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Background:
Early prediction of heart failure (HF) after acute myocardial infarction (AMI) is
essential for personalized treatment. We aimed to use interpretable machine
learning (ML) methods to develop a risk prediction model for HF in AMI patients.
Methods: We retrospectively included patients initially with AMI who received
percutaneous coronary intervention (PCI) in our hospital from November 2016
to February 2020. The primary endpoint was the occurrence of HF within 3
years after operation. For developing a predictive model for HF risk in AMI
patients, the least absolute shrinkage and selection operator (LASSO)
Regression was used to feature selection, and four ML algorithms including
Random Forest (RF), Extreme Gradient Boost (XGBoost), Support Vector
Machine (SVM), and Logistic Regression (LR) were employed to develop the
model on the training set. The performance evaluation of the prediction
model was carried out on the training set and the testing set, utilizing metrics
including AUC (Area under the receiver operating characteristic curve),
calibration plot, and decision curve analysis (DCA). In addition, we used the
Shapley Additive Explanations (SHAP) value to determine the importance of
the selected features and interpret the optimal model.
Results: A total of 1220 AMI patients were included and 244 (20%) patients
developed HF during follow-up. Among the four evaluated ML models, the
XGBoost model exhibited exceptional accuracy, with an AUC value of 0.922.
The SHAP method showed that left ventricular ejection fraction (LVEF), left
ventricular end-systolic diameter (LVDs) and lactate dehydrogenase (LDH)
were identified as the three most important characteristics to predict HF risk in
AMI patients. Individual risk assessment was performed using SHAP plots and
waterfall plot analysis.
Conclusions: Our research demonstrates the potential of MLmethods in the early
prediction of HF risk in AMI patients. Furthermore, it enhances the interpretability
of the XGBoost model through SHAP analysis to guide clinical decision-making.
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1 Introduction

Despite the progress in percutaneous coronary intervention

(PCI), myocardial infarction remained a critical condition with

high mortality and morbidity (1). Heart failure (HF) after acute

myocardial infarction (AMI) was the main cause of increased

mortality in patients with AMI (2). According to the research

report, HF after AMI increased the risk of death of patients by

3–4 times (3). Therefore, early identification of the risk of HF

after myocardial infarction and the implementation of

personalized treatment can result in a reduction in mortality and

an enhancement of quality of life for patients.

Currently, predictive models for evaluating the prognosis of

AMI patients were primarily constructed using logistic

regression (LR) methods. Commonly risk scoring systems, such

as the Thrombolysis in Myocardial Infarction (TIMI) Risk

Score (4) and the Global Registry of Acute Coronary Events

(GRACE) Risk Score (5), However, these prognostic models

had some limitations (6). First, these systems rely only on

traditional risk factors, such as age, smoking, hypertension, and

diabetes, these systems relied only on traditional risk factors,

such as age, smoking, hypertension, and diabetes, and did not

include key prognostic indicators such as laboratory data and

echocardiographic parameters (7, 8), which might not

adequately reflect the multiple and complex pathophysiological

processes that lead to the development and progression of AMI

(9). Additionally, these models were mainly used to predict

mortality, and their accuracy in predicting heart failure

was limited.

Machine learning (ML) models have been shown to improve

risk prediction in various cardiovascular disease (10, 11)

Through simulating human learning activities, ML automatically

obtained information from big clinical data for learning (12, 13).

In patients with AMI, utilization of data-driven models to

determine the risk of HF has been attempted, Li et al.

successfully developed an ML model for predicting the risk of

HF after AMI (14), but their study was limited to clinical tests

and did not include imaging, and other findings. In addition, the

inherent “black box” nature of ML algorithms makes their

internal prediction process difficult to interpret, limiting practical

applications (15). Therefore, our study introduced the Shapley

Additive Explanations (SHAP) method, a game theory-based

interpretable ML method developed by Lundberg and Le (16).

This method can elucidate the complex relationship between

features and predictions. Compared to other explanatory

methods mentioned in previous literature, SHAP offered

significant advantages in interpretability and visualization,

thereby enabling a more comprehensive understanding and

interpretation of complex models (17).

Therefore, this study aimed to establish and validate an

interpretable ML model for predicting the risk of HF in AMI

patients, and used the SHAP method to visualize how the ML

model makes decisions. This effective computer-assisted

approach can assist frontline clinicians in the early identification

and intervention of HF occurrences.
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2 Materials and methods

2.1 Study design and participants

We retrospectively included patients diagnosed with AMI who

underwent PCI at the First Affiliated Hospital of Fujian Medical

University from November 2016 to February 2020. The inclusion

criteria for AMI patients were: (a) age >18 years; (b) according

to the current diagnostic guidelines for AMI, the first diagnosis

on admission included clinical symptoms, typical changes in the

electrocardiogram, and elevated cardiac biomarkers (18), (c)

without a history of HF. Patients meeting any of the following

exclusion criteria were excluded: history of PCI or coronary

artery bypass graft surgery; death during follow-up; moderate to

severe valvular heart disease; severe immunological disorders;

malignant tumors combined with malignant hematological

diseases; severe infections; patients with more than 20% missing

data or lost to follow-up.

According to relevant studies and clinical availability, we

collected 45 variables related to the risk of HF from electronic

medical records, including baseline demographics, clinical

comorbidities, laboratory tests, echocardiographic parameters,

and angiographic findings (Table 1). All variables were collected

within 24 h of admission and immediately before PCI. As some

patients underwent emergency PCI, the echocardiography

records included data both before and after the procedure.
2.2 Follow-up

The primary endpoint was the development of new HF events

(New York Heart Association HF classification from II to IV),

including AMI patients who developed HF during hospitalization

and within the 3-year follow-up period. Data on each patient

were obtained from electronic medical records and then verified

through outpatient follow-up and telephone calls. Follow-up

ended on 20 March 2023. This study was approved by the

Institutional Review Committee of the First Affiliated Hospital of

Fujian Medical University [No: MRCTA and ECFAH of FMU

(2021)072; March 4, 2021]. Due to the retrospective

observational design, the requirement for informed consent

was eliminated.
2.3 Feature selection, model development
and performance evaluation

The dataset was randomly divided into a training set (70%,

N = 854) and a testing set (30%, N = 366). To enhance prediction

accuracy and interpretability, we employed the least absolute

shrinkage and selection operator (LASSO) regression to select

key features from the training set (19). LASSO is a regression

method designed for high-dimensional data. It introduces a

penalty term to the least squares method, compressing some

regression coefficients to zero, which achieves variable selection
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TABLE 1 Baseline clinical characteristics of the study sample.

Characteristics Total Non-HF HF P-value

(n = 1,220) (n = 976) (n = 244)

Demographic characteristics
Age, years 65.0 (57.0–73.0) 65.5 (57.0–72.0) 64.5 (54.0–74.3) 0.758

Gender 0.014

Female 224 (18.4) 198 (20.3) 26 (10.7)

Male 996 (81.6) 778 (79.7) 218 (89.3)

Heart rate, beats/mim 78.0 (68.0–90.0) 76.5 (101.0–146.8) 83.0 (72.0–97.3) <0.001

Systolic blood pressure, mmHg 128.0 (112.0–146.0) 128.0 (112.0–150.0) 119.5 (107.5–135.3) <0.001

Diastolic blood pressure, mmHg 75.0 (68.0–84.0) 74.0 (68.0–84.0) 76.0 (68.0–86.0) 0.427

Admission diagnosis, STEMI 998 (81.8) 791 (81.0) 207 (84.8) 0.398

Cardiovascular risk factors
Hypertension 736 (60.3) 588 (60.2) 148 (60.7) 0.934

Diabetes mellitus 364 (29.8) 302 (30.9) 62 (25.4) 0.217

Hypercholesterolemia 462 (37.9) 378 (38.7) 84 (34.4) 0.311

Current smoking 788 (64.6) 632 (64.8) 156 (63.9) 0.866

Alcohol drinking 454 (37.2) 364 (37.3) 90 (36.9) 0.933

Laboratory parameters
White blood cell count, k/ul 8.8 (6.8–11.3) 8.4 (6.6–10.9) 10.1 (8.0–12.8) <0.001

Alanine aminotransferase, u/L 32.0 (20.0–55.0) 30.0 (20.0–48.8) 52.0 (24.0–92.5) <0.001

Aspartate aminotransferase, u/L 57.0 (26.0–152.3) 51.5 (26.0–122.0) 96.0 (24.8–350.8) 0.001

LDH, u/L 333.0 (220.0–659.0) 312.5 (209.5–562.8) 655.0 (250.3–1,180.3) <0.001

Creatine kinase isoenzyme, u/L 18.0 (12.0–50.0) 16.0 (11.0–42.0) 25.0 (14.0–98.5) <0.001

Creatinine, umol/L 75.0 (64.0–88.9) 74.0 (63.2–86.7) 82.0 (66.8–99.4) 0.001

Glucose, mmol/L 5.5 (4.8–7.0) 5.4 (4.8–6.9) 5.9 (4.9–7.8) 0.028

Total Cholesterol, mmol/L 4.3 (3.5–4.9) 4.3 (3.5–5.0) 4.3 (3.4–4.8) 0.367

Triglycerides, mmol/L 1.4 (1.0–1.8) 1.4 (0.9–1.8) 1.4 (0.9–1.8) 0.686

High density lipoprotein, mmol/L 1.0 (0.8–1.1) 1.0 (0.8–1.1) 0.9 (0.8–1.1) 0.235

Low density lipoprotein, mmol/L 2.8 (2.1–3.5) 2.9 (2.2–3.5) 2.7 (1.9–3.5) 0.366

Glycated hemoglobin, % 5.9 (5.5–6.7) 5.9 (5.5–6.7) 6.0 (5.6–6.9) 0.223

hsCRP, mg/L 5.7 (1.3–22.2) 5.3 (1.3–18.0) 10.8 (2.2–48.3) 0.001

NT-proBNP, pg/ml 805.0 (295.3–1,940.3) 649.0 (242.3–1,687.5) 1,494.0 (702.0–4,265.0) <0.001

Cardiac troponin I, ng/ml 1.9 (0.3–7.8) 1.5 (0.3–7.1) 4.2 (0.2–12.3) 0.018

Culprit vessel
Left main coronary artery 72 (5.9) 60 (6.1) 12 (4.9) 0.606

Left anterior descending 802 (65.7) 648 (66.4) 154 (63.1) 0.495

Left circumflex coronary artery 540 (44.3) 436 (44.7) 104 (42.6) 0.684

Right coronary artery 618 (50.7) 498 (51.0) 120 (49.2) 0.716

Medications at discharge
Diuretic 982 (80.5) 782 (80.1) 200 (82.0) 0.598

ACEI/ARB 820 (67.2) 660 (67.6) 160 (65.6) 0.666

B-blocker 1,126 (92.3) 900 (92.2) 226 (92.6) 0.879

Statin 1,212 (99.3) 970 (99.4) 242 (99.2) 0.802

Aspirin 1,058 (86.7) 840 (86.1) 218 (89.3) 0.792

Echocardiographic parameters
LA dimension, cm 4.0 (3.7–4.3) 3.9 (3.7–4.2) 4.2 (3.9–4.5) <0.001

LVDd, cm 5.0 (4.7–5.4) 4.9 (4.6–5.2) 5.5 (5.1–5.8) <0.001

LVDs, cm 3.5 (3.1–3.9) 3.3 (3.0–3.7) 4.3 (3.9–4.7) <0.001

LVVd, ml 118.8 (101.4–141.3) 113.4 (98.8–131.7) 147.7 (124.4–168.5) <0.001

LVVs, ml 49.1 (37.0–66.7) 44.1 (34.2–56.3) 81.9 (65.1–100.1) <0.001

IVST, cm 1.0 (0.9–1.1) 1.0 (0.9–1.1) 1.0 (0.9–1.1) 0.217

LVPWT, cm 0.9 (0.8–1.0) 0.9 (0.8–1.0) 0.9 (0.8–1.0) 0.202

Left ventricular mass, g 171.3 (142.8–206.8) 163.5 (138.6–196.8) 201.8 (169.1–236.3) <0.001

Stroke volume, ml 66.8 (56.2–77.6) 67.6 (57.0–78.1) 61.6 (51.3–74.1) 0.005

LVFS, % 31.0 (25.1–35.6) 32.4 (28.7–36.3) 20.9 (18.1–25.3) <0.001

LVEF, % 58.3 (49.3–65.0) 60.4 (55.1–65.9) 42.0 (37.2–49.5) <0.001

E/e 4.6 (3.9–5.5) 4.6 (3.9–5.4) 4.6 (3.9–5.9) 0.748

LDH, lactate dehydrogenase; hsCRP, hypersensitive C-reactive protein; NT-proBNP, N-terminal pro-B-Type Natriuretic Peptide; ACEI, angiotensin-converting enzyme inhibitor; ARB,

angiotensin receptor blocker; LVDd, left ventricular end-diastolic dimension; LVDs, left ventricular end-systolic dimension; LVVd, left ventricular end-diastolic volume; LVVs, left

ventricular end-systolic volume; IVST, interventricular septal thickness; LVPWT, left ventricular posterior wall thickness; LVFS, left ventricular fraction shortening; LVEF, left ventricular
ejection fraction; E/e, The ratio of peak velocity (E) of early diastolic mitral valve orifice blood flow to peak velocity (e) of annular motion.
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and improves the model’s generalization capability (20). In this

study, we used the “glmnet” package in R to perform LASSO

regression and optimal lambda parameters were determined

using 10-fold cross-validation, with the Lambda.1se value

corresponding to the minimum cross-validation error selected as

the model’s optimal value. The count of variables with non-zero

regression coefficients at this optimal value was conducted.

Four ML models were developed using the training sets,

including random forest (RF), extreme gradient boosting

(XGBoost), support vector machine (SVM), and LR classifiers.

All continuous variables were normalized to a distribution with a

mean of 0 and a standard deviation of 1. At the same time, to

address the impact of data imbalance, we adopted the Synthetic

Minority Over Sampling Technique (SMOTE) to improve the

final predictive performance of the model (21).

In addition, we used several evaluation metrics on the testing

set to assess the performance of different ML models, including

the area under the receiver operating characteristic curve (AUC),

accuracy, sensitivity, specificity, precision, recall, and F1 score.

Calibration curves were used to evaluate calibration capability,

and decision curve analysis (DCA) was used to evaluate

clinical applicability.
2.4 Model interpretation

When applying ML predictive models to clinical decision-

making, it is crucial to understand how the model predicts
FIGURE 1

Patient selection flowchart.
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individual risk. Therefore, we utilized the SHAP method to

visually interpret the optimal mode (22) and to observe the

contribution of features to the model’s output at the individual

level. By randomly selecting one patient who did not develop HF

during follow-up and another who did, we evaluated the

contribution of features to individual predictions, providing a

tailored risk assessment for each patient.
2.5 Statistical analysis

Statistical R software (version 3.6.3) and Python software

(version 3.7.0) were used for data analysis, model development,

and validation. Continuous variables were represented as the

median (p25, p75), whereas categorical variables were represented

as numbers (n) and proportions (%). Baseline characteristics of

groups were compared using the Wilcoxon rank-sum test for

continuous variables and the chi-square test for categorical

variables, considering P < 0.05 as statistically significant.
3 Results

3.1 Patient characteristics

The screening process is illustrated in Figure 1. According to

the inclusion and exclusion criteria, this study included 1,220

patients with AMI. During the follow-up period, a total of
frontiersin.org
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TABLE 2 Patient characteristics in training and testing sets.

Characteristics Training Testing P-value

(n = 854) (n = 366)
HF 170 (19.9) 74 (20.2) 0.310

Basic characteristics
Age, years 64.0 (57.0–73.0) 63.5 (58.0–72.5) 0.683

Gender 0.553

Female 162 (19.0) 62 (16.9)

Male 692 (81.0) 304 (83.1)

Heart rate, beats/mim 78.0 (69.0–90.0) 78.0 (69.0–90.0) 0.258

Systolic blood pressure, mmHg 128.0 (112.0–146.0) 125.0 (110.0–144.0) 0.104

Diastolic blood pressure, mmHg 76.0 (68.0–85.0) 74.0 (68.0–84.0) 0.516

Cardiovascular risk factors
Hypertension 518 (60.7) 218 (59.6) 0.800

Diabetes mellitus 224 (26.2) 102 (27.9) 0.675

Hypercholesterolemia 323 (37.8) 139 (38.0) 0.778

Current smoking 544 (63.7) 244 (66.7) 0.483

Alcohol drinking 336 (39.3) 118 (32.2) 0.096

Laboratory parameters
White blood cell count, k/ul 8.8 (7.1–11.3) 8.7 (6.7–11.3) 0.686

Alanine aminotransferase, u/L 32.0 (20.0–54.0) 33.0 (20.0–56.0) 0.622

Aspartate aminotransferase, u/L 57.0 (25.0–161.0) 56 (26.0–161.0) 0.752

LDH, u/L 339.0 (220.0–659.0) 327.0 (220.0–659.0) 0.915

Creatine kinase isoenzyme, u/L 18.0 (12.0–54.0) 17 (11.0–35.0) 0.154

Creatinine, umol/L 75 (64.0–89.0) 75.8 (64.0–88.0) 0.702

Glucose, mmol/L 5.5 (4.8–6.9) 5.6 (4.8–7.4) 0.478

Total Cholesterol, mmol/L 4.3 (3.5–5.0) 4.3 (3.6–4.9) 0.784

Triglycerides, mmol/L 1.4 (1.0–1.8) 1.3 (0.9–2.0) 0.664

High density lipoprotein, mmol/L 1.0 (0.8–1.1) 1.0 (0.8–1.1) 0.257

Low density lipoprotein, mmol/L 2.8 (2.1–3.5) 2.8 (2.1–3.4) 0.982

Glycated hemoglobin,% 5.9 (5.5–6.7) 5.9 (5.5–6.9) 0.945

hsCRP, mg/L 5.7 (1.4–20.4) 5.9 (1.3–25.0) 0.592

NT-proBNP, pg/ml 744.0 (280.0–2,050.0) 902.0 (354.0–1,860.0) 0.759

Cardiac troponin I, ng/ml 1.9 (0.3–8.5) 1.6 (0.3–5.7) 0.616

Culprit vessel
Left main coronary artery 92 (10.7) 20 (10.9) 0.811

Left anterior descending 277 (64.9) 124 (67.8) 0.491

Left circumflex coronary artery 192 (45.0) 78 (42.5) 0.594

Right coronary artery 205 (48.0) 104 (56.8) 0.051

Medications at discharge
Diuretic 351 (82.2) 140 (76.5) 0.079

ACEI/ARB 286 (67.0) 124 (67.8) 0.851

B-blocker 394 (92.3) 169 (92.3) 0.974

Statin 425 (99.5) 181 (98.9) 0.381

Aspirin 367 (85.9) 162 (88.5) 0.481

Echocardiographic parameters
LA dimension, cm 4.0 (3.7–4.3) 4.0 (3.7–4.4) 0.084

LVDd, cm 5.0 (4.7–5.4) 5.0 (4.7–5.4) 0.649

LVDs, cm 3.4 (3.1–3.9) 3.5 (3.0–4.0) 0.703

LVVd, ml 119.4 (101.9–141.3) 117.7 (100.8–142.5) 0.646

LVVs, ml 48.1 (37.6–65.5) 51.6 (35.9–69.2) 0.706

IVST, cm 1.0 (0.9–1.2) 1.0 (0.9–1.1) 0.994

LVPWT, cm 0.9 (0.8–1.0) 0.9 (0.8–1.1) 0.683

Left ventricular mass, g 169.0 (141.3–206.4) 174.0 (144.7–211.6) 0.359

Stroke volume, ml 67.0 (56.5–77.6) 66.1 (55.7–77.4) 0.703

LVFS, % 31.1 (25.9–35.7) 31.9 (26.8–36.2) 0.306

LVEF, % 58.6(50.8–65.0) 58.8(47.5–64.8) 0.395

E/e’ 12.0(9.7–15.3) 12.4(10.0–16.0) 0.493

LDH, lactate dehydrogenase; hsCRP, hypersensitive C-reactive protein; NT-proBNP, N-terminal pro-B-Type Natriuretic Peptide; ACEI, angiotensin-converting enzyme inhibitor; ARB,

angiotensin receptor blocker; LVDd, left ventricular end-diastolic dimension; LVDs, left ventricular end-systolic dimension; LVVd, left ventricular end-diastolic volume; LVVs, left

ventricular end-systolic volume; IVST, interventricular septal thickness; LVPWT, left ventricular posterior wall thickness; LVFS, left ventricular fraction shortening; LVEF, left ventricular
ejection fraction; E/e, The ratio of peak velocity (E) of early diastolic mitral valve orifice blood flow to peak velocity (e’) of annular motion.
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244 patients (20%) developed HF. Differences in baseline

characteristics are summarized in Table 1. Compared to the

Non-HF group, the HF group had a higher proportion of male

patients (P = 0.014), higher heart rates (P < 0.001), and lower

systolic blood pressure (P < 0.001). Baseline levels of white blood

cell count, alanine aminotransferase, aspartate aminotransferase,

lactate dehydrogenase (LDH), creatine kinase isoenzyme

(CK-MB), creatinine, glucose, hypersensitive C-reactive protein

(hsCRP), N-terminal pro-B-Type Natriuretic Peptide

(NT-proBNP), and cardiac troponin I were significantly elevated

in the HF group compared to the Non-HF group (P < 0.05).

Additionally, the HF group had greater left heart size, left

ventricular volume, and left ventricular mass at baseline, whereas

stroke volume, left ventricular short-axis shortening rate, left

ventricular ejection fraction (LVEF), The ratio of peak velocity

(E) of early diastolic mitral valve orifice blood flow to peak

velocity (e) of annular motion were lower (P < 0.05). The specific

baseline data between the training and testing sets were shown

in Table 2, with no significant differences between the two

groups (P > 0.05).
3.2 Feature selection

In this study, six features with non-zero regression coefficients

were selected to construct predictive models through LASSO feature
FIGURE 2

(A) The LASSO coefficient profiles of all variables, (B) selection of appropriate
(D) ROC curves of ML models in training set, (E) ROC curves of ML models
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selection analysis (Figures 2A,B), such as LDH, CK-MB, hsCRP,

NT-proBNP, LVEF and left ventricular end-systolic dimension

(LVDs). In addition, the correlation between these features was

illustrated by a heatmap based on the matrix of correlation

coefficients (Figure 2C). All correlation coefficients were below 0.80,

indicating that there was no serious collinearity among the features.
3.3 Development and evaluation of models

We used four ML models, RF, XGBoost, SVM, and LR,

combined with the above six features to predict the risk of HF

after AMI. Figures 2D,E and Table 3 describe the performance of

these predictive models, with results indicating that the XGBoost

model exhibits better discriminative ability. Compared to other

ML models, the XGBoost model exhibited the greatest AUC on

both the training and testing set. Although the XGBoost model

was slightly lower than the LR model in specificity and F1 score

in the testing set, it still outperformed the other models in other

performance metrics.

The discriminative ability of the models in predicting HF after

AMI was further analyzed by plotting the density curves

(Figures 3A–D). The results showed that the XGBoost model had

the smallest overlap and a large discriminative area, followed by

LR and RF model, indicating their better discriminative ability.

In contrast, SVM model had a relatively large overlap area.
parameters, (C) correlation coefficients between clinical characteristics,
in testing set.
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TABLE 3 Performance comparison of the ML models in training and testing sets.

Model AUC Accuracy Sensitivity Specificity Precision Recall F1-score

Training set
XGBoost 0.972 (0.957–0.985) 0.901 (0.871–0.930) 0.729 0.974 0.873 0.729 0.795

RF 0.945 (0.918–0.970) 0.906 (0.878–0.934) 0.682 0.962 0.817 0.682 0.744

SVM 0.915 (0.874–0.949) 0.885 (0.855–0.916) 0.635 0.947 0.750 0.635 0.688

LR 0.920 (0.882–0.951) 0.900 (0.865–0.921) 0.659 0.962 0.812 0.659 0.727

Testing set
XGBoost 0.922 (0.877–0.960) 0.896 (0.862–0.949) 0.795 0.939 0.821 0.676 0.716

RF 0.915 (0.865–0.957) 0.891 (0.852–0.940) 0.649 0.955 0.800 0.649 0.708

SVM 0.893 (0.823–0.933) 0.886 (0.832–0.920) 0.622 0.936 0.786 0.622 0.677

LR 0.904 (0.841–0.949) 0.877 (0.812–0.911) 0.676 0.952 0.781 0.595 0.725

FIGURE 3

Density curves for all the models. (A) LR model, (B) RF model, (C) XGBoost model, (D) SVM model. The orange indicates patients without HF, and the
blue indicates patients with HF. The less overlap between the blue and orange colors, the better the model’s ability to discriminate.
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Furthermore, XGBoost’s calibration curve closely

approximated the ideal line (Figure 4A). DCA was shown in

Figure 4B, where the XGBoost model had the highest net benefit

when the threshold probability was in the range of 0%-95%.

Therefore, based on above findings, the XGBoost model was

considered the optimal prediction model.
3.4 Model interpretation

To visually interpret the selected features, we used SHAP analysis

to interpret the ML model. At the feature level, we used SHAP
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summary plots to show how these features affected the probability of

HF (Figure 5). Figure 5A shows the ranking of feature importance

based on Shapley values, which indicated that the three most

important features contributing to the prediction model were LVEF,

LVDs, and LDH. Figure 5B provided a comprehensive visualization

of how the features affected the XGBoost model, where red

represented high-risk values and blue represented low-risk values. As

seen from the figure, a higher LVEF value (red points) correlated

with a lower likelihood of developing HF. Conversely, higher values

of LVDs and LDH are associated with higher risk of HF.

Meanwhile, to elucidate how each feature impacted the

probability of HF in the ML model, we plotted SHAP
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FIGURE 4

(A) Calibration curves of ML models in testing set. (B) DCA of ML models in Testing set.

FIGURE 5

(A) Summary plots of SHAP values. Ranking of variable importance based on the average value. (B) Representation of the influence exerted by each
feature on the final model output, assessed via SHAP values distribution. Every individual patient is denoted by a data point within each row. The red
dots represent higher feature values, while the blue dots represent lower feature values. A higher SHAP value indicates a higher HF risk.
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dependency graphs for three key features: LVEF, LVDs, and LDH.

As shown in Figures 6A–C, LVEF was below approximately 50%,

LVDs were higher than about 4.0 cm, and LDH levels above

nearly 650 u/L were associated with an increased risk of HF.

Next, at the individual level, we explained the personalized

prediction results of two random samples through SHAP plots

and waterfall plot analysis. The red and blue bars represented

risk factors and protective factors, respectively. The length of

each bar corresponded to its feature importance. In Figures 7A,B,

we illustrated the case of an AMI patient who did not develop HF

during the follow-up period. Notably, the presence of several

protective factors, including normal LVEF (59.59%), LVDs

(3.2 cm), hsCRP (6.44 mg/L), LDH (287 u/L), and NT-proBNP

(395.1 pg/ml), led to the model predicting a relatively low risk

(0.3%), consistent with the actual outcome (true negative),

although CK-MB was relatively high (327 u/L).

In contrast, Figures 8A,B depicted a case of an AMI patient

who developed HF. Despite the patient’s LVEF (56.09%) and

LDH (575 u/L) being within normal ranges, the model forecasted

a heightened probability of HF (69.3%) owing to the presence of
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multiple risk factors, notably larger LVDs (4.0 cm), elevated

CK-MB (96 u/L), and heightened hsCRP (10.5 mg/L), which was

consistent with the actual outcomes (true positive). Collectively,

these individual-level elucidations aligned with the feature-level

interpretations, offering a potential solution to the “black box”

dilemma in medical AI applications.
4 Discussion

HF is a common and serious complication of myocardial

infarction, which is closely related to high mortality and morbidity,

regardless of the presence of coronary artery obstruction (23).

Establishing a feasible prognosis prediction model was helpful for

clinicians to distinguish high-risk patients and optimize the

management of risk factors. To our knowledge, this study was the

first to combine ML and SHAP methods to develop a HF risk

prediction model for AMI patients. The main findings were as

follows: (1) among the four algorithms tested, the XGBoost model

performed optimal predictive power with the best discrimination
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FIGURE 7

An AMI patient who did not experience HF during follow-up. The forceplot (A) and waterfall plot (B) are used to explain the contribution of features on
a certain patient. wherein the red and blue bars signify risk factors and protective factors, respectively.

FIGURE 6

SHAP dependence plot of the XGBoost model. Each dependence plot shows how a single feature affects the output of the prediction model, and each
dot represents a single patient.(A) LVEF, (B) LVDs, (C) LDH. The SHAP values for these features exceed zero, representing an increased risk of HF.
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and calibration; (2) the three most important variables associated

with the incidence of HF after AMI included LVEF, LVDs, and

LDH; and (3) SHAP method, revealed the roles of various

variables in model interpretation and demonstrates the individual

level prediction process. Moreover, the model utilized only a few

easily accessible predictor variables, which enhances its utility in

clinical applications.

ML was widely applied in clinical diagnosis and prognosis

prediction (24–26). However, only a few studies used ML to

predict HF after AMI. Li et al. employed LASSO, RF, and
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SVM-RFE algorithms to investigate genetic mechanisms of HF

development after AMI, identifying IL1B, TIMP2, IFIT3, and

P2RY2 as potential therapeutic targets (27). Additionally, Li

et al. employed seven ML algorithms to predict the risk of HF

after AMI based on clinical laboratory indicators, and found

that XGBoost performed best with nine key indicators,

including cTnI, TG, and URBC (14). However, these studies

focused on limited factors and did not consider other

potentially predictive indicators such as medication history,

imaging, and coronary angiography. Therefore, more
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FIGURE 8

An AMI patient who developed HF during follow-up. The forceplot (A) and waterfall plot (B) are used to explain the contribution of features on a
certain patient. wherein the red and blue bars signify risk factors and protective factors, respectively.
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comprehensive exploration were needed to improve the

prediction of HF after AMI.

Compared to previous studies (14, 27), our model

encompassed a broader range of features. It used four common

ML methods to predict the risk of HF in AMI patients within

three years after PCI surgery, considering multiple factors such

as demographics, clinical complications, laboratory tests,

echocardiography parameters, and angiography results. The

results showed that the XGBoost model had the highest

discrimination ability, with an AUC of 0.922, an accuracy of

0.896, a sensitivity of 0.795, and a specificity of 0.939. XGBoost

was an efficient ML method based on a scalable end-to-end tree

boosting system, which processed large-scale data and high-

dimensional feature (28, 29). It also used regularization

techniques and pruning strategies to reduce the risk of overfitting

(30). Additionally, the data source for this study comprised the

initial test results of AMI patients upon admission, reflecting

their initial health status. Therefore, the predictions had good

foresight. This study also utilized hospital data, imposing no

additional financial burden on patients, this underscored the

potential of ML in clinical decisions.

Another advantage of our study was the introduction of the

SHAP method for interpreting the XGBoost model. ML models

were often referred to as black-box models because we cannot

precisely understand the specific contribution of each feature to

clinical decisions. Interpretability of a model can be defined as the

extent to which a human can understand the cause of the ML

model’s prediction (31). The higher the interpretability of the
Frontiers in Cardiovascular Medicine 10
model, the easier it will be for clinicians to understand the model’s

behavior and trust the model’s conclusion, so as to make

appropriate clinical decisions in the best interests of the patient

(32). Therefore, we introduced the SHAP method to address the

black-box problem. Based on game theory, SHAP clearly explained

the complex relationships between features and prediction results,

offering significant advantages in terms of interpretability and

visualization. Additionally, we provided a ranking of characteristics

for individual cases through SHAP analysis. Under the

comprehensive influence of these variables, we can predict

whether a person may suffer from “HF” or “Non-HF”. As shown

in Figures 7, 8, with SHAP personalized analysis, the physician

can intuitively understand how the ML model makes decisions,

and therefore use the model for clinical decision-making.

Our research findings indicated that lower LVEF and larger

LVDs predicted a higher risk of HF. LVEF and LVDs were

indicators used to evaluate cardiac function and structure. In some

patients, left ventricular remodeling caused by left ventricular

myocardial repair and functional compensation 24–72 h after AMI

aggravated the degree of myocardial injury, which could lead to

the decrease of LVEF, left ventricular dilatation and malignant

arrhythmia. As the disease progressed, it resulted in HF or even

death (33). A multi-ethnic atherosclerosis study (MESA) found

that during an average follow-up of 9.4 years, left ventricular

remodeling was closely related to HF events. Compared with

subjects with normal LV size and preserved LVEF, participants

with left ventricular dilation and reduced LVEF had a worse

prognosis (34). Furthermore, Michael et al. also demonstrated that
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subclinical left ventricular dilation and systolic dysfunction were

independent predictors of HF (35).

Our research also indicated that elevated levels of LDH, NT-

proBNP, and CK-MB are associated with an increased risk of HF

in patients with AMI. As specific markers of myocardial injury,

the levels of LDH, NT-proBNP, and CK-MB can reflect the

severity of myocardial cell damage and deterioration of cardiac

function. Numerous previous studies have confirmed that elevated

levels of these markers are closely related to poor prognosis

(36–40). Similarly, in our prediction model, hsCRP was considered

one of the six key predictors for identifying HF risk in AMI

patients. Higher levels of hsCRP in these patients may indicate a

greater risk of HF, as it reflects immune system damage that can

lead to severe complications. As a marker of inflammation

severity, hsCRP is closely related to an increased risk of HF (41).

This study had some limitations. Firstly, this was a

retrospective study, and there may be some causal inference and

selection bias. Secondly, whilst our model was validated on an

internal test dataset, external validation on another dataset would

be ideal and necessary prior to consideration of widespread use,

Future research will conduct large-scale multicenter clinical

studies and develop an online prediction system to better support

clinical application. Finally, our study mainly extracted the

clinical data of AMI patients within 24 h after admission, which

may ignore the dynamic changes of these characteristics with time.
5 Conclusion

This study successfully developed an interpretable machine

learning model to predict the risk of HF in AMI patients. This

model aids clinicians in tailoring individualized treatment

strategies based on each patient’s unique prognostic profile,

thereby improving patient outcomes.
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