93.9 ± 17.1

QT interval 395.0 ± 47.4 394.9 ± 46.5

Corrected QT interval 442.6 ± 38.5 441.4 ± 37.7

P axis 48.75 ± 24.51 48.72 ± 24.24

R axis 33.02 ± 41.94 33.97 ± 41.36

T axis 50.43 ± 52.41 49.93 ± 50.92

BMI, body mass index; CKD, chronic kidney disease; DM, diabetes mellitus; HTN, hyperten

artery disease.
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hypertension, diabetes mellitus, and stroke were 5.7%, 5.3%, and

5.4%, respectively. The mean LVEF was 59.7% ± 9.5%. On ECG,

the ventricular rate per minute was 78.4 ± 19.9, and the PR

interval, QRS duration, and corrected QT interval (QTc) were

164.1 ± 28.3, 93.8 ± 17.4, and 442.6 ± 38.5 ms, respectively.
Performance of AI-ECG for identifying the
phenotypes of HF

We used the validated AI-ECG model to identify LVEF using

ROC analyses. First, the predictability of the AI-ECG model was

confirmed according to the three phenotypes of HF (Table 2;

Figure 2). Predicting each HF phenotype of AI-ECG was

acceptable. The overall accuracy was 87.3% (95% CI: 86.4–89.3) in

identifying HF type: AI-ECG had the best performance in

predicting patients with HFrEF [AUC 0.875, 95% confidence

interval (CI): 0.844–0.912], followed by those with normal EF

(AUC 0.870, 95% CI: 0.842–0.894) and HFmrEF patients (AUC

0.824, 95% CI: 0.794–0.863). Next, because we confirmed that the

model had difficulty accurately classifying HFmrEF in the three-

category classification, we also conducted binary classification of

patients with LVEF of less than 40% (EF ≤40%) and those with

more than 40% (EF >40%). The results showed that the model’s

areas under the curve (AUCs) for predicting these two groups

were 0.86 (95% CI: 0.82–0.92) (Supplementary Figure 2).

We extracted the representation vectors of the holdout test data

using an AI-ECG. Figure 3 shows the transformation of the

256-dimensional representation vectors into two-dimensional
, validation, and test sets.

Validation set
(n = 12,995)

Test set
(n = 13,767)

p-value

65.5 ± 15.6 66.2 ± 15.7 <0.001

7,380 (56.8) 7,890 (57.3) <0.001

24.1 ± 4.4 24.1 ± 4.2 <0.001

1,388 (10.7) 1,039 (7.6) <0.001

1,401 (10.8) 1,250 (9.1) <0.001

646 (5.0) 532 (3.9) <0.001

508 (3.9) 473 (3.4) <0.001

1,505 (11.6) 1,461 (10.6) <0.001

922 (7.1) 1,043 (7.9) <0.001

195 (1.5) 169 (1.2) <0.001

59.9 ± 9.4 59.8 ± 9.3 0.120

79.7 ± 20.9 79.7 ± 21.1 <0.001

165.4 ± 28.6 165.0 ± 28.9 <0.001

93.5 ± 18.2 93.7 ± 18.5 0.037

395.0 ± 49.7 395.9 ± 50.2 0.073

445.7 ± 40.19 446.39 ± 40.62 <0.001

48.56 ± 25.31 49.09 ± 25.31 0.233

29.28 ± 41.89 31.16 ± 44.85 <0.001

51.36 ± 56.51 52.35 ± 56.45 <0.001

sion; LVEF, left ventricular ejection fraction; MI, myocardial infarction; PAD, peripheral
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FIGURE 2

AI model performance and ROC curve. AI, artificial intelligence;
ROC, receiver operating characteristic.

TABLE 2 Performance of AI-ECG.

AUC TPR= Recall = Sensitivity TNR = Specificity PPV = Precision NPV F1-score
Macro 0.856 0.531 0.799 0.604 0.854 0.549

Weighted 0.867 0.875 0.522 0.855 0.698 0.860

50≤ EF 0.870 0.918 0.451 0.918 0.659 0.940

40 < EF < 50 0.824 0.178 0.983 0.442 0.939 0.254

EF≤ 40 0.875 0.452 0.963 0.451 0.963 0.452

AI-ECG, artificial intelligence-based electrocardiography; AUC, area under the curve; EF, ejection fraction; NPV, negative predictive value; PPV, positive predictive value; TNR, true negative

rate; TPR, true positive rate.
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data by applying T-distributed Stochastic Neighbor Embedding (T-

SNE). The black, yellow, and purple stars in Figure 4 represent the

mean vectors of patients with normal EF, HFmrEF, and HFrEF,

respectively. Among the 13,767 holdout test dataset shown in

Figure 3A, patients with normal EF occupied the largest area

with 11,910 instances. With 984 instances, HFmrEF was more

widely distributed because it shares characteristics with patients

with normal EF and those with HFrEF. However, the HFmrEF is

slightly skewed toward the HFrEF region. This indicates a higher

similarity between the HFmrEF and HFrEF ECGs. The mean

vector of the HFrEF of 873 patients was positioned furthest from

the mean vector of the normal EF of patients and was

predominantly distributed to the right. Figure 3B shows a

visualisation of the representation vector extracted only from the

ECGs corresponding to HFmrEF in the holdout test set.

Figure 3C shows the partitioning of the HFmrEF representation

vector into three clusters using k-means clustering with a

parameter of k = 3. Notably, Cluster 1 resides in close proximity

to the centre of the HFrEF vector, indicating the composition of

patients with compromised health status. Conversely, Cluster 3,

positioned closest to the centre of the normal EF vector,
Frontiers in Cardiovascular Medicine 05
encompassed patients exhibiting relatively favourable health

conditions. Cluster 2 was positioned between Clusters 1 and 3

but exhibited a skewed tendency toward Cluster 1. We applied

the k-means clustering we learned here to follow up the external

validation data and obtained intriguing results. An analysis of

these findings is presented in Figure 4.
Characteristics of patients with mildly
reduced HF according to the AI-estimated
Euclidean distance from the ECGs of
patients with HFrEF and preserved EF

We analysed ECG features, such as PR, QT, QTc interval, QRS

duration, and P, R, and T axes using the AI-estimated Euclidean

distance to identify specific correlations with the “Severity by

Euclidean distance” of the patients with HFmrEF. As a result, the

QRS duration (p = 0.001), QT interval (p = 0.045), and QTc

interval (p = 0.041) increased significantly with increasing

“Severity by Euclidean distance” (Supplementary Figure 3).

We performed additional analysis of the three cluster groups to

determine whether AI-ECG could predict the LVEF in patients

with HFmrEF. In this cohort, the medication history of drugs

proven to improve the prognosis in patients with HF was

investigated, and the medications taken continuously for at least

3 months are presented in Supplementary Table 1. As a result,

renin-angiotensin-aldosterone inhibitors were taken the most in

Cluster 1. However, there was no significant difference in the

proportion of beta-blockers, mineralo-receptor antagonists, and

sodium-glucose cotransporter 2 inhibitors in each cluster. This

meant that the medications did not show a consistently higher

rate in either cluster. Kaplan–Meier analysis where the LVEF was

improved by ≥50% on follow-up echocardiography revealed that

Cluster 1 had poor results compared with Cluster 2 (p = 0.003)

or Cluster 3 (p < 0.001) (Figure 4).
Discussion

This study developed and validated AI-ECG to identify the

types of HF in patients using 12-lead ECG; this demonstrated a

reasonable performance in identifying patients with HFrEF and

those with normal EF. Because the performance in identifying

patients with HFmrEF was relatively low compared with that in

identifying patients with other types of HF, we sought ECG
frontiersin.org
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FIGURE 3

T-SNE visualization of the representation vectors extracted by the AI model. (A) T-SNE visualisation of the expression vectors extracted for all holdout
test sets for patients with the AI-ECG model trained on the ECG dataset. (B) Visualization of representation vectors extracted from only the ECGs
corresponding to HFmrEF in the holdout test set. (C) Visualization of the HFmrEF expression vector partitioned into three clusters by K-means
clustering with a parameter of k = 3. AI, artificial intelligence; ECG, electrocardiography; EF, ejection fraction; HFmrEF, heart failure with mildly
reduced ejection fraction; HFrEF, heart failure with reduced ejection fraction.

FIGURE 4

Kaplan–Meier analysis regarding improving LVEFs among the three
“Cluster” groups by the AI-estimated Euclidean distance in patients
with HFmrEF. AI, artificial intelligence; EF, ejection fraction; LV,
left ventricle.
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characteristics using the AI-estimated Euclidean distance in these

patients. It was revealed that the QRS duration, QT interval, and

QTc interval showed significant changes according to severity.

Based on these results, AI-ECG may be used to predict the

prognosis of patients with HFmrEF.
Clinical applications of developing a model
that identifies HFmrEF

Since the European Society of Cardiology Heart Failure

Guidelines first recognised HFmrEF as an independent entity,

different from HFrEF and HFpEF, in 2016, HFmrEF has been
Frontiers in Cardiovascular Medicine 06
regarded as a major disease entity in all types of HF (16). It also

poses a significant burden on global healthcare as its prevalence

increases (17). As mentioned above, patients with HFmrEF have

heterogeneous characteristics, and many previous studies on

HFmrEF have not identified consistent similarities between the

characteristics of HFmrEF and those of either HFrEF or HFpEF

(18). Furthermore, patients with HFmrEF tend to exhibit a change

in their phenotypes, which is represented by LVEFs over time,

more predominantly than those with other types of HF (19).

Therefore, developing a model that detects the degree of cardiac

dysfunction using AI-ECG could help manage these patients (20).

Until now, several studies have been conducted to detect cardiac

contractile dysfunction using AI (9, 10, 21, 22), Attia et al. (9)

revealed an AI-based model for identifying patients with LV

systolic dysfunction (defined as LVEF under 35%) using ECG and

echocardiography. Its performance had an AUC of 0.93. After 3.4

years of follow-up, patients with baseline positive AI-ECG and

negative echocardiography had significantly higher rates of LV

systolic dysfunction. Another study by Zhang et al. (10) reported

the AI model to detect patients with congestive HF, and the

results showed good performance and accuracy, sensitivity, and

specificity reached 94.97%, 89.38%, and 99.50%, respectively.

A study by Yao et al. (21) designed an AI model for identifying

patients with lower LVEF under 50% by randomized clinical trial.

This model showed that the intervention group (the patients who

used this AI model) had a higher rate of low EF (2.1% vs. 1.6%

in control, odds ratio 1.32 (1.01–1.61) compared with the control

group. Similarly, Vaid et al. (22) showed AI-ECG to predict

cardiac dysfunction from ECG, and it demonstrated strong

performance in detecting both right ventricular and LV systolic

dysfunction (LVEF ≤40%), with AUCs of 0.84 and 0.94,

respectively, across internal and external databases. All of those

studies are consistent with our study in that they used DNN with

numerous ECG data in a real-world population, predicted

ventricular dysfunction defined by echocardiography, and showed
frontiersin.org
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good performance of AI model. However, no clinical trials have

been conducted to detect HFmrEF. HFmrEF, unlike other HF

phenotypes, has a narrow range with a LVEF of 41%–49%, and

has complex and heterogeneous patient characteristics. Patients

with HFmrEF have fewer complaints of dyspnoea or chest

discomfort than those with HFrEF at the time of diagnosis. For

this reason, predicting these patients and their prognosis could be

a clinical burden. Therefore, it might be important to screen

asymptomatic patients for HFmrEF and to prepare them for the

possible manifestations of cardiac dysfunction. This AI-based trial

could predict the prognosis of patients with HFmrEF, leading to

appropriate medical strategies. Furthermore, its application in

clinical practice would be utilized by longitudinal monitoring of

patients, which would involve quick and precise detection of

cardiac problems (23–26).

Given the increasing burden of HF on healthcare system, it is

worth valuable to discuss the economic benefits of adoping

AI-ECG in patients with HFmrEF. Most of the economic costs of

HF patients are attributable to inpatient hospitalization costs

(27). About 800,000 heart failure patients experienced

hospitalization per year in the United States, and the cost per

person was about $19,000. Considering the prevalence of

HFmrEF (10%–25%), it is estimated that about 80,000–200,000

hospitalized patients were present. If the clinical effect of AI-

ECG can reduce the hospitalization rate of HFmrEF patients by

10%, the expected economic savings per year can be estimated at

about $19 million to $28 million.
Performance of AI-ECG

AI-ECG in this study revealed an overall accuracy of 87.3%

(95% CI: 86.4–89.3) and AUCs of >0.80 for each phenotype of

HF. Based on these results, this model demonstrated a favourable

performance. Other clinical trials predicting HF subtypes have

shown comparable results. A previous study predicted LV systolic

dysfunction as an LVEF of <35% in the normal population with

an AUC of 0.93 (9). Another study achieved an AUC of 0.87

with a deep-learning model to detect HFpEF in the normal

population (8). In our study, different detectability results were

obtained for each type of HF. The AUCs for detecting an EF of

≤40% and ≥50% were 0.875 and 0.870, respectively. However, to

detect an EF between 41% and 49%, the number of patients with

HFmrEF was relatively low (0.824). We could not directly

compare the performance of our model in detecting HFmrEF

with that of the others, as there have been no other reference

studies using AI involving patients with HFmrEF. However, it

was postulated that since patients with HFmrEF have more

heterogeneous, complex, and diverse aetiologies, it could be more

difficult to detect patients with HFmrEF than those with other

types of HF using AI-ECG (28). The results of the scarce pattern

of T-SNE visualisation in patients with HFmrEF also reflect these

features. Although detectability in the HFmrEF group was not

effective, this model may provide important clues regarding the

patient’s clinical prognosis. For example, even in patients with

HFmrEF with the same range of EF, AI-ECG could detect “those
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with the possibility of upcoming ‘HFrEF’ for one group and

‘those with normal EF’ for another group”. If patients are

predicted to be in the HFrEF group and have more

electrocardiographic characteristics of HFrEF than those not

predicted, their clinical characteristics may be similar to those of

patients with HFrEF. However, further studies with more detailed

designs are required to verify this hypothesis.
ECG characteristics according to the
AI-estimated Euclidean distance

In our study, the ability of AI-ECG to distinguish the ECG

pattern in each HF phenotype was generally acceptable, except for

HFmrEF. As a result of analysing the characteristics according to

the AI-predicted EF Euclidean distance of patients with HFrEF

and those with a normal range of EF, abnormal ECG findings

such as a prolonged QRS duration, QT interval, and QTc interval,

were closely correlated with those in patients predicted to have a

condition closer to HFrEF. Conversely, a shorter QRS duration,

QT interval, and QTc interval were related to a predicted ECG

finding closer to that of the normal population. Previous studies

correlate several ECG features with different types of HF.

Purnasidha et al. created a scoring system to predict HFrEF based

on ECG characteristics. A longer QRS duration (>100 ms) and QT

interval are associated with HF with systolic dysfunction (29), and

these findings support our observations, along with left atrial

hypertrophy and right bundle branch block. Other studies also

showed an association of a QRS duration of >100 ms with a

reduced EF of <45% (30) and prolonged QTc interval with

adverse outcomes, such as long-term mortality (31). Based on the

ECG characteristics, our findings in the HFmrEF group (scattered

pattern of T-SNE and lower performance in detecting the group)

reflect the non-unified characteristics of patients with HFmrEF.

Applying the AI-based model in patients with HFmrEF could

have great clinical applicability as it can predict the prognosis of

this patient cohort and the responses, such as drug response and

cardiovascular outcomes.
Limitations

This study had some limitations. First, this was a retrospective

study, and there is a possibility of selection bias. To minimise this

limitation, we collected data from approximately 100,000 ECGs

from over 50,000 patients. Second, the study population was

recruited from a single centre in South Korea. Further studies

involving more institutions are required to validate this model.

Third, given the inherent limitations of deep neural networks,

they have structural limitations in creating causal relationships.

To minimise these limitations, training, validation, and holdout

testing were performed using large amounts of refined raw digital

ECG data. Fourth, an echocardiographic assessment of the entire

population was not performed using the same equipment, and

not all analyses of LVEF were performed using Simpson’s

method, which might have produced inconsistencies in
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echocardiographic estimations. Fifth, in the analysis to verify the

predictability of LVEF in clustering patients who underwent

follow-up ECG, a consistent follow-up duration of ECG was not

shown for each patient because of its retrospective nature. Future

prospective studies should address these limitations. Additionally,

to enhance the study’s robustness, the training, validation, and

holdout test sets were segmented based on different time periods.

As a result, while the proportions of normal EF in the datasets

are similar, the training set contains a larger number of normal

EF, leading to clinical bias, as observed in Table 1.
Conclusions

AI-ECG could be used to identify patients with HFmrEF and

predict future cardiac contractility based on ECG characteristics.

Further prospective studies are required to examine the feasibility

of its use in clinical practice.
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