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Background: Long-term mortality risk is seldom re-assessed in contemporary
clinical practice following successful transcatheter aortic valve implantation
(TAVR). Unsupervised machine learning permits pattern discovery within
complex multidimensional patient data and may facilitate recognition of
groups requiring closer post-TAVR surveillance.
Methods: We analysed and differentiated routinely collected demographic,
biochemical, and cardiac imaging data into distinct clusters using
unsupervised machine learning. k-means clustering was performed on data
from 200 patients who underwent TAVR for severe aortic stenosis (AS). Input
features were ranked according to their influence on cluster assignment.
Survival analyses were performed with Kaplan–Meier and Cox proportional
hazards models. Nested cox models were used to identify any incremental
prognostic benefit cluster assignment achieved beyond conventional risk scores.
Results: Analysis identified two distinct clusters. Compared to Cluster 1, Cluster 2
demonstrated significantly worse all-cause mortality at 12 months (HR 6.3,
p < 0.01), and was characterised by more advanced cardiac remodelling with
worse indices of multi-chamber cardiac function, as quantified by strain
imaging. Cluster assignment demonstrated greater predictive power for 12-
month mortality as compared with conventional risk and frailty calculators.
Conclusion: k-means clustering identified two prognostically distinct
phenogroups of patients who had undergone TAVR with better discriminatory
power than conventional risk and frailty calculators. Our results highlight the
utility of machine learning applications for clinical risk prediction and scope to
improve patient surveillance.

KEYWORDS

aortic stenosis, machine learning, outcomes, cardiac imaging, transcatheter aortic valve
replacement
Abbreviations

EDD, end-diastolic diameter; EDV, end-diastolic volume; EF, ejection fraction; EOA, effective orifice area;
ESD, end-systolic diameter; ESV, end-systolic volume; GLS, global longitudinal strain; LA, left atrium; LV, left
ventricle; LVOT, left ventricular outflow tract; PVL, paravalvular leak; RA, right atrium; RV, right ventricle;
RVSP, right ventricular systolic pressure; TAVR, transcatheter aortic valve replacement; VTI, velocity time integral.
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CENTRAL ILLUSTRATION

Machine learning cluster analysis of multi-dimensional patient data identifies prognostically distinct phenogroups of patients who have undergone
transcatheter aortic valve replacement.

Meredith et al. 10.3389/fcvm.2025.1444658
1 Introduction

Aortic stenosis (AS), one of the most common degenerative

valvular conditions, is increasing in prevalence (1). Transcatheter

aortic valve replacement (TAVR) is now the most common

treatment modality for severe symptomatic aortic stenosis (AS),

while open surgery is now generally reserved for younger

patients with longer life-expectancy (2). Although TAVR was

initially only indicated for patients at prohibitive perioperative

open surgical mortality risk, there is now robust evidence

supporting its non-inferiority, and even superiority, across the

entire peri-operative risk spectrum. As such, contemporary

patients undergoing TAVR represent a diverse mix of risk and

frailty profiles. Prediction of peri-operative risk is usually

performed with one or more well established tools, such as the

Society of Thoracic Surgery (STS) predicted risk of mortality

(PROM) calculator, the EuroSCORE II, and frailty tools such as

the Rockwood Clinical Frailty Score (3). Multiple TAVR-specific

risk scores have been also developed (4–7). However, outside of

clinical trials and registries, mortality risk is seldom re-assessed

following successful TAVR and it is presently unclear how to

best quantify residual prognostic risk for the overwhelming
Frontiers in Cardiovascular Medicine 02
majority of patients who survive their procedure. Moreover,

follow-up recommendations are largely based on surveillance of

echocardiographic valve function parameters—namely trans-

prosthesis gradients and calculated effective orifice/valve area

(EOA), irrespective of clinical risk or frailty scores (8). A recent

analysis of the Nationwide Readmissions Database by Elkaryoni

et al. revealed that nearly a third of patients experience at least

one rehospitalization in the first 90 days following successful

TAVR (9).

Unsupervised machine learning (ML), a field of artificial

intelligence (AI), enables the discovery of important patterns within

complex multidimensional data, such as cardiac imaging data (10).

Given the current paradigm of risk stratification based on the

limited selection of key validated variables, the use of ML could

enable risk prediction with much greater accuracy by incorporating

much more expansive and complex data. Specifically, we postulated

that prognostically distinct phenogroups might be discoverable

when comprehensive, multidimensional patient data were subjected

to unsupervised cluster analysis. We sought to investigate

whether cluster analysis of data including features of patient

demography, biochemistry, CT valve geometry and post-implant

echocardiography would identify groups with meaningful differences
frontiersin.org
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in survival, and potentially lay the foundation for ML guided post-

procedural patient surveillance (Central Illustration).
2 Methods

2.1 Case selection

Our institutional database was screened for patients who had

undergone TAVR with available post-procedural

echocardiograms of suitable image quality for analysis. At

minimum, post-procedural studies needed to include apical 2-, 3-

and 4-chamber views to facilitate chamber quantification and

speckle tracking. The database was screened from 2018 to June

2023. Cases were excluded if imaging was not performed on-site,

or the indication for TAVR was primary aortic regurgitation or

valve-in-valve procedures. Baseline demographic, comorbidity

and procedural data were abstracted from hospital medical

records and clinic letters. Follow-up censoring occurred at last

known interaction with state-based health services. The study

was approved by the local institutional ethics board (St Vincent’s

Hospital Human Research Ethics Committee ETH2021/11608).
TABLE 1 Variables included in k-means clustering algorithm, following
removal of variables with significant collinearity.

Feature class Features
Clinical & biochemical Age

BMI
Haemoglobin
Serum albumin
Red cell distribution width
Serum creatinine
eGFR
White cell count
Platelet count

Echocardiography Interventricular Septal Width (IVS)
Posterior Wall Width (PW)
LV end diastolic diameter (LVEDD)
LV end diastolic volume index (LVEDVi)
E Wave
Relative Wall Thickness (RWT)
LV Mass Index (LVMi)
LVOT diameter
LVOT VTI
Stroke Volume Index (SVi)
Heart Rate (HR)
Cardiac Output (CO)
LA Volume Index (LAVi)
RA Volume
2.2 Imaging analysis

Raw echocardiographic images were de-identified and re-

analysed by an accredited Cardiologist or Cardiac Sonographer at

the Heart Valve Disease and Artificial Intelligence Laboratory at

the Victor Chang Cardiac Research Institute, Sydney.

Conventional chamber measurements were performed according

to contemporary ASE guidelines (11). Left ventricular global

longitudinal strain (GLS) analysis was performed using TomTec

Arena software (TOMTEC Imaging Systems, Germany), using

apical 2-, 3- and 4-chamber views. Studies were only included

for analysis if the left ventricular endocardium could be

visualized and endocardial tracking was accurate in these views

throughout the cardiac cycle. Routine TAVR planning CT scans

were analysed using vendor-neutral processing software

(3mensio, Pie Imaging) to determine the dimensions and area of

the left ventricular outflow tract (LVOT) and the aortic annulus.

The LVOT was planimetered 3 mm below the aortic annulus.

The eccentricity index was calculated for the annulus and LVOT,

as 1- dmin/dmax, where 0 represents a perfect circle, as described

by Leipsic et al. (12).

Mean TAVR Gradient
Aortic Valve Ejection Time (AVET)
Indexed TAVR Effective Orifice Area
Dimensionless Index (DI)
LVEF
LV GLS
LA reservoir strain
LA conduit strain

Computed tomography Annular perimeter
Annular cross-sectional area
Annular eccentricity Index
LVOT minimum diameter
LVOT maximum diameter
LVOT eccentricity Index
2.3 Data preparation

A total of 55 continuous variables, comprising a combination of

demographic, biochemical, echocardiographic and CT measurements,

were included following removal of variables with >15% missing data.

We used all available continuous variables from our database, to

mitigate selection bias caused by only selecting features of putative

importance. A Pearson’s correlation heatmap was constructed to

assess for collinearity (Supplementary Figure S1). Variables which
Frontiers in Cardiovascular Medicine 03
demonstrated significant collinearity (Pearson correlation coefficient

>0.8) were excluded (Supplementary Table S1), retaining the most

general variable for multi-constituent variables, or variable

counterparts indexed to body surface area (BSA). This left 37

variables, listed in Table 1. For the purposes of unsupervised

clustering, missing data (for the included variables below the 15%

missingness threshold) were imputed using multiple imputation by

chained equations (13). All variables were normalized to have a

mean of zero and a standard deviation of one. Following cluster

assignment, original non-imputed data were used for cluster

comparison and survival assessment.
2.4 Cluster allocation

K-means clustering was performed, which has been previously

employed in similar phenotyping studies (14, 15). In contrast to

other clustering approaches, such as hierarchical clustering, we

favoured k-means methodology for computationally efficiency,

simplicity, and interpretability (16). The optimal number of

clusters (k) was determined by iteratively including sequentially

greater cluster numbers in the algorithm and inspecting the
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respective silhouette scores, which measure intra-cluster similarity

and inter-cluster dissimilarity. Following identification of optimal

k, clustering was performed using random centroid

initializations, the most robust of which were selected for cluster

allocation. To evaluate the robustness of the identified clusters,

we performed a subsampling-based stability analysis. Subsamples

comprising 80% of the dataset were generated 100 times, and

k-means clustering was applied to each subset (at optimal k).

Cluster assignments were compared to the full dataset using the

Adjusted Rand Index (ARI), which quantifies similarity while

adjusting for chance. The mean and standard deviation of the

ARI across subsamples were calculated to assess the consistency

and stability of the clusters.
2.5 Cluster characteristic analysis

Characteristics between clusters were compared using

Wilcoxon rank sum, Fisher’s exact and Chi-squared tests, as

required by variable type and distribution. Continuous variables

are presented as median and interquartile range and categorical

variables as counts (n) and percentages. For the purposes of

identifying potentially predictive features of cluster allocation, we

performed two analyses. Firstly, we performed simple analysis of

variance between each feature and then ranked each feature by

F statistic value. We also trained a logistic regression model to

predict cluster allocation based on the pre-processed k-means

input features (15). Logistic regression model performance was

determined using accuracy, sensitivity, specificity, and area under

receiver-operator characteristic (ROC-AUC) curve analysis.

Kaplan–Meier curves were plotted for all-cause mortality and

compared with the logrank test. Cox proportional hazards

analyses were performed to assess the influence of cluster

assignment on mortality. To assess any incremental prognostic

benefit cluster assignment achieved beyond conventional risk

scores, we created four nested cox models, and compared

performance with Harrell’s C-Index and Global χ2 (likelihood

ratio) scores. Analyses were performed using R (R Foundation

for Statistical Computing, Vienna, Austria) and graphics

generated with GraphPad Prism v10. The source code will be

made available on GitHub upon publication of this paper.

This study was conducted according to the Transparent

Reporting of a Multivariable Prediction Model for Individual

Prognosis or Diagnosis (TRIPOD) statement (Supplementary

Table S2) (17).
3 Results

3.1 Baseline characteristics

From 2018 to 2023, 840 patients underwent TAVR at our

institution. Following exclusion of patient with imaging of

inadequate quality or not performed at our institution, the

cohort comprised 200 patients. Baseline characteristics for the

200 included patients are outlined in Table 2. The median age
Frontiers in Cardiovascular Medicine 04
was 82 years, and 112 participants were male (56%). 170 patients

(85%) were implanted with a self-expanding prosthesis. The

median STS score was 4.2% (IQR 2.5–6.5) and 21% of patients

had a Clinical Frailty Score (CFS) of 5 or more, consistent with

significant frailty. With respect to post-procedural cardiac

function, the median LVEF was 62%, LV GLS 19.6%, RV GLS

25%. The median post-implant gradient and EOA were

7.3 mmHg (IQR 5.9–10.3) and 1.76 cm2 (IQR 1.46–2.14),

respectively. Most participants (81%) had mild or less

paravalvular incompetence, as quantified by the circumferential

extent of detectable incompetence on parasternal short

axis echocardiography.
3.2 K-means clustering

Silhouette scores were calculated for models containing up

to 10 clusters. The use of 2 clusters demonstrated the best

(highest) silhouette score (Supplementary Figure S2). Principal

component analysis was performed to visualise the clusters

(Figure 1). The mean ARI across subsamples was 0.87 (±0.09),

reflecting highly robust clustering. Characteristics for patients

assigned to each of the two clusters are outlined in Table 2.

Cluster 1 was larger than Cluster 2 and included

proportionally more females. Age, baseline STS score and

Clinical Frailty Score (CFS) were not significantly different

between clusters. In Cluster 2 there was a higher prevalence of

atrial fibrillation, coronary artery disease, stroke and chronic

kidney disease, while hypertension was more prevalent in

Cluster 1. Patients in Cluster 2 had lower platelet levels, serum

albumin and eGFR, and higher serum creatinine levels.

Patients in Cluster 2 had worse indices of multi-chamber

cardiac function, specifically a lower LVEF, LV GLS, LA

contractile and reservoir strain and RV strain. Cluster 2

patients also had larger left ventricular chamber dimensions,

greater left ventricular mass (indexed to BSA), as well as

greater left and right atrial volumes and mitral valve

regurgitation. Patients in Cluster 2 also demonstrated large left

ventricular outflow tract and annular geometry. With respect

to prosthesis function, there was a small difference in trans-

prosthetic gradients of borderline significance, but EOAs were

similar between clusters. However, patients in Cluster 2

demonstrated smaller indexed EOAs consistent with greater

prevalence of patient prosthesis mismatch and lower

dimensionless indices.
3.3 Survival

Outcome data were available for all participants. The median

follow-up time was 16.5 months, and longest follow up was 71

months. Patients in Cluster 2 demonstrated significantly worse

all-cause mortality at a 12-month landmark analysis (logrank

HR 6.3, 95% CI: 1.9–20.9, p < 0.01; Figure 2). A post-hoc

power analysis was performed, revealing sufficient power to

detect a 12-month mortality difference between clusters (85.1%,
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1444658
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 2 Cohort and cluster characteristics.

Characteristic Overall, N = 200a Cluster 1, N= 118a Cluster 2, N= 82a p-valueb

Clinical & Demographic Data
Age 82 (77, 86) 83 (78, 86) 82 (76, 87) 0.3

Male 112 (56%) 48 (41%) 64 (78%) <0.001

BMI 26.3 (23.5, 30.1) 27.0 (23.5, 30.1) 26.0 (23.9, 30.0) 0.8

Hypertension 140 (70%) 93 (79%) 47 (57%) 0.001

CAD 101 (51%) 49 (42%) 52 (63%) 0.002

Atrial Fib/Flutter 62 (31%) 23 (19%) 39 (48%) <0.001

Diabetes 49 (25%) 27 (23%) 22 (27%) 0.5

Hyperlipidaemia 150 (81%) 91 (81%) 59 (81%) >0.9

Previous Stroke/TIA 21 (11%) 8 (6.8%) 13 (16%) 0.040

Active Smoker 4 (2.0%) 3 (2.5%) 1 (1.2%) 0.6

Severe Pulmonary Disease 32 (17%) 15 (14%) 17 (22%) 0.14

OSA 18 (9.5%) 10 (9.0%) 8 (10%) 0.8

Cognitive Impairment 11 (5.9%) 8 (7.2%) 3 (3.9%) 0.5

CKD 76 (38%) 33 (28%) 43 (52%) <0.001

STS Score 4.2 (2.5, 6.5) 4.2 (2.4, 6.5) 4.2 (2.7, 6.5) >0.9

Clinical Frailty Score >4 34 (21%) 17 (17%) 17 (26%) 0.2

NYHA Score >2 41 (21%) 17 (14%) 24 (30%) 0.009

Biochemical Data
Hb 126 (114, 137) 126 (119, 136) 123 (110, 137) 0.2

Platelets 202 (162, 247) 213 (173, 253) 196 (156, 226) 0.033

WCC 6.70 (5.60, 7.70) 6.80 (5.80, 7.60) 6.65 (5.40, 7.90) 0.8

Serum albumin 36.0 (33.0, 39.0) 36.0 (34.0, 39.0) 34.0 (32.3, 37.8) 0.022

Serum creatinine 91 (74, 115) 79 (67, 102) 110 (84, 132) <0.001

eGFR 61 (46, 77) 65 (50, 80) 52 (42, 72) <0.001

Device Data
TAVR Device 0.012

Sapien 3 24 (12%) 11 (9.3%) 13 (16%)

Sapien 3 Ultra 6 (3.0%) 2 (1.7%) 4 (4.9%)

Evolut-R 125 (63%) 70 (59%) 55 (67%)

Evolut-Pro 38 (19%) 28 (24%) 10 (12%)

Portico 7 (3.5%) 7 (5.9%) 0 (0%)

Post-Procedural Echocardiography Data
HR 73 (65, 82) 72 (65, 82) 75 (68, 82) 0.14

IVS Width (mm) 12.80 (11.44, 13.98) 12.89 (11.73, 14.21) 12.43 (11.31, 13.83) 0.14

PW Width (mm) 12.12 (11.05, 13.18) 12.34 (11.30, 13.21) 11.93 (10.87, 12.93) 0.3

LVEDD (mm) 44 (40, 49) 41 (38, 45) 49 (44, 54) <0.001

LVEDV (mls) 76 (59, 97) 62 (51, 78) 102 (85, 124) <0.001

LVEDVi (mls/m2) 41 (33, 53) 36 (30, 42) 53 (45, 64) <0.001

LVESD (mm) 28 (25, 33) 26 (23, 29) 35 (29, 41) <0.001

LVESV (mls) 28 (20, 43) 22 (16, 28) 46 (33, 65) <0.001

LVESVi (ml/m2) 16 (11, 24) 12 (9, 16) 25 (18, 36) <0.001

LV Mass Index (g/m2) 113 (95, 130) 106 (91, 120) 124 (107, 143) <0.001

LVEF % 62 (52, 68) 67 (61, 71) 53 (43, 62) <0.001

LV GLS % −19.6 (−21.8, −16.9) −21.4 (−22.8, −19.5) −17.2 (−19.0, −13.8) <0.001

SVi (mls/m2) 35 (29, 44) 38 (32, 45) 30 (26, 36) <0.001

Cardiac Output (L/min) 4.70 (3.73, 5.68) 5.12 (3.91, 6.14) 4.38 (3.59, 4.86) <0.001

E (cm/s) 0.98 (0.81, 1.21) 0.97 (0.80, 1.17) 1.01 (0.85, 1.27) 0.5

e′ 0.069 (0.059, 0.082) 0.067 (0.059, 0.079) 0.071 (0.060, 0.095) 0.15

TAVR Mean Gradient (mmHg) 7.3 (5.9, 10.3) 7.8 (6.1, 11.1) 7.0 (5.8, 9.8) 0.048

TAVR Peak Velocity (cm/s) 1.87 (1.68, 2.19) 1.93 (1.70, 2.31) 1.79 (1.60, 2.12) 0.051

DI 0.64 (0.51, 0.75) 0.70 (0.57, 0.80) 0.53 (0.46, 0.64) <0.001

EOA (cm2) 1.76 (1.46, 2.14) 1.83 (1.51, 2.21) 1.66 (1.38, 2.05) 0.083

EOAi (cm2/m2) 0.99 (0.77, 1.15) 1.04 (0.83, 1.20) 0.88 (0.73, 1.07) 0.006

Patient-Prosthesis Mismatch 43 (22%) 18 (15%) 25 (30%) 0.010

RVSP (mmHg) 28 (23, 34) 28 (23, 34) 29 (23, 37) 0.5

RA Volume (mls) 53 (38, 73) 43 (33, 54) 72 (56, 85) <0.001

LA Volume (mls) 85 (69, 103) 74 (62, 90) 100 (85, 119) <0.001

(Continued)
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TABLE 2 Continued

Characteristic Overall, N = 200a Cluster 1, N= 118a Cluster 2, N= 82a p-valueb

LAVi (mls/m2) 45 (37, 57) 41 (36, 52) 52 (44, 63) <0.001

LA Reservoir Strain % 19 (14, 25) 21 (17, 28) 15 (11, 21) <0.001

LA Contractile Strain % −11 (−15, −7) −11 (−17, −8) −8 (−11, −6) <0.001

RV Strain % −25 (−29, −21) −27 (−31, −22) −21 (−26, −18) <0.001

Mitral Regurgitation <0.001

None 39 (20%) 33 (28%) 6 (7.3%)

Trivial/Mild 139 (70%) 77 (65%) 62 (76%)

Moderate 21 (11%) 8 (6.8%) 13 (16%)

Severe 1 (0.5%) 0 (0%) 1 (1.2%)

Tricuspid Regurgitation 0.7

None 61 (31%) 37 (31%) 24 (29%)

Trivial/Mild 112 (56%) 68 (58%) 44 (54%)

Moderate 23 (12%) 11 (9.3%) 12 (15%)

Severe 4 (2.0%) 2 (1.7%) 2 (2.4%)

Circumferential Extent of PVL (mm) 8 (6, 13) 8 (5, 14) 9 (6, 13) 0.8

PVL Severity 0.7

None 101 (51%) 63 (53%) 38 (46%)

Mild 60 (30%) 33 (28%) 27 (33%)

Moderate 36 (18%) 21 (18%) 15 (18%)

Severe 3 (1.5%) 1 (0.8%) 2 (2.4%)

CT Data
Annulus Eccentricity Index 0.22 (0.16, 0.25) 0.23 (0.17, 0.25) 0.21 (0.16, 0.24) 0.3

LVOT Eccentricity Index 0.25 (0.20, 0.31) 0.26 (0.22, 0.32) 0.24 (0.19, 0.28) 0.029

LVOT CSA (cm2) 4.55 (3.91, 5.29) 4.09 (3.54, 4.58) 5.32 (4.79, 5.78) <0.001

Annulus CSA (cm2) 4.61 (4.10, 5.29) 4.26 (3.80, 4.75) 5.30 (4.64, 5.78) <0.001

STJ CSA (cm2) 6.47 (5.35, 7.35) 5.90 (4.97, 7.07) 7.00 (6.16, 7.62) <0.001

Bold indicates p < 0.05.
aMedian (IQR), n (%).
bWilcoxon Rank sum test; Pearson’s Chi-squared test; Fisher’s exact test.

Meredith et al. 10.3389/fcvm.2025.1444658
alpha 0.05). There was no signal of very early mortality at the

one-month mark (p = 0.99). At longest follow-up, survival

curves remained divergent but statistical significance was not

met due to reduced patient numbers (Supplementary

Figure S3). Cox proportional hazards modelling for mortality

demonstrated that allocation to Cluster 2 was associated with a

hazard ratio of 6.3 for all-cause mortality at 12 months

(p = 0.018, 95% CI: 1.36–29.26). Nested models are illustrated

in Figure 3. Adding cluster allocation to models containing

simple clinical variables (age and sex, Model 1), as well as STS

and Clinical Frailty scores (Model 2), significantly improved

model performance (Model 3; Global χ2 = 19.82, C-Index 0.84,

p < 0.01). Model 3, containing simple clinical variables and

cluster assignment, was not significantly enriched with the

addition of contemporary risk scores (STS and CFS, Model 4,

Global χ2 = 19.21, C-Index 0.856, p < 0.002).
3.4 Feature importance

Feature rankings were similar between analysis of variance

(Figure 4) and logistic regression methods (Supplementary

Figures S4, S5). The four most influential variables with respect

to cluster discrimination were the LVOT VTI, LV GLS, LVEDVi

and RA volume. The four least influential variables were age,

white cell count (WCC), posterior wall width and BMI.
Frontiers in Cardiovascular Medicine 06
4 Discussion

Unsupervised machine learning identified two prognostically

distinct phenogroups within our population of patients

undergoing TAVR. The prognostically less favourable cluster,

which demonstrated a 6-fold increased risk of 12-month

mortality, included patients with evidence of more advanced

cardiac remodelling (larger left ventricular and atrial dimensions

with greater left ventricular mass) and poorer indices of multi-

chamber function (more impaired RV, LV and LA function), as

quantified by speckle-tracking strain assessment.

Synthesizing complex clinic data to provide tailored clinical

recommendations is becoming an increasingly difficult artform for

healthcare providers. This task is somewhat simplified with clinical

risk calculators, but these have historically been generated through

use of traditional statistical models such as logistic and linear

regression together with cox proportional hazard models. These

methods are advantageous in that they don’t require extensive

computational power but are limited by their applicability to less

complex data. As we have demonstrated, unsupervised machine

learning can distil complex multidimensional data into clinically

important information. Interestingly, traditional markers of

adverse prognostic risk, such as age, BMI or even serum

haemoglobin were amongst the least relevant features with respect

to cluster allocation. Moreover, STS and Rockwood Clinical Frailty

scores were statistically similar between clusters. This does not by
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FIGURE 1

Cluster plot. Patients are plotted according to the first two principal components of their data, labelled Dimension 1 and Dimension 2.
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any stretch discredit the indisputable importance of these risk tools,

but our observation that cluster allocation improved predictive

modelling beyond these risk tools lends weight to the argument

that there is a wealth of untapped insight hidden within bystander

clinical and imaging data.

Echocardiography forms the cornerstone of surveillance

recommendations for patients who have undergone aortic valve

replacement (8). To improve the granularity of cardiac

phenotyping, we included multi-chamber strain data in our input

features. Strain imaging more accurately quantifies left ventricular

dysfunction and is a better prognostic discriminator, particularly

in patients with aortic stenosis, but is not featured in

contemporary risk calculators (18). In feature ranking, it was

interesting to note the LV GLS was ranked 2nd highest

importance in predicting cluster allocation, behind LVOT VTI.

The increased sensitivity of LV GLS in detecting sub-clinical

ventricular dysfunction in patients with aortic stenosis, as

compared with LVEF, may partly explain this (18). Additionally,

the dominant influence of the LVOT VTI in feature rankings is

particularly interesting given the prognostic importance of

transvalvular flow state in patients with aortic stenosis (19).

Moreover, we were also interested to observe that some

important parameters of prosthesis function were discordant
Frontiers in Cardiovascular Medicine 07
between clusters. Patients in the prognostically less favourable

cluster had smaller indexed prosthesis areas, lower dimensionless

indices, together lower mean gradients (albeit with borderline

significance) in the setting of poorer cardiac flow state, as

quantified by indexed stroke volume, together with increased

prevalence of patient prosthesis mismatch. Several other groups

have performed cluster-based phenotyping of patients with severe

AS, albeit for pre-procedural risk stratification, with similarly

interesting results (14, 15). A distinguishing factor is our

inclusion of multi-chamber strain data and the inclusion of post-

TAVR imaging data to quantify the state of the unloaded heart.

We have demonstrated that simple cluster-based phenotyping of

comprehensive patient data post-TAVR can identify a high-risk

cohort, at over 6-fold increased risk of 12-month mortality. This

observation naturally raises the question of whether enhanced post-

procedural follow-up and surveillance imaging, or targeted medical

therapy, might improve outcomes for the high-risk cohort. Further

research addressing this question is required. Additionally, there is a

need for prospective randomised comparisons between conventional

vs. ML-directed risk stratification to investigate superiority with

respect to both procedural and post-procedural outcomes, including

re-hospitalisation, major cardiac events, and death. Our observations

help lay the foundation for future research integrating clustering-
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FIGURE 2

Kaplan–meier plot for both clusters. Cluster 2 demonstrates significantly worse 12-month survival compared with Cluster 1.

FIGURE 3

Nested cox models. Comparison of nested cox hazards models including clinical variables, risk and frailty scores, with or without cluster assignment.
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FIGURE 4

Input feature rankings. Features (variables) are ranked in descending order of their ANOVA F statistic, reflecting their relative importance to
cluster assignment.
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based insights into supervised learning models. Such models could

explicitly link cluster-related features to clinical outcomes, potentially

facilitating the development of a more practical risk prediction tool.

We anticipate that the uptake of automated, real-time, ML-driven

clinical workflows could significantly improve the speed and

accuracy of healthcare recommendations for patients and guide

surveillance recommendations.
5 Limitations

One of the limitations of k-means clustering is the use of only

continuous data. Although categorical variables can be forced to be

continuous with the use of techniques such as one-hot encoding,
Frontiers in Cardiovascular Medicine 09
we elected not to perform this as it can introduce significant

imbalance in variable weighting. Caution must be taken when

simplifying feature importance with regression modelling, as

cluster allocation is determined by the complex interplay between

all input variables for the specific cohort studied. Our cohort was

relatively small with relatively short follow-up which may limit

generalisability, though the use of 37 variables for 200 patients

yields over 7,000 data points and prognostically significant

phenogroups were clearly identifiable. Unmeasured confounding

variables may influence our findings, as is common in

observational studies. We recognize that residual confounding

cannot be entirely excluded. Future studies leveraging large

datasets from multi-centre trials and registries, may provide

additional insights to address this, and may permit more robust
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identification of phenogroups. Our study also includes

retrospectively collected information, which can introduce bias,

however our population includes a real-world, contemporary

TAVR population. One of the strengths of our analysis is the use

of multi-modality imaging (including CT) to comprehensively

capture geometric and functional cardiac data.
6 Conclusion

k-means clustering identified two prognostically distinct

phenogroups within our population of patients who had

undergone TAVR and outperformed traditional risk-prediction

tools. The prognostically less favourable cluster, associated with a

6-fold increased risk of 12-month mortality, demonstrated more

advanced cardiac remodelling and poorer indices of cardiac

function. With the likely future widespread application of AI, the

knowledge of which patient phenogroups are at low clinical risk

post-TAVR, and which are at higher risk, should be of significant

clinical value and will allow physicians to triage patients to

differing frequency and intensity of post-TAVR follow-up and

surveillance. Ultimately, it is hoped that the individualized

tailoring of follow-up and post-procedural care based on

advanced risk stratification tools can lead to improved patient

outcomes and reduced cost to healthcare systems globally.
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