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Background: Recent studies have found that heart rate response is impaired in
patients with type 2 diabetes. However, it remains unclear how chronotropic
competence changes in these patients and which chronotropic index is more
closely related to type 2 diabetes. This study aims to investigate the changes
in chronotropic competence in type 2 diabetes and compares the association
of two different chronotropic indices with type 2 diabetes.
Patients and methods: Patients who underwent cardiopulmonary exercise
testing at the Chengdu Second People’s Hospital from October 2022 to
October 2023, we included. Logistic regression was used to analyze the
relationship between chronotropic indices and type 2 diabetes, comparing
which of the two chronotropic indices is more closely related to type 2 diabetes.
Results: A total of 166 patients were included in our study, of which 42.8% had
type 2 diabetes and 57.2% did not have type 2 diabetes. After adjusting for
confounders, the OR for chronotropic index 1 with type 2 diabetes was 0.001
(95% CI: 0.0001–0.521, P= 0.03), and the OR for chronotropic index 2 with
type 2 diabetes was 0.665 (95% CI: 0.479–0.923, P= 0.015), both showing
a negative correlation with type 2 diabetes. When chronotropic index 2 was
included in the model as quartiles, it still showed a negative correlation
with type 2 diabetes (OR: 0.388; 95% CI: 0.173–0.869; P= 0.021), while
chronotropic index 1 showed no significant correlation.
Conclusion: Heart rate response is reduced in patients with type 2 diabetes, and
a low chronotropic index 2 is independently associated with type 2 diabetes.
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heart rate response, chronotropic index, cardiopulmonary exercise testing, type 2
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1 Introduction

Type 2 diabetes (T2DM) is a significant cardiovascular risk factor and increases the risk

of mortality. Globally, diabetes affects 6.1% of the population, with T2DM constituting 96%

of these cases, thereby representing a significant global health challenge (1). Patients with

T2DM may develop several complications, including autonomic neuropathy, which is a

dysfunction of the sympathetic and parasympathetic nervous systems (2, 3). The entire

process of physical activity reflects the dynamic balance between the parasympathetic and

sympathetic nerves. At rest, the maintenance of resting heart rate primarily relies on the

parasympathetic nervous system. During the recovery period after exercise, the
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parasympathetic nervous system is gradually activated, and the

sympathetic nervous system is suppressed, leading to a gradual

decrease in heart rate (2). However, during exercise, the

sympathetic nervous system is activated, the parasympathetic

nervous system is inhibited, and the heart rate increases. The

increase in heart rate reflects the balance of parasympathetic and

sympathetic nervous system function, known as chronotropic

competence, and how this competence changes in patients with

T2DM is not yet well understood.

Chronotropic incompetence, characterized by the heart’s

failure to adequately increase its rate in response to activity or

demand, is common among patients with cardiovascular diseases.

It reduces exercise tolerance, adversely affecting quality of

life, and serves as an independent predictor of major

cardiovascular events and overall mortality (4). The mechanisms

underlying impaired chronotropic function in T2DM remain

unclear; however, studies suggest it may be associated with

hyperglycemia, dyslipidemia, and abnormalities in insulin

signaling pathways (5, 6). Cardiopulmonary exercise testing

(CPET), as a vital diagnostic and assessment tool, can evaluate

and measure the heart’s chronotropic competence. In CPET,

chronotropic incompetence is defined as the failure to reach 85%

of the age-predicted maximal heart rate, or a low chronotropic

index (heart rate adjusted to the MET level) (7, 8). However,

there is no definitive, unified standard for calculating

chronotropic competence. Some studies represent it as (HRpeak-

HRrest) (220-age-HRrest) (9), while the 2012 CPET guidelines

suggest using the change in heart rate per increase of 1 MET to

assess chronotropic competence (10). It remains unclear which

indicator is more closely related to chronotropic competence in

patients with T2DM.

Although the relationship between T2DM and cardiovascular

complications has been extensively explored, the variations in

chronotropic competence among patients with T2DM remain

unclear. It is crucial to determine which of the previously

mentioned calculation methods is more accurate for assessing

chronotropic competence in these patients. Therefore, this study

aims to investigate the relationship between T2DM and

chronotropic competence, and to compare the associations of

two different chronotropic indices with T2DM.
2 Materials and methods

2.1 Participants

In this study, we included adult patients who underwent CPET

at the Chengdu Second People’s Hospital from October 2022 to

October 2023. We excluded the following patients: (1) those who

did not follow the protocol; (2) those who were unable to

complete submaximal exercise; (3) patients taking β-blockers and

(4) patients under the age of 18. Ultimately, 166 patients (mean

age 56 years old) were included in our study, comprising 71

individuals with diabetes and 95 without diabetes. Among them,

middle-aged and older patients constituted the majority,

comprising 83% of the total individuals (the specific age
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distribution of participants provided in Supplementary

Figure S1). This study was approved by the Ethics Committee of

the Chengdu Second People’s Hospital, and all participants

provided written informed consent.
2.2 Clinical data

All data were obtained from the database of the Chengdu

Second people’s Hospital. Demographic and clinical information

included: gender, age, height, weight, waist circumference,

smoking history, hypertension, coronary artery disease, and heart

failure. BMI was calculated as weight divided by the square of

height. Smoking history was defined as having smoked

continuously or cumulatively for more than six months. T2DM

was diagnosed based on at least one of the following criteria: use

of diabetes medications or insulin, a physician diagnosis of

T2DM, fasting blood glucose ≥7 mmol/L, or a 2-hour oral

glucose tolerance test blood glucose ≥11.1 mmol/L. Hypertension

is defined as having a blood pressure greater than 140/90 mmHg

on at least three separate occasions, or a history of hypertension.

Coronary artery disease was defined as a history of stable or

unstable angina, acute myocardial infarction, or ischemic

cardiomyopathy. Heart failure was defined as being classified as

NYHA II or higher, or having a history of decompensated heart

failure. The test indicators include: blood glucose, troponin, NT-

proBNP, total cholesterol, and low-density lipoprotein.
2.3 Exercise test protocol

The CPETs were conducted at the Chengdu Second People’s

Hospital, with all testing environments meeting the required

standards, including pre-test gas calibration. According to the

guidelines of the American College of Cardiology/American

Heart Association, all participants underwent symptom-limited

cardiopulmonary bicycle exercise testing using the standard

Ramp protocol (11, 12). The Ramp protocol is a linear

incremental exercise test where the workload is gradually

increased, with the power incrementing progressively every

second. The test includes a 3-minute rest period, a 3-min warm-

up period, followed by exercise, with the duration of the exercise

varying according to the patient’s condition. The recovery period

lasts 6–8 min. During the exercise, the pedaling rate is

maintained at 60–70 revolutions per minute. The workload is

increased progressively every minute based on a predefined

power increment per minute. The power increment per second is

calculated by dividing the predefined power increment per

minute by 60 s. Endpoints for exercise testing included: a rating

of perceived exertion (6–20 scale) >17 (very hard) or a peak

respiratory exchange ratio (RER) >1.15; participant request to

stop the test due to volitional fatigue; systolic blood pressure

≥240 mmHg or diastolic blood pressure ≥110 mmHg; significant

chest discomfort during exercise; severe arrhythmias; or

horizontal or downsloping ST-segment depression greater than

2 mm or ST-segment elevation greater than 1 mm.
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2.4 Exercise test variables

Resting period blood pressure and heart rate were measured

after at least 5 min of rest. Peak systolic blood pressure, peak

diastolic blood pressure, peak heart rate, and METs were

recorded at peak VO2. Heart rate recovery was defined as the peak

heart rate minus the heart rate after 1 min of recovery. CI 1 was

calculated as (peak HR - resting HR)/(220 - age - resting HR). CI

2 was calculated as (peak HR - resting HR)/(peak METs - resting

METs). Peak VO2 was defined as the highest 10-second average

VO2 during the final stage of a symptom-limited exercise test.

The VE/VCO2 slope represented gas exchange from rest to the

peak of exercise. Heart rhythm was monitored using continuous

12-lead electrocardiography.
2.5 Statistical analysis

Continuous variables with normal distributions were described

as mean ± standard deviation, while those with non-normal

distributions were expressed as median and interquartile range.

Categorical variables were presented as frequencies and

percentages. To compare continuous variables between different

groups, the two-sided independent or paired t-test was used for

normally distributed data; for non-normally distributed data, the

Wilcoxon rank-sum test was employed. Pearson’s Chi-square test

was used to compare frequency distributions. To explore the

relationship between diabetes and various indices of chronotropic

competence, univariate logistic regression analysis was conducted

in the first model. Subsequently, we performed multivariate

logistic regression analysis, including all variables that were

significantly associated with T2DM in the univariate analysis. In

the second model, we adjusted for age, gender, BMI, and

smoking history; in the third model, we additionally adjusted for

hypertension, heart failure, and coronary artery disease, beyond

the factors in the first model; in the fourth model, besides the

factors adjusted in the first two models, we also adjusted for
FIGURE 1

Flow chart of inclusion and exclusion.
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blood glucose, NT-proBNP, VO2/Kg, and VE/VCO2 slope. All

statistical analyses were performed using SPSS software, version

26, and two-sided probability values <0.05 were considered

statistically significant.
3 Results

3.1 Participant characteristics

Initially, we collected data from 216 patients, of which 166 met

the criteria and were included in our study (Figure 1). Among these

patients, 71 (42.8%) had T2DM and 95 (57.2%) did not. Baseline

data and test results are shown in Table 1. The average age was

55.9 ± 14.4 years, approximately 51.8% were female, the BMI was

24.4 ± 4.0 kg/m2, waist circumference was 85.8 ± 11.1 cm, and

21.7% had a history of smoking. The T2DM group had higher

blood glucose and lower NT-proBNP, while there were no

significant differences between the two groups in terms of

troponin, total cholesterol, and low-density lipoprotein. The

detailed characteristics of the study population are shown in Table 1.
3.2 Heart rate responses by T2DM

All exercise test results are shown in Table 2. At rest, patients

with T2DM had higher systolic blood pressure, heart rate, and

metabolic equivalents (METs) compared to those without T2DM,

while their diastolic pressure was lower. However, these

differences were not statistically significant. During the exercise

load, patients with T2DM had a significantly lower peak heart

rate than those without T2DM (P < 0.001). The peak systolic

blood pressure and peak METs of patients with T2DM were

lower than those of individuals without T2DM, while their peak

diastolic pressure was higher, but these indicators were not

statistically significant. The heart rate recovery for patients with

T2DM was 14.65 ± 11.89 s, compared to 20.26 ± 8.58 s for those
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TABLE 2 Exercise test variables of the patients with and without T2DM.

Variable T2DM No-T2DM P-value
Reasting systolic BP (mmHg) 117.50 ± 15.44 117.39 ± 14.00 0.96

Resting diastolic BP (mmHg) 71.63 ± 10.13 71.68 ± 11.75 0.98

Peak systolic BP (mmHg) 155.19 ± 26.91 162.96 ± 25.77 0.07

Peak diastolic BP (mmHg) 77.58 ± 13.01 75.62 ± 11.32 0.31

Reasting METs 1.45 ± 0.26 1.40 ± 0.27 0.26

Peak METs 5.99 ± 1.89 6.29 ± 1.33 0.22

Reasting HR (beats/min) 82.49 ± 12.89 80.43 ± 10.54 0.27

Peak HR (beats/min) 118.85 ± 23.66 133.26 ± 21.48 <0.001

Heart rate recovery (beats/min) 14.65 ± 11.89 20.26 ± 8.58 0.001

CI 1 0.46 ± 0.23 0.63 ± 0.21 <0.001

CI 2 7.88 ± 3.19 10.91 ± 2.75 <0.001

VO2/Kg (ml/min/kg) 20.95 ± 6.60 22.09 ± 4.80 0.22

VE/VCO2 slop 29.41 ± 2.86 28.07 ± 2.30 0.001

RER 1.12 ± 1.07 1.03 ± 0.09 0.41

VC (L) 3.01 ± 0.64 3.13 ± 0.86 0.33

FEV1/FVC 83.67 ± 12.66 3.13 ± 0.86 0.04

VEmax (L) 44.80 ± 18.41 46.39 ± 15.78 0.56

BP, blood pressure; METs, metabolic equivalents; CI, chronotropic index.

Continuous data were presented as mean ± SD.

TABLE 1 Baseline characteristics of the patients with and without T2DM.

Variable Overall
(166)

2T2DM
(71)

No-T2DM
(95)

P-value

Age (years) 55.9 ± 14.4 57.9 ± 13.2 54.4 ± 15.1 0.11

Sex (% female) 86 (51.8) 26 (36.6) 60 (63.2) 0.001

BMI (kg ×m−2) 24.4 ± 4.0 24.2 ± 4.0 24.6 ± 4.8 0.66

Waist
circumference (cm)

85.8 ± 11.1 86.3 ± 11.9 85.4 ± 10.5 0.67

Smoking history,
n (%)

36 (21.7) 21 (29.6) 15 (15.8) 0.033

Hypertension, n (%) 8 (4.8) 5 (7.0) 3 (3.2) 0.43

Heart failure, n (%) 4 (2.4) 0 (0) 4 (4.2) 0.14

Coronary artery
disease, n (%)

7 (4.2) 5 (7.0) 2 (2.1) 0.24

Glucose (mmol/L) 7.5 ± 3.1 9.7 ± 3.1 5.9 ± 1.7 <0.001

Troponin (ng/ml) 7.1 (5.6, 9.6) 8.0
(5.9, 11.6)

6.2 (5.1, 8.1) 0.170

NT-proBNP (ng/L) 61.0
(25.5, 126.5)

41.0
(18.0, 92.5)

72.5
(40.0, 250.0)

0.012

TC (mmol/L) 4.8 ± 1.0 4.7 ± 1.0 4.9 ± 1.0 0.202

LDL-C (mmol/L) 2.7 ± 0.8 2.7 ± 0.8 2.7 ± 0.7 0.793

BMI, body mass index; TC, total cholesterol; LDL-C, low-density lipoprotein cholesterol.

Continuous data were presented as mean ± SD or median and interquartile range, and

categorical data as a percentage of the sample.

Lou et al. 10.3389/fcvm.2025.1446675
without T2DM (P < 0.001). In terms of chronotropic competence,

the chronotropic index 2 for patients with T2DM was

7.88 ± 3.19, significantly lower than the 10.91 ± 2.75 for those

without T2DM (P < 0.001). The chronotropic index 1 for patients

with T2DM was also significantly lower than that for individuals

without T2DM (P < 0.001). There were no significant differences

between the two groups in VO2/Kg, RER, VC, or VEmax.

Table 3 shows the impact of T2DM on chronotropic competence.

Initial univariate logistic regression analyses were conducted to clarify

the relationship between chronotropic competence and T2DM. This

was followed by multivariate logistic regression analyses to exclude

potential confounding factors affecting the relationship between
Frontiers in Cardiovascular Medicine 04
chronotropic competence and T2DM. In the unadjusted Model 1,

both chronotropic index 1 (OR: 0.023; 95% CI: 0.004–0.126;

P < 0.001) and chronotropic index 2 (OR: 0.705; 95% CI: 0.620–

0.801; P < 0.001) were negatively correlated with T2DM, with lower

values of both indices associated with T2DM. Model 2, adjusted for

age, gender, BMI, and smoking history, showed that the OR for

chronotropic index 1 with T2DM was 0.043 (95% CI: 0.007–0.253;

P < 0.001), while the OR for chronotropic index 2 with T2DM was

0.718 (95% CI: 0.621–0.831; P < 0.001). Model 3, building on Model

2, included adjustments for hypertension, heart failure, and

coronary artery disease, and showed that the OR for chronotropic

index 1 with T2DM was 0.062 (95% CI: 0.010–0.374; P < 0.001),

while the OR for chronotropic index 2 with T2DM was 0.732 (95%

CI: 0.630–0.852; P < 0.001). Model 4, based on Model 3, included

additional adjustments for blood glucose, BNP, VO2/Kg, and

VE/VCO2 slope, and the correlation remained significant. The

chronotropic index 1 and chronotropic index 2 showed a consistent

negative association with T2DM, remaining significant even after

adjusting for various potential confounding factors. Subsequently,

chronotropic index 2 was included in the model as a quartile

variable. After adjusting for confounding factors, chronotropic

index 2 still showed a negative correlation with T2DM (OR: 0.388;

95% CI: 0.173–0.869; P = 0.021), while the chronotropic index 1

itself was not associated with T2DM (OR: 0.414; 95% CI: 0.147–

1.165; P = 0.095).
4 Discussion

Our study primarily found that patients with T2DM exhibited a

lower heart rate response during exercise compared to individuals

without T2DM. Even after adjusting for age, gender, BMI,

smoking history, comorbidities, and other variables, this result

remained unchanged. We also discovered that chronotropic index

2 is more closely related to T2DM than chronotropic index 1,

with a lower chronotropic index 2 significantly associated with

T2DM. These results remained consistent even after adjusting for

other confounding factors.

We thoroughly analyzed heart rate response indicators in

patients with T2DM, specifically focusing on their response

during exercise. For the first time, we compared the change in

heart rate per 1 MET increase during exercise between patients

with T2DM and those without (chronotropic index 2). We

confirmed that chronotropic index 2, as opposed to chronotropic

index 1, is more closely related to T2DM and may more

accurately assess the heart rate response of T2DM during exercise.

Previous studies have found that patients with diabetes may

have impaired heart rate recovery. Seshadri et al. discovered that,

in a healthy cohort without known coronary artery disease,

diabetes was associated with abnormal heart rate recovery after

exercise. This association persisted even after adjusting for several

potential confounding factors (13). Yu et al. also found that

delayed heart rate recovery after exercise is an independent risk

factor for T2DM in men, even after adjusting for biochemical

indicators such as glucose metabolism (14). These studies

suggested that impaired heart rate recovery may be an early
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TABLE 3 Odds ratios and 95% CI of type 2 diabetes and chronotropic index.

Variable Model 1 Model 2 Model 3 Model 4
CI 1 0.023 (0.004–0.126)* 0.043 (0.007–0.253)* 0.062 (0.010–0.374)* 0.001 (0.0001–0.521)*

CI 2 0.705 (0.620–0.801)* 0.718 (0.621–0.831)* 0.732 (0.630–0.852)* 0.665 (0.479–0.923)*

CI 1 group 0.522 (0.384–0.710)* 0.586 (0.424–0.808)* 0.634 (0.455–0.883)* 0.414 (0.147–1.165)

CI 2 group 0.374 (0.265–0.568)* 0.393 (0.265–0.582)* 0.415 (0.275–0.624)* 0.388 (0.173–0.869)*

CI, chronotropic index; CI group, the quartiles of the chronotropic index; Model 1: univariate logistic regression; Model 2: additionally adjusted for Model 1 variables plus age, sex, BMI,

smoking history; Model3: additionally adjusted for Model 2 variables plus hypertension, heart failure, coronary artery disease; Model4: additionally adjusted for Model 3 variables plus

Glucose, NT-proBNP, VO2/Kg, VE/VCO2 slop.
Data were presented as odds ratios and 95% confidence intervals.

*P < 0.05.
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manifestation of diabetes and could predict the onset of diabetes.

However, other studies have found that impaired heart rate

recovery is not independently associated with the occurrence of

diabetes. Jae et al. discovered that while slowed heart rate

recovery is related to the development of T2DM, this relationship

became insignificant after adjusting for diabetes risk factors and

fasting blood glucose. They believed that this relationship could

largely be explained by baseline fasting blood glucose in healthy

males (15). Numerous studies have also found that patients with

diabetes tend to have an increased resting heart rate. Park et al.

found that for every 10 beats per minute increase in resting heart

rate, the risk of diabetes increases by 1.39 times for men and

1.28 times for women (16). A meta-analysis shows a strong

positive association between high resting heart rate and the risk

of T2DM (17). A prospective cohort study conducted by Lee

found that an increase of 10 beats per minute in resting heart

rate is associated with a 19% increase in the risk of T2DM (18).

Additionally, some studies have found the association between

resting heart rate and diabetes to be unclear. An increase of 12

beats per minute in resting heart rate is associated with

approximately a 10% higher risk of developing diabetes.

However, this association becomes statistically insignificant after

adjusting for BMI and postprandial blood glucose (19).

Heart rate recovery after exercise is primarily related to the

activation of the parasympathetic nervous system, while the heart

rate response during exercise is mainly associated with the

activation of the sympathetic nervous system. Previous studies

have shown that patients with diabetes exhibit significant

sympathetic nervous responses during exercise, but the direction

of this response varies across studies. Some studies have found

that patients with T2DM have significantly enhanced sympathetic

responses during isometric handgrip exercises (20). Additionally,

animal experiments have shown that T2DM rats exhibit

significantly stronger heart rate responses during muscle

contraction and tendon stretch compared to healthy controls (21,

22). However, other studies have found weaker sympathetic

activation responses in diabetic patients during exercise. Sydó et al.

found in a cohort study of 21,396 patients without cardiovascular

disease that diabetic patients had a lower chronotropic index, and

this low heart rate response independently predicted long-term

survival in diabetic patients (23). Our study similarly found a

decrease in heart rate response during exercise in patients with

T2DM, reflecting impaired sympathetic activation. It is noteworthy

that our study is more comprehensive, especially focusing on
Frontiers in Cardiovascular Medicine 05
T2DM patients, with a more detailed study design. The differences

in these study results may be related to the choice of exercise

mode in the studies—some focused on static exercises (e.g.,

handgrip tests), while others focused on dynamic exercises (e.g.,

aerobic exercise). Additionally, the duration of exercise may also

be a factor influencing heart rate response. Whether the heart rate

response is enhanced or diminished, it indicates abnormal

cardiovascular responses during exercise in T2DM patients. This

abnormal response may be an important marker of the increased

cardiovascular risk in diabetic patients.

At any time, the heart rate reflects the function of the autonomic

nervous system, which is the dynamic balance between the

parasympathetic and sympathetic nerves. During exercise,

sympathetic nerve tension increases and parasympathetic nerve

tension decreases, leading to a gradual increase in heart rate (24, 25).

Therefore, if the heart rate does not increase correspondingly with

the intensity of exercise, it indicates a dysfunction of the autonomic

nervous system (9).

The overt clinical symptoms of autonomic nervous system

dysfunction in patients with T2DM often appear in the late stages,

but subclinical dysfunction may already be present in the early

stages. Hypotheses about the etiology of diabetic neuropathy

include metabolic injury to nerve fibers, inadequate neurovascular

function, autoimmune damage, and deficiency of neurotrophic

growth factors. This pathogenic process involves multiple factors.

Hyperglycemia leads to the accumulation of sorbitol and NAD by

activating the polyol pathway. The activation of protein kinase

C causes vasoconstriction and reduces nerve blood flow. Increased

oxidative stress can cause endothelial damage and reduce the

bioavailability of nitric oxide. Alternatively, excessive production of

nitric oxide may lead to the formation of peroxynitrite and damage

to the endothelium and neurons, a process known as nitric oxide

stress. In the subgroup with neuropathy, immune mechanisms may

also be involved. The reduction in nerve growth factor, deficiency

of essential fatty acids, and the formation of advanced glycation

end products also lead to decreased intraneural blood flow and

nerve hypoxia, altering nerve function. The result of this

multifactorial process may be the activation of ADP-ribosylation,

leading to the depletion of ATP, which in turn causes cell necrosis

and activates genes associated with neuronal injury (21, 22).

Therefore, we can assess autonomic nervous dysfunction in patients

with T2DM by evaluating their early chronotropic function status.

Our study also has several limitations. (1) This is a single-

center study with a relatively small sample size, and we cannot
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avoid selection bias, which may limit the generalizability of the

results. Additionally, our study subjects are Chinese, and larger

studies are needed to extend the findings to other ethnic groups.

Therefore, larger multi-center studies are necessary. (2) This is a

cross-sectional study, which does not effectively establish the

causal relationship between T2DM and chronotropic competence.

Thus, large cohort studies are needed to further confirm this

relationship. (3) Because this is retrospective data, some laboratory

test results are missing. To minimize the impact of missing data,

we used statistical methods for imputation, but this may still

lead to some bias. Therefore, we should be more cautious

when interpreting these related indicators. (4) Because of the

retrospective design of this study, we did not consider the impact

of the duration of T2DM, blood glucose control, and the use of

antidiabetic medications on the results. These factors may

influence heart rate responses in patients with T2DM.
5 Conclusion

Our study suggests that heart rate response is significantly reduced

in patients with T2DM, and a low chronotropic index is independently

associated with T2DM. This finding highlights the importance of

monitoring heart rate dynamics as a potential strategy for managing

and identifying diabetes. However, since our study may have

limitations in establishing causality, further prospective studies and

randomized controlled trials are recommended to investigate the

causal relationships of these associations and determine their clinical

significance in patients with T2DM.
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