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image interpretation
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Large Language Models (LLM) are increasingly multimodal, and Zero-Shot Visual
Question Answering (VQA) shows promise for image interpretation. If zero-shot
VQA can be applied to a 12-lead electrocardiogram (ECG), a prevalent diagnostic
tool in the medical field, the potential benefits to the field would be substantial.
This study evaluated the diagnostic performance of zero-shot VQA with
multimodal LLMs on 12-lead ECG images. The results revealed that
multimodal LLM tended to make more errors in extracting and verbalizing
image features than in describing preconditions and making logical inferences.
Even when the answers were correct, erroneous descriptions of image
features were common. These findings suggest a need for improved control
over image hallucination and indicate that performance evaluation using the
percentage of correct answers to multiple-choice questions may not be
sufficient for performance assessment in VQA tasks.
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1 Introduction

Electrocardiography (ECG) is a diagnostic test used to measure the electrical activity of

the heart, primarily to detect arrhythmias and ischemic heart diseases. Due to its

noninvasive nature and cost-effectiveness, it has emerged as a crucial component of

health screening and the initial assessment of cardiac conditions (1). Deriving clinically

meaningful assessments from ECG images involves a multifaceted process that

integrates background medical knowledge with image feature recognition, culminating

in informed judgment. Although 12-lead ECGs initially consist of waveform data, they

are commonly depicted in two dimensions for clinical assessments. Early attempts to

automate the clinical diagnosis of 12-lead ECGs were rule-based (2–4). However, with

the advent of machine learning, various neural network models based on supervised

learning have been proposed (5, 6). These methods entail the utilization of machine

learning models trained on extensive ECG datasets, with many focusing on

classification tasks to predict labels established before training.
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With the development of natural language processing, the

recent emergence of large language models (LLMs) has enabled

natural language generation tasks to produce practical responses

to a wide variety of natural language inputs (7, 8). A significant

advancement in this development is the ability to address tasks

that previously necessitated the creation of task-specific training

data and the development of predictive models that are now

achievable with few, or even zero, shots (9–11). Furthermore, the

multimodal nature of these models has expanded their

applicability beyond natural language tasks (12). Although several

studies have attempted to input ECGs into LLMs via natural

language or unique encoders, limited attempt has been made to

validate the direct input of images into a multimodal LLM (13, 14).

Visual question answering (VQA) entails providing a relevant

answer based on an image and natural language query,

necessitating image interpretation and intricate reasoning (15).

VQA is open-ended in both question and answer formats and,

by asking visual questions, it is possible to target a wide range of

tasks, including details and knowledge-based meanings of

features in images, making its application much broader than

limited classification problems. In clinical tasks as well as with

the same medical images, queries from healthcare professionals

may vary depending on the situation. If VQA could

accommodate such variations, it would eliminate the need to

build independent models for each query, thereby making it

possible to construct models that cover a broader range of

scenarios in the medical field. This would be

considered advantageous.

Zero-shot learning has garnered attention for its ability to

achieve performance comparable to task-specific learning through

pretraining with extensive data, thus circumventing the need for

task-specific training data. Zero-shot VQA has emerged as a

burgeoning area of research, spurred by advancements in LLMs

and multimodal capabilities of models (16). Zero-shot VQA has

garnered significant interest within the medical domain, as

evidenced by the organization of competitions such as

ImageCLEF aimed at fostering its social implementation (17).

Concurrently, there are ongoing efforts to determine how to

effectively leverage pre-trained vision language models in medical

contexts without requiring domain-specific specialization (18).

Noteworthy advancements include the development of vision

language models tailored to the medical field, such as Med-

Flamingo (19). Efforts are also underway to apply medical

multimodal LLMs to VQA (20, 21). Additionally, efforts are

being made to develop and publicly release datasets that facilitate

model development, with a focus on accumulating image and

question-answer pairs from radiological and pathological sources

(22). These developments are anticipated to pave the way for the

future societal implementation of VQA models for

medical imaging.

However, LLMs are recognized for their tendency to produce

false information and fabricate nonexistent facts, a phenomenon

referred to as hallucination (23, 24). This presents a significant

challenge, particularly in the context of applying LLMs in the

medical field, and has prompted extensive research on strategies

for controlling this phenomenon (25, 26). There is a paucity of
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reports regarding the patterns of hallucinations in multimodal

LLMs, and it remains unclear how LLMs behave when zero-shot

VQA is applied, particularly when interpreting 12-lead ECGs.

Reading a 12-lead ECG requires the interpretation of the

electrical excitation of multiple inductions based on medical

knowledge, appropriate detection of abnormal findings, and

drawing conclusions consistent with medical knowledge. To

ascertain whether hallucinations occur in such a specialized task,

it is imperative to deliberate the framework used for its

evaluation. Therefore, it is essential to understand how LLMs

perform these unique tasks. In this study, we conducted zero-

shot VQA using the latest multimodal LLMs for 12-lead ECG

imaging. Our aim was to assess the potential for future

applications and identify any challenges relevant to

its implementation.
2 Material and methods

This study utilized a publicly available dataset comprising 928

12-lead ECG images in JPEG format, each categorized as normal

(n = 284), abnormal heartbeat (n = 233), myocardial infarction

(n = 240), or previous myocardial infarction (n = 172) (27). The

images in the dataset were used as input without any

preprocessing, such as changing the image resolution. In

addition, the PTB-XL dataset (28) was imaged and used with the

ECG-Image-Kit (29) as additional validation data. The PTB-XL

dataset used data labelled as 100% normal as normal (n = 7,172)

and others as data with abnormalities (n = 14,627). For validation

using the PTB-XL dataset, responses that did not correspond to

the questions were excluded from the analysis. The image

datasets were used in accordance with CC BY 4.0. license

(https://creativecommons.org/licenses/by/4.0/).

Three models capable of processing images were employed for

validation purposes: a Vision-and-Language Transformer (ViLT)

(30), Gemini Pro Vision (31), and ChatGPT Plus (32). Two

models, ViLT and Gemini Pro Vision, were evaluated on both

datasets, whereas ChatGPT Plus was assessed only on the first

dataset. The validation of Gemini Pro Vision and ChatGPT Plus

on the first dataset involved a step-by-step response and output

of a detailed description leading to the response. For the other

validations, only the answer number was output. In the ViLT

verification, we employed a method that directly outputs

expressions corresponding to labels. In the Gemini Pro Vision

verification using the PTB-XL dataset, we used a method that

directly instructs models to select an option via a natural

language prompt. The specific prompts used are provided in the

supplemental file.

ViLT is a model that demonstrates its performance advantage

by using a transformer structure instead of convolutional neural

networks or object detection methods, which are conventional

approaches for image feature extraction in the image encoder

(30). They demonstrated that the fusion of image and text

processing within the transformer framework enhanced the

processing speed and performance in subsequent tasks. In this study,

ViLT utilized a fine-tuned model from the COCO dataset (33).
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The ViLT model used in this study was published in Hugging Face

(https://huggingface.co/dandelin/vilt-b32-finetuned-coco). In the

ViLT validation, we quantified the fit of each option as a caption to

the images entered into the model and the option with the highest

value was used as the model response. Google’s LLM models of

Gemini include Ultra, Pro, and Nano; the Pro model is an

intermediate-scale model used for verification (31). Gemini Pro

Vision utilizes an API to input the prompt and images, with the

output results serving as validation. The version used was gemini-1.

0-pro-vision. The default temperature setting of 0.4 was used.

ChatGPT Plus (32) is a chat service manually fed with prompts and

images, and the resultant outputs are employed for validation. In

using ChatGPT plus, the GPT-4 model was used. When using

ChatGPT Plus, the temperature setting was not explicitly stated in

the prompt. Validation with ChatGPT Plus was conducted between

February 22, 2024, and February 28, 2024. The configuration of

LLMs primarily serves to control randomness, thereby influencing

the diversity of their outputs. While there is ongoing debate

regarding the optimal settings and no consensus has been established

(34), this study adopted the default configuration. In the

performance evaluation, the accuracy and F1 score were calculated

for multiple-choice questions, and a confusion matrix was displayed.

To estimate confidence intervals, bootstrapping was utilized to derive

these intervals from the data without relying on distributional

assumptions (35). Confidence intervals for accuracy and F1 scores

were calculated using 2,500 bootstrap replicates.

When evaluating the behavior of LLMs, it is important not only

to determine whether they correctly answer multiple-choice

questions but also to manually assess the generated text. This

assessment ensures that the features of the ECG images are being

appropriately interpreted by the LLMs and that accurate inferences

are being made. To evaluate how the ChatGPT Plus internally

interprets image features and performs inference, consistency

between the input images and output text was verified by board-

certified cardiologists. During the evaluation, a single cardiologist

conducted the initial assessment, followed by a second cardiologist

who reviewed the evaluation results. In cases where there was

disagreement between the two, they engaged in discussions to

reach a consensus and finalize the evaluation. This evaluation

encompassed three criteria: accuracy of medical assumptions,

coherence between the textual description and actual findings in

the images, and logical consistency in selecting options based on

the provided information. Specifically, the assessment delved

deeper into the alignment between the written description and the

observed findings in the images. Abnormalities existing in the

images were categorized manually as either “not described,”

“described as a different abnormality,” or “correctly identified as

abnormal.”. Similarly, for normal findings, the evaluation

distinguished between those “incorrectly labeled as abnormal” and

those “correctly identified as normal”. These were tabulated and

displayed as bar graphs. Texts lacking descriptions of the imaging

findings were excluded from the tabulation of the imaging

findings and logical reasoning. To formulate prompts, we utilized

engaging and motivating descriptions, drawing upon established

techniques known to enhance accuracy. Differences in the

evaluation between the evaluators were evaluated using the
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Cohen’s Kappa coefficients. The prompts were structured to guide

the thought process systematically and to elucidate the rationale

behind the option selection (Figure 1). If the output did not

explicitly provide the answer choice, the image and prompt inputs

were re-evaluated and the text output was regenerated.

Subsequently, only the outputs that explicitly contained the answer

choices were considered for validation.

The classification of hallucinations was conducted with reference

to previous study (36). Hallucinations are broadly categorized into

two types: Factuality hallucination and faithfulness hallucination.

factuality hallucination is further divided into factual contradiction

and factual fabrication. The former refers to outputs containing

content that contradicts real-world facts, while the latter refers to

outputs including unverifiable fabrications. Faithfulness

hallucination is categorized into instruction inconsistency, which

occurs when the output does not follow input instructions; Context

inconsistency, where the output contradicts the input; and logical

inconsistency, where the output contains internal contradictions. In

this study, the instruction inconsistency could not be evaluated;

thus, the prevalence of the remaining types was calculated.
3 Results

The prediction results and confusion matrix for the

classification of 12-lead ECG images are shown (Figure 2). The

percentage of correct answers was approximately 30% for all

models. Analysis of the confusion matrix indicated that the

selection of all three models was biased toward determining that

no abnormal findings were present. The tendency to exhibit a

bias towards predicting “normal” was also observed in the

PTB-XL dataset (Supplementary Figure S1). However, the results

indicated that this tendency was somewhat mitigated in

ChatGPT Plus. Accuracy was similar for all three models, but the

F1 score of ChatGPT Plus exceeded that of the other two models.

To investigate the background of this performance, a more

detailed analysis of the script output by ChatGPT Plus was

conducted. The actual input images and script outputs from

ChatGPT Plus are shown (Figure 3). In the examples shown, both

samples were labeled as acute myocardial infarction, whereas any

sentence in sample A was valid for the content of the image; the

sentence in red in the output for sample B was not accurate relative

to the image. The outcomes of the ChatGPT Plus outputs, which

were meticulously verified and documented for each sample to

assess their accuracy, are shown (Figure 4). Remarkably, errors were

infrequent, particularly concerning the description of assumptions

rooted in medical knowledge and logical process of selecting

options based on the information provided. The predominant error

observed in abnormal findings within the images was the omission

of an abnormality and its corresponding description. For normal

findings, several errors were noted and abnormal findings were

incorrectly identified. For normal findings, a significant number of

errors occurred while identifying non-existent abnormal findings.

Figure 5 illustrates the validation outcomes of the sentences

generated by ChatGPT, which are depicted individually for each

label. A higher incidence of missed abnormal findings was observed
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FIGURE 1

The prompt put in with images in this study.

FIGURE 2

Prediction results and confusion matrix for classification of 12-lead ECG images. Performance indices for each model are displayed at the top of the
figure, and the confusion matrix is displayed at the bottom of the figure. Red squares in the confusion matrix indicate correct cases.
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in the subset of labels containing abnormalities. Figure 6 presents the

validation outcomes for the sentences generated by ChatGPT Plus,

categorized based on whether the correct answer choice was selected

(Figure 6). Even when the correct choice was selected in the output

text, a notable frequency of incorrect statements pertaining to the

imaging findings remained. The context inconsistency was the main

type of observed hallucination, accounting for most of the

hallucination cases as shown in Supplementary Table S1.
4 Discussion and conclusions

In this study, 12-lead ECG imaging was treated as a zero-shot

VQA task and a multimodal approach for ECG interpretation was
Frontiers in Cardiovascular Medicine 04
employed. The performance of all three models tested was biased in

the direction of judging as normal, which was not at a practical

level; however, ChatGPT Plus was slightly lower than the other

two models, with a slightly higher F1 score. This is a hypothesis,

but it is possible that during the pre-training of the multimodal

LLMs used in this study, the training dataset included images of

generally normal ECGs but did not contain abnormal ECG

images. If this is the case, incorporating abnormal ECG images

into the training dataset may potentially enhance the model’s

performance. Imbalances in the training dataset can potentially

degrade the performance of LLMs (37), underscoring the need

for the development of methods to address this issue, particularly

in multimodal contexts. Additionally, a detailed validation of the

ChatGPT Plus outputs revealed a higher frequency of errors in
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FIGURE 3

Examples of actual input images and text output by ChatGPT plus. Both A and B are samples labeled as myocardial infarction. Yellow text indicates
accurate content regarding the image, while red text indicates errors. In logical reasoning, the case of inconsistency with verbalized information was
judged as abnormal, and if there was no inconsistency, there was no inconsistency in logical reasoning.

FIGURE 4

Verification results of all text outputs using ChatGPT plus.

Seki et al. 10.3389/fcvm.2025.1458289
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FIGURE 5

Validation results for each label for sentence output using ChatGPT plus.

FIGURE 6

Validation results for the sentences output by ChatGPT plus are displayed according to whether the correct answer choice was selected.

Seki et al. 10.3389/fcvm.2025.1458289
accurately extracting and verbalizing image features compared to

errors in prior knowledge and logical inconsistencies in answer

selection. It is hypothesized that controlling the hallucinations of

input images is important for future iterations of such models.

Additionally, validation of the text output by ChatGPT Plus

revealed a significant number of instances in which incorrect

descriptions of image features persisted despite correct answers.
Frontiers in Cardiovascular Medicine 06
This underscores the importance of evaluating the ability to

correctly answer visual question-answering tasks when evaluating

model performance for implementation.

While the development and research of zero-shot ECG

interpretation to date have suggested the potential for future

practical applications, the performance evaluation methods have

largely relied on either mechanical assessment of structured
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output (13, 38) or automated evaluation using sentence similarity

scores (39). Consequently, the issue of how to assess cases where

the correct answer is selected but errors occur in the generated

text, as highlighted in this study, remains obscured. Addressing

how to construct an appropriate evaluation framework for such

cases, particularly in the context of automatic report generation

using multimodal large-scale language models, is considered a

critical challenge in this field.

Hallucinations caused by LLM can be divided into

factuality and faithfulness (23, 24). Factuality hallucinations

were further divided into verifiable factual inconsistencies

and fabrication. Generally, the frequency of factual

inconsistency is considered the highest, and this study, in

which factual inconsistency for imaging findings was the

highest, is consistent with such findings. This indicates that

the control of hallucinations by retrieval-augmented

generation and associated methods (26) may be expected in

VQA of 12-lead ECGs. Additionally, the weakness of

inaccuracies in verbalizing feature extraction could

potentially be addressed by leveraging structured data

obtained through automated processes (14).

One of the key limitations of this study is the restricted scope

of the dataset and validation method employed. 12-lead ECGs are

plotted in two dimensions; particularly, the sequence of leads may

vary depending on the device used. Therefore, it is necessary to

verify the 12-lead ECG images using different lead sequences.

Additionally, ECG abnormalities are considered to be extracted

for classification purposes and do not reflect the actual

distribution of abnormalities. The abnormal findings in the

dataset used in this study were limited, which is a limitation.

Moreover, the size of the dataset is another limitation of this

study. While bootstrapping has the advantage of estimating

confidence intervals without assuming the population

distribution, its estimation accuracy may decrease when the

sample size is small, even if the assumptions about the

distribution are relaxed. Therefore, careful interpretation of the

results is required (40). Regarding the performance evaluation

metrics of the model, the method we employed does not treat

the outputs of the LLM as probability values. Consequently,

more detailed performance metrics, such as sensitivity-

specificity trade-offs and calibration, are not included in the

evaluation. Furthermore, methods that have the potential to

improve performance, such as Few-shot method, are not

included in the verification. Another limitation of this study is

the limited number of models tested and the absence of

validation for healthcare-specific models. It is essential to

acknowledge the need for future evaluations of the effectiveness

of models specifically trained on medical data. This study does

not diminish the potential of multimodal LLMs; instead, it

highlights the possible hallucinations that may occur when

these models are used for ECG image interpretation.

Additionally, this study is limited to the use of ECG images as

input for multimodal LLMs and does not consider methods

that incorporate structured information as input for interpreting

ECG images. Integrating structured information along with
Frontiers in Cardiovascular Medicine 07
images could offer significant potential for further enhancing

reading performance. Finally, it should be noted that part of

this study involves manual validation, and the results are based

on a limited dataset, as manual validation of larger datasets has

not been possible. Additionally, the evaluation conducted by the

two cardiologists involved roles in annotation and verification.

While differences between the annotators were minimal

(Supplementary Table S2), the limited number of evaluators

represents a limitation of this study.

Our validation clarified the current behavior of multimodal

LLMs output hallucinations in 12-lead ECG images. Currently,

the accuracy of zero-shot VQA for 12-lead ECG images is still

far from practical; however, it is at a stage where it is desirable to

construct an appropriate evaluation method for future

development. Moreover, this issue is not limited to ECG images

but may also be relevant in other domains such as audio and

waveform data (41). Therefore, fostering active discussion on this

topic is highly desirable.
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Prediction results and confusion matrix for classification of 12-lead ECG
images on PTB-XL dataset. Performance indices for each model are
displayed at the top of the figure, and the confusion matrix is displayed at
the bottom of the figure. Red squares in the confusion matrix indicate
correct cases.
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