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“Pharmacological” analysis of
atrial fibrillation maintenance
mechanism: reentry, wavelets,
or focal?
Alexander Burashnikov*

Lankenau Institute for Medical Research, Wynnewood, PA, United States
The primary electrophysiological mechanism of atrial fibrillation (AF)
maintenance is poorly defined. AF mapping studies readily record focal
activations (defining them as focal sources or breakthroughs) and “incomplete
reentries” (defining them as reentries or would-be-reentries) but do not or
rarely detect complete circular activations. Electrophysiological alterations
induced by anti-AF drugs before AF cardioversion may help delineate the
mechanism of AF maintenance. Cardioversion of AF by antiarrhythmic drugs is
associated with prolongation of the AF cycle length and temporal excitable
gap (t-EG), resulting in improvement in AF organization (AF-org), and with or
without alterations in the refractory period, conduction velocity and
wavelength. Such electrophysiological pattern is conceivable with termination
of a single focal source but not a single reentry (Class III agents do not
increase reentrant t-EG). Yet, a single focal source and multiple focal sources
are plausible as the primary mechanism of AF maintenance prior drug
administration. Improvement in AF-org caused by anti-AF agents before AF
cardioversion is coherent with simultaneous multiple random reentries and
wavelets. However, simultaneous multiple reentries are unlikely to occur
regularly (most of the contemporary AF mapping studies report either a single
reentry at a time or no reentry at all), and the ability of random wavelets to
maintain AF is speculative. The conducted analysis inclines toward the focal
source as the primary mechanism of AF maintenance.
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Introduction

The primary electrophysiological mechanism sustaining atrial fibrillation (AF) remains

unknown (1–3). The dominant role of reentry in the maintenance of AF, thought proven

1–3 decades ago (4–9), is the subject of debate these days (2, 10–12). Contemporary AF

mapping studies either rarely or never detect full circular activations and readily record

“incomplete reentries”, defining the latter as “reentries” or “would-be-reentries”

depending on the chosen definition of reentry (1, 9–22). Practically all AF mapping

studies readily detect focal activation patterns that, however, can reflect true focal

sources and breakthroughs (1, 9–22). Generally, current AF mapping technologies do

not usually permit the precise establishment of the AF mechanism. Electrophysiological

alterations induced by antiarrhythmic drugs prior AF cardioversion may help in

delineating the primary mechanism of AF maintenance.
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Mechanisms of AF maintenance

Functional reentry was accepted as the primary mechanism of

AF maintenance for decades (1, 4, 5, 8, 23–25). From the 1970s to

1990s, the leading circuit reentry was thought to be the main

mechanism of AF (4, 5, 23, 24). According to the theory, the

leading circuit is determined by the wavelength (WL) and

characterized by the absence of the fully excitable gap (EG) and

the presence of a refractory core (23, 26). The WL is the product

of atrial effective refractory period (ERP) and conduction velocity

(CV), which estimates the probability of the leading circuit

reentry generation (the shorter the WL, the greater the

probability, and vice versa) (26). By about 2000, due to

significant inconsistencies of the leading circuit with cardiac

fibrillation characteristics, the theory was essentially replaced

with the “spiral wave/rotor” concept as the primary mechanism

for cardiac fibrillation (1, 25, 27, 28). Spiral wave activity is

determined by the sink-source relationship of the inner-curved

wavefront tip with the tissue (25, 27, 28). Critical characteristics

of the spiral wave are the presence of the EG and an excitable

but not excited core (25, 27, 28).

At the beginning of the 20th century, Mines (29), and Lewis

(30) suggested that reentry could sustain AF. Around mid-

century, Scherf et al. (31) and Prinzmetal et al. (32) reasoned

that AF could be maintained by focal source(s). In the 1950s to

1960s, Moe and colleagues proposed that AF was primarily

maintained by multiple random wandering wavelets (33, 34).

This theory was “upgraded” to the multiple random functional

reentry paradigm in the 1980s–1990s (4–7). In fact, it was

generally accepted at that point that the main mechanism of AF

maintenance was simultaneous random multiple functional

reentries (4–7, 24, 35–37). This acceptance seemed largely based

on preconceived assumptions rather than reproducible data. In

the 1980s–1990s, AF mapping studies detected “incomplete

reentries” but not full-circuit reentries (4, 24, 38). After 2000,

with improved mapping technologies, reproducible evidence for

the existence of simultaneous multiple reentries during AF has

not been obtained (10–13, 16, 17, 19–21, 39, 40), suggesting that

such multiple reentries are either not detectable with available

mapping technologies or do not exist. Recently, Lee et al., using

a high-density biatrial epicardial mapping, reported that the

maintenance of AF in Moe’s original experimental AF model is

associated with multiple simultaneous sustained and intermittent

focal activation patterns without or only with rare full-circuit

reentrant activations (13, 19).

Anatomical reentry may play a critical role in AF maintenance,

particular in the setting of significant atrial structural remodeling

(40, 41). However, how often anatomical reentries maintain AF is

unknown. Most of the AF mapping studies utilizing simultaneous

epicardial and endocardial mapping in the setting of significant

atrial structural remodeling did not record any anatomical

reentries (10, 39, 42, 43). Also, the causative role of atrial

structural remodeling in AF generation is controversial (44–48).

In the past 30 years, mostly from the 1990s to early 2010s,

some experimental and clinical mapping studies reported that AF

could be maintained by a single rotor, causing fibrillatory
Frontiers in Cardiovascular Medicine 02
conduction in the rest of the atria (8, 9, 49). In the last decade,

however, the vast majority of AF mapping studies either have

recorded sporadic short-lived circular activations (usually 1–3

rotations) or have not recorded any full circular activation at all

(11–21), questioning a single stable rotor as the primary

mechanism of AF maintenance.

The interpretation of AF mapping data is critical in

determining reentry (1, 2, 22, 50–52). Most who consistently

detected rotors during AF have used the phase mapping

approach for rotor detection (9, 14, 53) [introduced by Gray

et al. in the late 1990s (54) and preceded by failure of detecting

full-circuit reentries during AF with “conventional”

methodologies by this group (38)]. It is well recognized now that

the phase mapping method often finds false reentries (12, 18,

55). False reentries (or would-be-reentries) are readily detected

during AF (1, 11, 12, 20, 22, 50, 56). In fact, “reentries” are

readily detected even at the absence of AF during atrial rapid

pacing (51). One would intuitively expect that “incomplete

reentries” are natural consequences of any rapid atrial activation

(s) in the setting of anatomical and rate-dependent functional

heterogeneities in the atrium. How many of these “incomplete

reentries” are true reentries is unknown. Interestingly, ablation

approaches targeting reentry substrate (i.e., CFAE, FIRM, and

fibrosis), initially thought promising, essentially failed to reduce

AF occurrence (48, 57–61).

It is well recognized that AF can be maintained by focal sources

(11–13, 16, 17, 31, 32, 62–64). Practically all AF mapping studies

readily record focal activations (9–13, 15, 16, 20, 21, 39, 62, 63,

65–69) and many AF mapping studies detect either focal

activations without reentries or predominantly focal activations

(10–13, 16, 17, 20, 66–69). Yet, a lot of the AF mapping

investigators record only short-lasting focal activations

(commonly ≤3 beats) (10, 15, 21, 39), with most of these focal

patterns interpreted as breakthroughs (10, 15, 39). At the same

time, many AF mapping studies consistently record both

intermittent and sustained focal activations and many of these

activations are thought to reflect true focal foci (11–13, 16, 17,

20, 62, 63, 70). Interestingly, electrically isolated conduction

pathways, encountered in remodeled atria, may give rise to

“trapped reentry” (71). “Trapped reentry” manifests as a focal

source (71) that may complicate the discrimination of focal vs.

reentrant mechanisms in AF. The contribution of focal sources

to the maintenance of AF is poorly understood.

Driven by the absence of evidence for either reentry or focal

sources as the primary underlying mechanism of long-standing

persistent AF, De Groot et al. have suggested that long-standing

persistent AF is maintained by constant aberrant multiwavelets

propagating between epicardium and endocardium, secondary to

atrial structural remodeling (i.e., the double-layer hypothesis) (10,

39). The basis for the double-layer AF mechanism is a major

epi-endocardial electrical dissociation, mainly due to significant

atrial structural remodeling. It was estimated that about 400 new

wavelets are generated every second during longstanding

persistent AF, sufficient to maintain AF (10). Note, while circular

activation patterns were not or rarely observed in De Groot et al.

studies, focal activation patterns were readily recorded; however,
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these focal activations were short-lived and the majority were

deduced as breakthroughs (10, 39, 72). Interestingly, Lee et al.

also did not or rarely detect full-circular activation pattens and

consistently recorded focal activations during long-standing

persistent AF (11, 12, 16). These foci, however, were both

sustained (≥32 s) and intermittent (commonly firing

simultaneously), and many of these focal activations were

deduced as real focal sources maintaining AF (11, 12, 16).

There is some resemblance between the double-layer

hypothesis (10, 39) and the original multiple wavelet hypothesis

developed by Moe et al. in the 1950s and 1960s (34), i.e., in both

theories AF is maintained by the multiple random wandering

wavelets. It is practically impossible to prove or disprove the

original multiple wavelet and double-layer hypotheses with

current AF mapping technologies. Yet, while the ability of

random multiple wavelets to maintain AF is speculative (1, 2),

random multiple wavelets (or “fibrillatory conduction”) can be

readily generated by a single stationary source (8, 13, 19, 49).

There are important limitations of the currently available AF

mapping technologies, usually not permitting a precise

discrimination of arrhythmic mechanisms maintaining AF (1).

These limitations are 1) commonly insufficient resolution, 2)

restricted atrial mapping area (usually a part of epicardial

surface), 3) the absence or partial information on the intramural

activation, 4) uncertainties in the interpretation of signals/

electrograms, 5) short duration of uninterrupted mapping time

(usually ≤30 s), etc (1, 2). For example, most of the small

localized “reentries” detected by “conventional” mapping

resolution appear to be pseudo-reentries when viewed in high

resolution (22, 50). Yet, failure of detecting a full-circuit reentry

or multiple simultaneous reentries does not exclude their

presence in unmapped areas, particularly intramurally. Another

example is that although “clean” focal activations on atrial

surface are readily detected during AF with a high resolution,

these focal activations can be breakthroughs from a remote

source(s) (10). The presence or absence of focal and reentrant

activations during AF must be confirmed with comprehensive

and reliable 3-dimentional activation maps, not achievable

currently (1, 2).

The autonomic nervous system (ANS) may importantly

contribute to the generation of AF (most of the supporting data

is related to the initiation of AF, with little data being related to

the maintenance of AF) (73, 74). Pertinent data on the

involvement of ANS in AF maintenance that may help

distinguish reentry vs. focal source maintaining AF are scarce,

indirect, and doubtful. For example, acetylcholine promotes AF

maintenance by shortening atrial repolarization and

hyperpolarizing atrial resting membrane potential (38, 49, 75),

suggesting reentry but not focal sources as the underlying

mechanism of AF maintainance (38, 76). However, during

cholinergically-mediated AF mapping studies commonly either

do not record complete reentry at all or observe it rarely while

readily recording focal activation patterns (12, 13, 38, 77). The

issue of AF cardioversion with IKACh blockers is controversial,

i.e., IKACh blockers may or may not stop AF (78–81), and the

specificity of IKACh blockers is a concern [e.g., XAF-1407
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prolongs QRS (79), indicating a major block of the sodium

channel]. While β-blockers are commonly inefficient in

cardioversion of AF, the interpretation of these data in term of

mechanisms maintaining AF is unclear. Sympathetic nervous

system may or may not affect both focal and reentrant

mechanisms (this issue is poorly understood) (73, 82, 83).

Thus, while reentry was considered proven as the primary

mechanism of AF maintenance from at least the 1970s to the

2010s (4–9), its dominance now is debatable (2, 10–12).

Contemporary AF mapping studies readily detect focal

activations and “partial reentries” but not full circuit activations

(10–13, 16, 17, 19, 20, 66, 68, 84). With available technologies, it

is difficult or impossible to definitively prove reentrant, wavelet,

and focal mechanisms of AF maintenance (1, 2). The primary

mechanism of AF maintenance remains poorly defined.
Drug-induced atrial electrophysiological
alterations before AF termination

Atrial electrophysiological alterations induced by

antiarrhythmic drugs before AF termination may shed light on

electrophysiological mechanisms of AF maintenance. It is

important to identify changes in electrophysiological parameters

that consistently precede drug-induced cardioversion of AF as

well as the value of these parameters for the differentiation of AF

arrhythmic mechanisms. Alterations of the principal

electrophysiological parameters related to AF (such as ERP) in

the very last, or last several, AF beats before AF termination are

practically unknown (e.g., ERP cannot be determined in the

several last beats of AF) or inadequately defined [one study

reported CV acceleration immediately before AF cardioversion

(85)]. Therefore, the current analysis largely examines sustained

drug-induced alterations of the electrophysiological parameters

during AF maintenance before AF cardioversion [such alterations

have been reported (85–95) or can be reasonably deducted, as

discussed later]. To reduce uncertainties in interpretation, mostly

data with Class I and III agents were analyzed.
Effective refractory period

Prolongation of atrial ERP by anti-AF agents is a surrogate for

estimating anti-AF efficacy of the drugs (3, 96). IKr blockers

increase ERP by prolongation of the action potential duration

(APD) and INa blockers by induction of the post-repolarization

refractoriness (97). When achievable, a significant drug-induced

atrial ERP prolongation is likely to be associated with AF

cardioversion or the AF rate slowing. However, prolongation of

atrial ERP/APD may or may not be attainable with Class I and

III agents during AF (86, 98, 99), and both classes can terminate

AF without prolongation of atrial ERP (86, 100–102).

Interestingly, IKr blockers are generally more efficient in

cardioversion of persistent AF than INa blockers (86, 99, 103,

104), despite that Class III should not and Class I should

significantly prolong atrial ERP at very rapid activation rates [due
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to their reverse and use dependency, respectively (3, 105, 106)].

Thus, atrial ERP prolongation cannot be considered a

prerequisite for AF termination by anti-AF agents. Also, because

atrial ERP prolongation acts to terminate, or at least slow down,

all arrhythmic mechanisms, drug-induced ERP prolongation does

not seem useful for discriminating among reentrant, wavelet, and

focal mechanisms.
Conduction velocity

Slowing of atrial CV during AF generally occurs with inhibition

of INa, but not with specific block of IKr (86). Whether INa block-

induced CV slowing is involved in AF termination is not clear. In

the case of reentry, INa block-induced CV slowing during AF may

increase the chance of conduction block (that may lead to reentry

termination; Figure 1), but slowing CV itself should promote

reentry generation (a basic postulate for reentry) (107). Also, INa
block-induced prolongation of the temporal excitable gap (t-EG)

during AF (Figure 2; as discussed later) should reduce the chance

of conduction block (Figure 1). Interestingly, CV consistently

accelerates just before AF cardioversion with potassium and sodium

channel blockers (85), likely due to a concomitant prolongation of

the t-EG, as discussed later. In the case of a focal source, CV

alterations by itself should not directly affect rapid focal source

firing. Thus, the limited knowledge about the involvement of CV in

drug-induced AF cardioversion is insufficient for the differentiation

of arrhythmic mechanisms maintaining AF.
Wavelength

In the 1980s and 1990s, wavelength (WL) was generally

considered a predictable parameter for anti-AF efficacy of
FIGURE 1

The elimination of the temporal and spatial excitable gaps (t-EG and s-EG, re
of drug-induced reentry termination. The basis for this mechanism is wavelen
increase. AP, action potential. Pease see text for details.
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antiarrhythmic drugs based on numerous studies reporting that

both INa and IKr blockers terminated and prevented AF by

prolongation of the WL (Figure 1) (5, 108–110). It has become

evident over the last two decades that anti-AF agents may

effectively terminate AF with prolongation and shortening of the

WL as well, without a change of the WL (3, 86, 100). Therefore,

WL is not a reliable parameter for predicting drug-induced AF

cardioversion. Note that drug-induced prolongation of WL is

caused exclusively by ERP lengthening (CV slowing shortens the

WL) (3, 5, 109). So, if drugs prolong WL, it is also invariably

associated with ERP lengthening that alone may account for the

termination of any arrhythmic mechanisms.
AF cycle length

Cardioversion of AF with INa and IKr blockers is quite

consistently accompanied by prolongation of AF cycle length

(AFCL) (85, 86, 89, 92, 94, 111–116). Yet, drug-induced

prolongation of AFCL (i.e., slowing of AF activity) before AF

termination is expected with any arrhythmic mechanisms, with

apparent exception of anatomical reentry termination by IKr
blockers (117). Therefore, drug-induced prolongation of AFCL

by itself does not seem to be a reliable parameter for the

differentiation of arrhythmic mechanisms.
The excitable gap and AF organization

There are temporal and spatial excitable gaps during AF (t-EG

and s-EG, respectively) (86). The t-EG is defined as the difference

between the AFCL and ERP at any given point, and the s-EG is

defined as the excitable spatial distance between wavefront and

wavetail at any given area (i.e., AFCL x CV minus ERP x CV).
spectively) leading to conduction block is a well recognized mechanism
gth (WL) prolongation, secondary to the effective refractory period (ERP)

frontiersin.org
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FIGURE 2

Schematic simplified illustrations of drug-induced alterations of the t-EG, s-EG, and AFCL in anatomical and spiral wave reentry. Maintenance and
termination of reentries with prolongation of the EGs are not feasible with IKr blockers (IKr blockers decrease the EGs) and controversially
conceivable with INa blockers. To be consistent with mother reentry being the main mechanism of AF, a reasonable explanation(s) for AF
maintenance and termination associated with prolongation of the t-EG should be for both INa and IKr blockers. Pease see text for details.
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Spatiotemporal t-EG and s-EG during AF can be estimated but not

measured nowadays (it is impossible to measure ERP simultaneously

in multiple locations during AF, among many reasons).

Available data indicate that cardioversion of AF with

antiarrhythmic agents is preceded by a sustained general

prolongation of the t-EG (86, 88, 90) and improvement in AF

organization (AF-org) (85–95, 113). The latter by itself

demonstrates a sustained general prolongation of the t-EG.

Indeed, improvement in AF-org is secondary to the prolongation

of a general spatiotemporal t-EG that provides a longer recovery

time for the activating wavefronts to become more organized.

Drug-induced alteration of the s-EG prior AF termination is

more difficult to estimate than the t-EG. Although drug-

mediated improvement in AF-org is likely to be associated with a

general increase in the s-EG, it is time (i.e., t-EG) and not space

(i.e., s-EG) that determines atrial electrical recovery. According to

the estimation of Wijffels et al., the s-EG before AF cardioversion

(within minutes) was statistically significantly widened by

d-sotalol, cibenzoline, and hydroquinidine, but not flecainide (86).

Directly comparing the effect of flecainide, d-sotalol,

cibenzoline, and hydroquinidine on principal atrial

electrophysiological parameters (ERP, WL, CV, s-EG, and t-EG)

before termination of AF (within minutes) in goats, Wijffels

et al. found that t-EG prolongation was the only parameter

consistently associated with AF cardioversion (86). van Hunnik

et al. (85) studied changes in AF organization, AFCL, and CV

occurring immediately (within seconds) before spontaneous and
Frontiers in Cardiovascular Medicine 05
drug (potassium and sodium channel blockers)-induced AF

termination in goats. AF organization was consistently improved

immediately before AF termination in all studied settings,

coinciding with AFCL increase and CV acceleration (85). The

improvement in AF organization and acceleration in CV were

likely due to prolongation of a general t-EG.

In the case of AF sustained by a mother reentry, both the t-EG

and s-EG around the reentry core are vital parts of the circuit

(Figures 1–3). Drugs may decrease, increase, and not change the

EGs around the reentry core (Figures 1–3) (25, 107, 117–119).

The elimination of the t-EGs at any point around the reentry

core (the t-EG cannot disappear without elimination of the s-EG

and vice versa) should lead to conduction block at this point,

which may result in termination of the circuit (Figure 1).

Prolongation of a general t-EG along the reentrant pathway may

make the circuit more stable (by reducing the chance of

conduction block; Figure 1) or more vulnerable to termination.

The latter may occur secondary to destabilization of the

reentrant core by invading wandering wavelets (relevant to

functional reentries; Figure 2) (120) or due to collision of the

reentrant wavefront with some antidromic wavelets (relevant to

anatomical and functional reentries; Figure 2) (119). Importantly,

it is drug-induced termination of reentry with elimination of the

EGs along the reentrant core that is well-recognized (Figure 1)

(96, 107, 109) and drug-induced termination of reentry with

prolongation of the EGs around the reentrant core is poorly

defined and controversial (Figure 2; as discussed later).
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FIGURE 3

Simplified illustrations of how alterations in the t-EG affect the organization of AF (AF-org) sustianed by mother reentry. Prolongation of the t-EG
improves and shortening of the t-EG aggravates AF-org (prolongation of the t-EG should be commonly associated with inrease of the s-EG). INa

blockers may both increase and decrease the reentrant EGs. IKr blockers decrease the reentrant EGs. Please see text for details.
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In a mother focal source sustaining AF the t-EG is an integral

part of this source, affecting the rate of firing (by modulating the

recovery of the ion channel currents involved in the firing) and

being affected by the rate of firing (i.e., the slower the rate, the

greater the t-EG, and vice versa). How and if the s-EGs

surrounding a rapid focal source affect the generation of this

focal source firing is unknown. Yet, source-sink relationship

between focal source and surrounding tissue may change the s-

EGs. It has been shown that autonomic influences and frequency

of activation may alter source-sink relationship between focal

source and surrounding tissue (121, 122), potentially changing

the t-EG. How and if anti-AF drugs modify the s-EG

surrounding focal source is unknown. Available data indicate

that anti-AF agents reduce the firing rate of arrhythmic focal

activity (123–126) that should prolong the t-EG in the spot of a

rapid focal source (Figure 4). Cessation of rapid focal activity is

commonly associated with its deceleration (Figure 4) (127–131).

If AF is sustained by multiple simultaneous sources (reentrant,

focal, or wavelet), prolongation of the spatiotemporal t-EG (i.e.,

improvement in AF-org) is likely to be associated with the

reduction in the number of these sources, promoting the

cessation of such AF. So, a general prolongation of the t-EG

before AF termination appears to be consistent with all

multisource AF mechanisms.

Thus, antiarrhythmic agents consistently induce

prolongation of the t-EG and improvement in AF-org prior AF

termination, and these parameters may help differentiate

arrhythmic mechanisms.
Frontiers in Cardiovascular Medicine 06
Drug-induced prolongation of the t-EG and
improvement in AF-org before AF
termination: reentry, wavelets, or focal?

The following part of the analysis is an attempt to estimate how

the drug-induced prolongation of the t-EG and improvement in

AF-Org before AF termination correspond to reentrant, wavelet,

and focal mechanisms.
A single anatomical reentry? unlikely

The classical mechanism of anatomical reentry termination by

drugs is conduction block caused by the elimination of EGs in a

critical area (secondary to prolongation of the WL; Figure 1)

(107, 117, 118). This mechanism is inconsistent with

prolongation of the t-EG induced by drugs prior AF

cardioversion. With a general t-EG prolongation along the

anatomical circuit, the probability of conduction block and, thus,

termination of the reentry by this mechanism ought to be

reduced (Figures 1, 2).

Class III agents shorten, not prolong, the t-EG in anatomical

reentry [Figure 2; as it is logically conceivable and has been

reported in atrial flutter studies (99, 117, 118)]. Therefore,

lengthening of the t-EG with IKr blockers around the anatomical

reentrant circuit is contradictory by itself. Class I agents may not

only shorten and but also prolong the t-EG around the
frontiersin.org
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FIGURE 4

Schematic simplified illustrations of drug-induced alterations of the t-EG, s-EG, AF-org, and AFCL prior the termination of a single focal source firing.
Anti-AF drugs prolong AFCL and t-EG, improving AF-org in AF maintained by a focal source. The slowing of rapid focal source firing is a plausible sign
of its subsequent cessation. Drug-induced improvement in AF-org and termination of focal AF may or may not be associated with changes in atrial
ERP, CV, and WL. The illustrated action potentials (AP) are from the focal source location, displaying diastolic depolarization. Please see text for details.
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anatomical reentrant core (Figure 2) (132). In the case of such t-EG

prolongation, anatomical reentry can be terminated by collision of

the reentrant wavefront with antidromically propagating activation

of any origin (Figure 2) (132). However, entrainment should

readily occur also (Figure 2). To be coherent with a mother

anatomical reentry, a reasonable explanation for its termination

associated with the prolongation of the t-EG should be for both

INa and IKr blockers. Considering this argument as well as the

inconsistency with the classical mechanism of drug-induced

termination of anatomical reentry with prolongation of the t-EG,

anatomical reentry is unlikely as the primary mechanism of

AF maintenance.
A mother functional reentry? Unlikely

There is little to no data and thoughts on termination of

functional reentries by drugs associated with prolongation of the

t-EG. In contrast, there are plenty of data and theories on

termination of functional reentry by Class I and III agents

associated with elimination of the t-EG, resulting to conduction

block (secondary to prolongation of the WL; Figure 1) (107, 109,

133). This mechanism was directly or indirectly supported by

many studies, largely in the 1980s and 1990s (96, 107, 109, 133).

During that time, the primary interpretation of the functional

reentry was based on the leading circuit reentry theory, and

drug-induced termination of functional reentry due to
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elimination of the EGs leading to conduction block was

consistent with this theory (Figure 1). By about 2000, due to

significant inconsistencies of the leading circuit with cardiac

fibrillation characteristics, the theory was essentially replaced

with the “spiral wave/rotor” concept as the primary mechanism

for functional reentry (1, 25, 27, 28). To what extent drug-

induced termination of functional reentry via conduction block

(Figure 1) is applicable to spiral waves is unclear.

The termination of mother rotor by anti-AF agents is poorly

defined, perhaps due to the absence or rare detection of a

sustained spiral wave during AF (10–13, 15–22, 38, 77, 94, 134,

135). All available data and theories suggest that IKr block (by

prolonging ERP with no or little CV slowing) shortens the t-EG

in spiral waves, as in all other reentrant mechanisms (25, 107,

117, 132, 136), that is inconsistent with t-EG prolongation

induced by IKr blockers before AF termination (86). In the

original study demonstrating that d-sotalol-induced termination

of AF was associated with prolongation of the t-EG and s-EG,

the only explanation for these EG prolongations, reconciling it

with reentry, was that d-sotalol might inhibit INa (86) (high

concentrations of d-sotalol block INa (137). However, d-sotalol

did not affect atrial CV in this study (86), indicating that d-

sotalol caused little to no inhibition of INa.

Experimental data indicate that INa blockers can shorten (109,

138, 139), prolong (120), or leave EGs unchanged (138) in

functional reentrant circuits. There was one experimental study

reporting that termination of vagally-mediated AF by pilsicainide
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FIGURE 5

Schematic illustrations of cardioversion of a multifocal AF by anti-arrhythmic agents. The termination of multisource AF is likely due to the slowing and
cessation of the last source of the same mechanism maintaining AF. Please see text for details.
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(an INa blocker) was associated with prolongation of the t-EG and

reduction of the WL (120). In this study, a mother rotor-based AF

stopped when the spiral wave core was excited by a wavelet invader

coming from widened spatiotemporal EGs (120) (as schematically

illustrated in Figure 2). However, these results contradict to another

study reporting that pilsicainide shortened the t-EG and prolonged

the WL before cardioversion of vagally mediated AF (140).

IKr block-induced improvement of AF-org (86, 90, 95, 141) are

discordant with the effects of IKr blockers to shorten the EGs of a

mother spiral wave (Figures 2, 3) (25, 136). INa blockers may

improve the AF-org of AF maintained by a mother rotor if INa
blockers prolong a general t-EG and the degree of this

prolongation is great enough to overwhelm the effect of INa
blockers to worsen AF organization (Figure 3).

An apparent problem with the idea of mother spiral wave

termination by antiarrhythmic drugs for the primary explanation

of AF termination is the issue of sustainability of spiral waves.

Spiral waves are generally unstable by nature (1, 27, 28), and the

vast majority of AF mapping studies never recorded sustained

rotors (i.e., rotors, when detected, commonly lasted for ≤3
rotations) (11, 15, 17, 18, 20, 21, 66, 94, 134, 135, 142, 143).

It is well recognized that the ERP, CV, WL, and EGs may vary

significantly in space and time along function reentry pathway (25,

144). Yet, a spatiotemporal measurement of these parameters

around the functional reentry core is technically unrealistic

currently [putting aside that any chance of measuring these

parameters is very low; the vast majority AF mapping studies

never detect a sustained spiral wave (10–13, 15–22, 38, 77, 94,

134, 135)]. When selecting and manipulating the functional

reentry-relevant parameters/conditions in mathematical models,
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there may be some explanations for drug-induced termination of

reentry with the t-EG prolongation that are not considered in

this review. Such theoretical explanations should reasonably

substantiate the termination of functional reentry by both the INa
and IKr blockers as well as in common and not specific

conditions. Particularly, one should explain how IKr blockers

prolong the t-EG in mother reentry-maintained AF.

Thus, drug-induced prolongation of the t-EG before AF

cardioversion cannot be reasonably explained with the classical

mechanism of drug-induced termination of functional reentry

(Figure 1). Also, the termination of mother functional reentry

with prolongation of the t-EG is not plausible with Class III

blockers and only controversially conceivable with INa blockers.

Therefore, mother functional reentry is unlikely to be the

primary mechanism of AF maintenance.
Simultaneous random multiple reentries
and wavelets? Speculative

Anti-AF drug-induced improvement in AF-org should reduce

the appearance of random short-living reentries and, thus, is

consistent with the termination of AF maintained by such

reentries. However, contemporary AF mapping studies do not

record simultaneous multiple reentries (10–13, 16, 17, 19, 39,

40). Moreover, increasingly more AF mapping studies either do

not observe full circular activity at all or observe only a single

rotational activity at a time (10–13, 16, 17, 19, 39, 40), with

many or all of these rotational activities being would-be-

reentries (12, 13, 19).
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Drug-induced improvement in AF-org before AF cardioversion

is also generally consistent with the random multiple wavelet

theories (Moe’s and double layer). The original Moe’s hypothesis

was largely abandoned in the 1980s to 1990s (in favor or

multiple random reentries) (4–7, 24, 35–37), but still remains in

circulation (134). The double-layer hypothesis seems limited, or

largely limited, to long-standing persistent AF (10). It is

impossible to definitively prove or disprove the multiple wavelet

hypothesis(es) with available mapping technologies (1, 2). At the

same time, random multiple wavelets (i.e., fibrillatory

conduction) can be generated by a rapid stationary source (13,

19, 49), including by rapid pacing (51).

There are additional issues with random multiple reentries and

wavelets as the primary mechanisms of AF maintenance. First,

there is substantial evidence for the usual presence of repetitive

activation patterns and some spatiotemporal stability during

paroxysmal and persistent AF (54, 145–154), arguing against a

completely random nature of the primary mechanism of AF

maintenance. Second, distinct and repetitive F waves displaying a

narrow single or dominant power peak are usually recorded

during paroxysmal and persistent AF in most patients (95, 111,

155–159) that does not appear to be consistent with random

multiple reentries and wavelets. Third, if AF is sustained by

simultaneous random multiple sources, the termination of such

AF should be due to the cessation of the last random driver and

not by a stable driver. However, available data indicate that anti-

AF drugs by significantly slowing the rate of AF (86, 94, 100,

116, 159–161) commonly convert AF to a tachycardia-like

arrhythmia before the arrhythmia termination (100, 113, 116,

125, 162, 163). Such tachycardia-like arrhythmias are likely to be

maintained by a single stationary driver. All these data and

arguments cast doubt on the primary role of random multiple

reentries and wavelets in AF maintenance.
Focal source(s)? Conceivable

Drug-induced prolongation of the t-EG resulting to

improvement in AF-org before AF termination, with or without

changes in the ERP, CV, and WL, is conceivable with

termination of a focal source (Figure 4). It is known that drug-

induced prolongation of the t-EG is inevitably associated with

increase of the AFCL (t-EG = AFCL-ERP while anti-AF drugs do

not shorten ERP) and that anti-AF agents prolong AFCL before

AF termination (86, 89, 92, 94, 111–116, 164). These facts can be

explained with focal sources (Figure 4). Indeed, available data

indicate that termination of arrhythmic focal source activity with

or without drugs is preceded by slowing this activity (123–131)

that should be associated with prolongation of the t-EG

(Figure 4). Increase in the cycle length and t-EG in the location

of focal source maintaining AF should spread throughout the

atria (with spatiotemporal variations), leading to a general

improvement in AF-org (Figure 4).

We know little about the mechanism(s) of rapid focal sources

and mechanisms by which anti-AF drugs can slow down such focal

activity. Mechanistically, drug-induced ERP prolongation, when it
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occurs, should slow down rapid focal source activity, promoting

the termination of such activity. Abnormalities in intracellular

calcium activity (Cai) and “funny” current (If) may be involved

in the maintenance of AF (165–167) and many anti-AF agents

are capable of reducing Cai (such as flecainide, ranolazine,

amiodarone, etc.) (168, 169) and inhibiting If (such as

amiodarone, flecainide, ibutilide, etc.) (170, 171).

Specific data and theories on focal AF termination by anti-AF

drugs are scarce. AF termination by drugs are explained almost

exclusively based on the reentry ideology (25, 96, 107, 109), even

when the drugs do not prolong atrial ERP before AF termination

(86). The investigation of pharmacological cardioversion of focal

AF is problematic. In the whole atrium (in situ, in vivo, or in

vitro), focal AF is commonly difficult to prove definitively (as

discussed previously), and in isolated thin atrial slices or single

cells (in which focal sources can be convincingly proved),

sustained rapid focal activity with a rate equivalent to AF does

not develop (127, 129, 172–174). In fact, focal arrhythmic

activity in isolated thin atrial tissue slices and single cells is

commonly induced artificially (i.e., by rapid pacing in the

presence of a high concentration of β-receptor agonists), its rate

of activation is typically slower than the rate of atrial tachycardia,

and the duration of this focal activity is usually only in seconds

(127, 129, 173). These data may argue against focal sources as

important drive(s) for AF. However, the fact that focal activity

from atrial tissue slices and single cells cannot account even for

the rate and sustainability of focal atrial tachycardias refute this

assumption. There are focal atrial tachycardias (131) and there is

reasonable evidence for the existence of focal AF (11–13, 16, 17,

62–64). It appears that atrial arrhythmic focal sources are capable

of generating sustained rapid activation only in natural or close

to natural environments (i.e., in vivo, in situ, or in coronary-

perfused atrial preparations) but not in superfused atrial tissue or

isolated single cells (3).

Thus, available data indicate that the termination of atrial

arrhythmic focal activity by drugs is preceded by the

prolongation of the cycle length that should be naturally

associated with the lengthening of the t-EG and improvement in

AF-org (Figure 4). Also, drug-induced cardioversion of focal AF

is plausible with or without alteration in ERP, CV, and WL.

Therefore, the reported behaviors of atrial electrophysiological

parameters prior AF termination in the presence of Class I and

III agents are conceivable with a single focal source (Figure 4). Is

this deduction pertinent to the mechanism of AF maintenance

before drug application? The primary mechanism of AF

maintenance could be a mother source before and after the drug

application, with slower activation rate following the treatment. It

also could be simultaneous multiple sources before the drug

treatment, converting to slower activating fewer sources or a

single source following the drug application. If AF is maintained

by simultaneous multiple sources, drug-induced termination of

AF is likely due to the slowing and cessation of the last source of

the same mechanism that maintains AF before drug application

(Figures 4, 5). Therefore, a mother focal source and multiple

focal sources are conceivable as the primary mechanism of AF

maintenance before drug application (Figure 5).
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Conclusions

(1) Drug-induced prolongation of the t-EG and improvement in

AF-org prior AF termination, with or without changes in

the ERP, CV, and WL, are consistent with a mother focal

source and inconsistent with a mother reentry as the main

mechanism of AF maintenance. Yet, a single and multiple

focal sources are conceivable as the primary mechanism of

AF maintenance prior drug administration.

(2) Drug-induced improvement in AF-org during AF

maintenance before AF cardioversion is also coherent with

simultaneous random multiple reentries and wavelets.

However, AF mapping data indicate that simultaneous

multiple reentries are unlikely to occur regularly, and the

ability of random multiple wavelets to maintain AF

is uncertain.

(3) The conducted “pharmacological” analysis in conjunction

with AF mapping data supports the notion that focal

sources are more likely to be the primary mechanism of AF

maintenance than reentries.
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