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In recent years, semi-supervised methods have been rapidly developed for

three-dimensional (3D) medical image analysis. However, previous semi-

supervised methods for three-dimensional medical images usually focused on

single-view information and required a large number of annotated datasets. In

this paper, we innovatively propose a multi-view (coronal and transverse)

attention network for semi-supervised 3D cardiac image segmentation. In this

way, the proposed method obtained more complementary segmentation

information, which improved the segmentation performance. Simultaneously,

we integrated the CBAM module and adaptive channel attention block into

the 3D VNet (CBAP - VNet) to enhance the focus on the segmentation

regions and edge portions. We first introduced the CutMix data augmentation

mechanism to enhance 3D cardiac medical image segmentation. In this way,

the proposed method made full use of the mixed regions in the images and

expanded the training dataset. Our method was tested on two publicly

available cardiac datasets and achieved good segmentation results. Our code

and models are available at https://github.com/HuaidongLi-NEFU/TPSSAN.

KEYWORDS
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1 Introduction

Medical image segmentation has become one of the crucial tasks in computer vision.

Three-dimensional (3D) medical image segmentation has become increasingly important

because three-dimensional medical images can provide more information than two-

dimensional images. Accurate 3D medical image segmentation can improve clinical

diagnosis and decision-making.

With the emergence of convolutional neural networks (CNNs) (1), 3D medical image

segmentation has experienced rapid development. VNet (2) has greatly improved the

accuracy of 3D medical image segmentation. However, these medical image

segmentation methods require a large amount of labeled data, which demands that

specialized doctors spend considerable time and resources. This is difficult for 3D

medical images. Therefore, many studies have focused on semi-supervised learning with

a small amount of labeled and a large amount of unlabeled data, and these studies have

achieved good performance (3, 4). However, these semi-supervised methods trained

their models with the images from a single view (5, 6). Thus, these methods did not

take advantage of the useful information from different views for 3D medical image

segmentation. Xia et al. (7) suggested that complementary views can provide more

valuable information for 3D medical image segmentation. Therefore, we combined both
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coronal and transverse views to provide more complementary

information for 3D cardiac medical image segmentation.

Moreover, compared with 2D medical images, the collection and

annotation of 3D medical images are more complex. To make full

use of the limited annotations of 3D cardiac images, we applied

the CutMix (8) data augmentation method to 3D cardiac medical

image segmentation tasks to increase the quantity of the dataset,

thereby improving training effectiveness. The experiments

demonstrated that this approach enhanced data generalization and

reduced the impact of the limited annotations medical dataset.

We improved the VNet by adding a convolutional block attention

module (CBAM) (9) attention mechanism module to the

downsampling layers and incorporating adaptive channel attention

block operations in the data input section. The proposed

architecture combines the attention mechanism to dynamically

enhance the feature representation in the target area, and improves

the accuracy of segmentation through adaptive weight allocation.

The experimental results showed that CBAM and adaptive channel

attention block operations allow for the adaptive aggregation of

spatial dimension context information from feature maps.

Our main contributions are summarized as follows:

1. We proposed a new semi-supervised medical image

segmentation framework. The proposed framework integrated

complementary medical imaging information from multiple

views (coronal and transverse) and was built upon an

ensemble of mean teacher networks.

2. We propose CBAP-VNet, which integrates the CBAM and the

adaptive channel attention module into the 3D VNet

architecture to enhance segmentation performance, particularly

in the cardiac region and boundary regions.

3. We are the first to use the CutMix data augmentation method

for 3D cardiac medical image segmentation. In this way, we

expanded the dataset and improved the segmentation accuracy.

2 Related work

2.1 Medical image segmentation

With advancements in deep learning, this technology plays a

crucial role in various medical applications, aiding in diagnosis,

treatment planning, and disease monitoring. In cardiac medical

imaging, traditional methods such as thresholding (10), edge

detection (11), and region-growing algorithms (12) face

significant challenges when dealing with common complexities

such as anatomical structures, noise, and intensity variations.

Cardiac medical imaging is increasingly adopting deep learning

methods to address these challenges.

In the 3D segmentation network, Xie et al. (13) proposed a novel

framework, CoTr, which efficiently combines CNNs for feature

extraction with a deformable transformer (DeTrans) to address the

limitations of CNNs in modeling long-range dependencies in 3D

medical image segmentation. Dong et al. (14) proposed an efficient

method for 3D left ventricle (LV) segmentation in echocardiography,

overcoming challenges such as high-dimensional data, complex

anatomical environments, and limited annotations. Hatamizadeh

et al. (15) proposed that UNEt TRansformers (UNETR) utilize a

transformer as the encoder for volumetric image sequence

representation, achieving state-of-the-art (SOTA) performance on the

multi-atlas labeling beyond the cranial vault (BTCV) and medical

segmentation decathlon (MSD) datasets. Kamnitsas et al. (16)

introduced a dual-pathway 3D convolutional neural network for

brain lesion segmentation. Yu et al. (17) introduced the Coarse-to-

Fine Neural Architecture Search, which automatically designs 3D

segmentation networks, maintaining consistency in network and

input sizes across stages and demonstrating outstanding performance

on the MSD challenge datasets.

2.2 Semi-supervised learning

In recent years, there have been significant advances in deep

semi-supervised learning, and deep semi-supervised learning for

medical image segmentation has become an important research

field in computer vision. These methods use a small amount of

labeled data and a large amount of unlabeled data to train models

and improve segmentation performance. Several classic semi-

supervised models have been proposed for this purpose. Sohn et al.

(18), in semi-supervised classification tasks, presented a fuzzy

routing-forwarding algorithm (FCNS) that exploited comprehensive

node similarity in opportunistic social networks and achieved state-

of-the-art performance. Tarvainen and Valpola (6) introduced

mean teacher, which averages model weights instead of label

predictions, improving test accuracy while using fewer labels for

training. Wu et al. (19) introduced a consistent training strategy to

regulate dropout, resulting in significant improvements across

various deep learning tasks. Ouali et al. (5) emphasized consistency

between predictions from different perturbed versions of encoder

outputs, achieving state-of-the-art results. Luo et al. (20, 21) utilized

uncertainty rectification to enhance consistency between predictions

at different scales, even with limited labeled data, and a consistency

regularization approach for semi-supervised semantic segmentation,

achieving state-of-the-art performance across multiple datasets. Xia

et al. (7) proposed multi-view semi-supervised segmentation, a

method designed to enhance segmentation accuracy by leveraging

multiple data perspectives. In 3D medical segmentation, Cai et al.

(22) proposed an orthogonal annotation method, which involves

labeling only two orthogonal slices within the annotated volume.

This approach significantly reduces the annotation burden and has

achieved promising results in three-dimensional image

segmentation. Peiris et al. (23) proposed a dual-view framework

based on adversarial learning for segmenting volumetric images.

2.3 Data augmentation

Data augmentation plays a crucial role in computer vision and

machine learning. It can improve the model’s performance and

generalization while mitigating overfitting by artificially increasing

the diversity of the dataset. It generates new training samples by

transforming and augmenting the original data. Early data
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augmentation methods primarily included the basic operations such

as translation, rotation, scaling, and flipping. Krizhevsky et al. (24)

converted color images into gray ones to alter the appearance and

features of the images. Vincent et al. (25) introduced random noise

to the data. Simard et al. (26) adjusted the brightness level and

saturation of the images. This can generate new training samples,

thus increasing the diversity and richness of the dataset. Zhang

et al. (27) presented Mixup, which trained neural networks on

convex combinations of examples and their labels. This promoted

simple linear behavior between training examples and increased

robustness to adversarial examples. In addition, Mixup stabilized

the training of generative adversarial networks (GANs). DeVries

and Taylor (28) introduced cutout, which enhanced the robustness

and performance of convolutional neural networks by randomly

masking out parts of input images during the training process. Kim

et al. (29) introduced Puzzle Mix, which was a novel blending

approach that leveraged saliency information and underlying

statistics of natural examples to achieve data augmentation.

3 Method

In this paper, we propose a novel segmentation method, as shown

in Figure 1. The proposed method is a semi-supervised segmentation

method with multi-view (coronal and transverse) information for 3D

cardiac images. Based on the VNet, it incorporates an attention

module to enhance segmentation performance. CutMix data

augmentation was used to enhance the segmentation performance

in 3D cardiac medical image segmentation.

3.1 Multi-view medical image supervision

In the past, 3D medical image segmentation often focused on

learning from and predicting results from a single view. However,

this overlooked the specificity of 3D medical images and the rich

information provided by different views. Three-dimensional

medical images typically encompass axial, coronal, and sagittal

views. To fully utilize the information from these views to guide

the segmentation effect, we incorporated two different supervisory

signals from the transverse and coronal views. These two signals

effectively supervise the segmentation results, and the supervisory

signals from both directions are well-integrated into our proposed

bidirectional semi-supervised segmentation framework.

Since the middle slices contain more information than other

slices in each direction, we use the middle slices of transverse

and coronal directions as the source slices. Based on the distance

of each slice in two directions to the source slices, we form the

supervisory segmentation signal. Detailed experimental

procedures and settings are presented in Section 4.4.

p ¼
1, middle slice
weightd , otherwise

�

(1)

FIGURE 1

For a three-dimensional cardiac image, two annotated views are used for supervised training. The input data consists of three parts: mixed data,

labeled data, and unlabeled data. (1) Training is conducted using both supervised and semi-supervised loss functions. (2) The training parameters

are passed through an exponential moving average (EMA) to another segmentation network for prediction. (3) The unlabeled data is input with

noise. (4) PC represents the uncertainty prediction results. Detailed information can be found in Section 3.

Li et al. 10.3389/fcvm.2025.1461774

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1461774
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


p represents the confidence of each slice to the source slice, i.e.,

the middle slice of a certain view dimension, d is the distance from

slice i to the middle slice, and the distance is the slice size in a

specific direction; weight is the slice weight set in a certain

direction, and the confidence of a slice in the middle of a three-

dimensional shape is 1; in all other cases, it follows an

exponential relationship with distance.

By incorporating supervisory information from different views,

our proposed model can learn more useful information than

methods that rely on a single view. In addition, our proposed

method can avoid the impact of noise from one view. Moreover,

information from different views can enhance the model’s ability

to recognize different structures. Since different structures exhibit

different features in various directions, acquiring information

from multiple views improves the model’s perception of

structural variations. Integrating information from multiple

directions enables the model to comprehensively understand the

structure and features of medical images, thereby enhancing

segmentation accuracy.

3.2 Network architecture and data
augmentation

We propose a new 3D segmentation network, as shown in

Figure 2, which integrates the CBAM (9) module and adaptive

channel attention block (30) into 3D VNet (2). The CBAM

attention module, which consists of both channel attention and

spatial attention modules, is added to each downsampling layer

of the network. The CBAM module made the model focus on

the 3D cardiac region from both spatial and channel aspects. In

addition, as shown in Figure 2, adaptive channel attention blocks

were introduced into the first layer of the input section in the

segmentation network. The input data undergoes adaptive

average pooling followed by a sigmoid operation, and is then

subjected to element-wise convolution with the original data. By

incorporating CBAM attention mechanisms and adaptive channel

attention block operations, segmentation results in greatly

improved boundary delineation of the segmented regions. To

investigate the impact of different components in the proposed

segmentation network, we propose adding two modules to the

VNet: the adaptive channel attention block and the CBAM,

aiming to enhance the network performance. These two modules

can be added to different positions in the network. For detailed

information, please refer to Section 4.4.

We first introduced the CutMix (8) data augmentation method

in 3D cardiac segmentation tasks to enhance segmentation

performance and robustness. Compared to traditional data

augmentation methods, models using CutMix achieved higher

segmentation accuracy and better generalization on the

validation set.

Let x [ Rw�h�d represent a training image and y represents its

label. The goal is to generate a new training sample (~x, ~y) by

combining two training samples: (xA , yA) and (xB , yB). The

FIGURE 2

The details of the improved network. An adaptive channel attention block is added to the first layer of the input section, and a CBAM block is added to

each downsampling block.
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generated training sample (~x, ~y) is used to train the model. The

combining operation is defined as follows:

~x ¼ M � xA þ (1�M) � xB (2)

~y ¼ M � yA þ (1�M) � yB (3)

Here, M [ {0, 1}W�H�D represents a binary mask indicating

where to remove and fill in pixels from two images, and “·”

denotes element-wise multiplication. Similar to Mixup, the

combination ratio λ between two data points is sampled from

the Beta distribution, Beta(α,α), where α = 1, which means λ is

sampled from the uniform distribution (0,1).

The experimental results showed that the application of CutMix

data augmentation improves segmentation accuracy in 3D cardiac

medical images by effectively extending the diversity of the dataset.

3.3 Loss function

The details of the loss function related to the algorithm are

shown in the following formula:

Ltotal ¼ Lsup þ Lsemi þ l � Lunsup (4)

Lsup is the loss function of segmentation and ground truth, Lsemi

is the segmentation loss guided by pseudo-labels, applied to both

unlabeled data and mixed data, and Lunsup is the loss function of

uncertainty rectification. Lsup and Lsemi adopt the combination of

weighted cross-entropy and weighted dice loss (22). The loss

encompasses weighted cross-entropy loss and weighted dice loss:

Lce ¼ �
1

PH�W�D
i¼1 wi

X

H�W�D

i¼1

wiyilogpi (5)

Ldice ¼ 1�
2�

PH�W�D
i¼1 wiyipi

PH�W�D
i¼1 wi(p

2
i þ y2i )

(6)

Wherewi is ith voxel ofweightmapW , pi denotes themulti-view slice

supervision signal, andyi is thepseudo label (Lsemi) or the label (Lsup) of

the voxel.

Lunsup ¼
1

S

Ps�1
s¼0

P

v (p
v
s � pvc )

2 � wv
s

Ps�1
s¼0

P

v w
v
s

þ
1

S

X

s�1

s¼0

jjDsjj
2 (7)

This part consists of two components: uncertainty rectification

and uncertainty minimization. For the unlabeled data, we used

consistency regularization by enforcing the consistency of multi-

scale predictions (21). Thus, pvs and pvc are the corresponding

prediction and uncertainty values for voxel v. The structure

diagram of uncertainty rectification in VNet is shown as Figure 3.

To be specific, we use the Kullback–Leibler (KL) divergence

between the average prediction and the prediction at scales as the

uncertainty measurement. D0, D1, …, Ds�1 is a set of uncertainty

maps where Ds corresponds to the uncertainty of ps. p
j
s is the

jth channel of ps, and C is the class (i.e., channel) number.

DS �
P

C

j¼0

pjs � log
pjs

p
j
c

(8)

4 Experiments

4.1 Dataset

In this experiment, we selected two publicly available datasets,

the left atrium (LA) dataset and the challenge on endocardial three-

dimensional ultrasound segmentation (CETUS) dataset, to validate

the proposed method in this paper.

The LA dataset (31) comprises 100 3D gadolinium-enhanced

magnetic resonance images obtained using a clinical whole-body

MRI scanner, along with comprehensive annotations for the left

atrial cavity provided by radiologists. All scans have a consistent

isotropic resolution of 0.625 mm3 × 0.625 mm3 × 0.625 mm3,

although their dimensions may vary among the scans.

The CETUS dataset (32) includes 3D cardiac ultrasound

images from 45 patients, with each patient’s images capturing the

performance of the left ventricle in both end-diastolic and end-

systolic phases. The 45 patients are divided into three groups as

follows: 15 healthy patients, 15 patients with a history of

myocardial infarction occurring at least 3 months prior to the

study, and 15 patients diagnosed with dilated cardiomyopathy.

4.2 Implementation details

In the two-directional supervision, we set the position of the

supervisory source slice for each data point at the midpoint and

used it for supervised training.

For segmentation training, we trained the network using 5% and

10% of the labeled data from the two datasets. Our semi-supervised

segmentation model is built based on the mean teacher structure. We

employed a sliding window approach with a fixed stride to extract

patches. We set the patch size data to 112 × 112 × 80 for the LA

dataset and 192 × 192 × 64 for the CETUS dataset. The batch size is 2,

with one labeled data point and one unlabeled data point. The training

epoch is set to 6,000. During our training process, we employed an

stochastic gradient descent (SGD) optimizer with a momentum of 0.9

and weight decay of 0.0001. Our framework is implemented in

PyTorch 1.12.0 and utilizes an Nvidia RTX 3090 GPU with 24 GB of

memory. All the model training used the VNet. For quantitative

evaluation, we employed four metrics: Dice, Jaccard index, average

surface distance (ASD), and 95% Hausdorff distance (95HD).

4.3 Comparison with state-of-the-art
methods

We compared four state-of-the-art semi-supervised segmentation

models, including uncertainty–aware mean teacher (UA-MT) (33),
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shape-aware adversarial network (SASSNet) (34), exploring smoothness

and class-separation for semi-supervised medical image segmentation

(SS-Net) (35), and mutual consistency network (MC-Net+) (36). In

Tables 1–4, we present the results of our method without CBAM and

CutMix (Ours) and with CBAM and CutMix (Ours*).

We trained on the LA dataset using 5% and 10% of the labeled

data, and the results showed that the effect was excellent on small

sample datasets. Table 1 shows the result of our model and four

SOTA models using a 5% labeled LA dataset as a training dataset.

The experimental results show that our model achieved a significant

improvement across four evaluation metrics. Our model, with only

5% labeled data, achieved a Dice score of 86.47%, Jaccard index of

76.33%, 95HD of 9.68, and ASD of 2.12, outperforming the other

four SOTA models. In terms of the Dice segmentation metric, our

method outperformed UA-MT by 9.64%, SASSNet by 9.5%, SS-Net

by 7.57%, and MC-Net+ by 5.67%. For the 95HD evaluation metric,

our method showed a reduction of 11.18 compared to UA-MT,

15.4 compared to SASSNet, 5.52 compared to SS-Net, and

TABLE 1 Comparison of four state-of-the-art semi-supervised methods and our method using the 5% labeled LA dataset as the training dataset.

Method Scans used Metrics

Labeled Unlabeled Dice (%) Jaccard (%) 95HD (voxel) ASD (voxel)

UA-MT 4 (5%) 76 (95%) 76.83 65.14 20.86 5.56

SASSNet 4 (5%) 76 (95%) 76.97 63.9 25.08 7.84

SS-Net 4 (5%) 76 (95%) 78.9 66.35 15.2 3.75

MC-Net+ 4 (5%) 76 (95%) 80.8 68.86 17.28 4.68

Ours 4 (5%) 76 (95%) 84.8 73.92 14.52 4.03

Ours* 4 (5%) 76 (95%) 86.47 76.33 9.68 2.12

Ours (without CBAM and CutMix) and Ours* (with CBAM and CutMix).

The best approach is highlighted in bold.

TABLE 2 Comparison of four state-of-the-art semi-supervised methods and our method using the 10% labeled LA dataset as the training dataset.

Method Scans used Metrics

Labeled Unlabeled Dice (%) Jaccard (%) 95HD (voxel) ASD (voxel)

UA-MT 8 (10%) 72 (90%) 86.2 76 13.87 3.46

SASSNet 8 (10%) 72 (90%) 84.53 73.93 12.05 3.32

SS-Net 8 (10%) 72 (90%) 85.57 75.63 10.05 2.37

MC-Net+ 8 (10%) 72 (90%) 86.32 76.2 14.17 3.77

Ours 8 (10%) 72 (90%) 86.96 77.11 12.9 3.51

Ours* 8 (10%) 72 (90%) 87.83 78.48 7.78 2.18

Ours (without CBAM and CutMix) and Ours* (with CBAM and CutMix).

The best approach is highlighted in bold.

FIGURE 3

The structure diagram for uncertainty rectification in VNet.
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7.6 compared to MC-Net+. In addition, as shown in Figure 4, our

model achieved the best segmentation results compared to other

models. The segmentation results did not exhibit over-segmentation,

and better segmentation was achieved in the pulmonary vein.

In Table 2, with 10% labeled data, we also achieved good results.

As the labeled dataset size increased, the segmentation results of all

models were improved. Our model achieved a Dice score of 87.83%,

Jaccard index of 78.48%, 95HD of 7.78, and ASD of 2.18,

outperforming the other four SOTA models. In Figure 4, it can be

observed that the segmentation results of the other models had

many discontinuous parts. Moreover, in the central positions, our

model’s results are the closest to the ground truth. Figure 5 shows

the comparison between our method and four state-of-the-art

semi-supervised learning methods on the LA dataset with 5%

labeled data and 10% labeled data.

We trained each model with the CETUS dataset using 5% and

10% of the labeled data. Table 3 shows the results of our model and

the other state-of-the-art methods with the 5% labeled CETUS

dataset. Our model achieved the best segmentation performance.

Our model achieved good results on the 5% labeled dataset, with

a Dice score of 87.71%, Jaccard index of 78.61%, 95HD of 14.82,

and ASD of 5.33. In terms of the Dice segmentation metric, our

TABLE 4 Comparison of four state-of-the-art semi-supervised methods and our method using the 10% labeled CETUS dataset as the training dataset.

Method Scans used Metrics

Labeled Unlabeled Dice (%) Jaccard (%) 95HD (voxel) ASD (voxel)

UA-MT 4 (10%) 36 (90%) 86.23 76.03 16.91 5.44

SASSNet 4 (10%) 36 (90%) 86.3 76.3 13.02 4.56

SS-Net 4 (10%) 36 (90%) 85.65 75.26 13.78 5.02

MC-Net+ 4 (10%) 36 (90%) 86.94 77.25 17.43 5.21

Ours 4 (10%) 36 (90%) 87.8 78.63 16.65 4.91

Ours* 4 (10%) 36 (90%) 88.49 79.69 13.34 3.87

Ours (without CBAM and CutMix) and Ours* (with CBAM and CutMix).

The best approach is highlighted in bold.

TABLE 3 Comparison of four state-of-the-art semi-supervised methods and our method using the 5% labeled CETUS dataset as the training dataset.

Method Scans used Metrics

Labeled Unlabeled Dice (%) Jaccard (%) 95HD (voxel) ASD (voxel)

UA-MT 2 (5%) 38 (95%) 85.12 74.36 24.41 5.97

SASSNet 2 (5%) 38 (95%) 85.27 74.79 21.15 5.59

SS-Net 2 (5%) 38 (95%) 84.78 73.96 19.71 6.04

MC-Net+ 2 (5%) 38 (95%) 86.44 76.38 18.36 5.3

Ours 2 (5%) 38 (95%) 86.56 76.78 15.87 5.58

Ours* 2 (5%) 38 (95%) 87.71 78.61 14.82 5.33

Ours (without CBAM and CutMix) and Ours* (with CBAM and CutMix).

The best approach is highlighted in bold.

FIGURE 4

2D and 3D visualization and other methods on the LA dataset with 5% and 10% labeled data. The red areas represent the ground truth, while the blue

areas represent predictions.
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method outperformed UA-MT by 2.59%, SASSNet by 2.44%, SS-

Net by 2.93%, and MC-Net+ by 1.27%. Figure 6 shows that our

method achieved better results than other methods on both core

and edge regions, with our model’s segmentation results being

more complete and the edges closer to the ground truth

compared to other models. In Table 4, on the 10% CETUS

dataset, the experimental results indicated that our performance

was better than other state-of-the-art models in terms of both

Dice and Jaccard indices. The Dice score, Jaccard index, 95HD,

and ASD were 88.49%, 79.69%, 13.34, and 3.87 respectively.

Figure 7 shows the comparison between our method and four

state-of-the-art semi-supervised learning methods on the CETUS

dataset with 5% labeled data and 10% labeled data.

4.4 The impact of our proposed methods
on the results

4.4.1 Different components of the CBAP-VNet

segmentation network
An adaptive channel attention block can be added to the

downsampling layers of the input part in the VNet segmentation

FIGURE 5

Comparison of our method with four state-of-the-art semi-supervised methods on the LA dataset. (1 represents 5% labeled data and 2 represents 10%

labeled data).

FIGURE 6

The positions of the CBAM block and the adaptive channel attention block in our proposed enhanced VNet across experimental methods 1, 2, 3, and 4.
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FIGURE 7

The 3D segmentation results and the different slice supervision signals on the LA dataset.

FIGURE 8

The 3D segmentation results and the different slice supervision signals on the CETUS dataset.
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network, and the CBAM module can be incorporated into both the

upsampling and downsampling layers of the VNet. We compared

the segmentation accuracy with different numbers and positions

of the CBAM modules. We also evaluated the importance of the

adaptive channel attention block. We validated the performance

of the model using 5% of the labeled dataset from the CETUS

and LA datasets.

In Figure 8, Method 1 adds the CBAM module to four

downsampling layers. Method 2 adds the CBAM module to three

downsampling layers and incorporates an adaptive channel

attention block in the input part. Method 3 adds the CBAM

module to four downsampling layers and incorporates an

adaptive channel attention block in the input part. Method 4

adds the CBAM module to four upsampling layers and

incorporates an adaptive channel attention block in the input

part. Method 5 is the original VNet without adding any modules.

Method 3 demonstrated the best performance on both the LA

and CETUS datasets, as shown in Tables 5, 6, with a Dice score

of 86.47% and 87.71%, Jaccard index of 76.33% and 78.61%,

95HD of 9.68 and 14.82, and ASD of 2.12 and 5.33, respectively.

The experimental results indicated that method 3, adding an

adaptive channel attention block to the downsampling layers of

the input in the VNet 3D segmentation network and

incorporating CBAM modules into all four network layers, yields

the best segmentation performance.

4.4.2 The slice selection settings
We experimented with the slice selection settings for multi-

view supervision and evaluated their impact on segmentation

accuracy. The selection of slices in two directions serves as

supervision for handling segmentation details. To validate the

model’s effectiveness, we chose slices from the central region in

both directions, slices from the edges, and multiple slices. These

selections were examined for their influence on the final

experimental results. To validate the experimental outcomes, we

conducted experiments on a 5% subset of the LA and

CETUS datasets.

We selected slices at three positions to validate the effectiveness

of the multi-view. Method 1: The slices from the edge of the data.

Method 2: The slices were from the continuous area in the middle

of the data. Method 3: The slices were from the middle of the data.

Method 4 refers to the approach without adding slice supervision

signals. In Table 7 and Figure 9, the results of our experiments

on the LA dataset, which contains only 5% labeled data, are

presented. For Method 1, the results were as follows: Dice

coefficient was 84.51%, Jaccard index was 73.38%, 95HD was

11.48, and ASD was 2.98. It can be observed that the edge

regions in the 3D segmentation results were missing. For

Method 2, the results were: Dice coefficient was 86.2%, Jaccard

index was 75.92%, 95HD was 9.36, and ASD was 2.57.

Although there was some improvement in the segmentation of

the edge regions, the overall performance remained

suboptimal. In Method 3, the segmentation results were the

best, with the best values for the four performance metrics:

Dice coefficient was 86.47%, Jaccard index was 76.33%, 95HD

was 9.68, and ASD was 2.12. Regarding Method 4, the results

were: Dice coefficient was 84.6%, Jaccard index was 73.59%,

95HD was 10.76, and ASD was 2.94.

In Table 8 and Figure 10, the results of our experiments on the

CETUS dataset, which contains only 5% labeled data, are

TABLE 6 The effect of the different components of the proposed method on the performance metrics with the 5% labeled CETUS dataset.

Method Adaptive channel
attention block

CBAM3 CBAM4 CBAM4 (up) Dice (%) Jaccard (%) 95HD (voxel) ASD (voxel)

1 √ 87.22 77.92 16.44 4.27

2 √ √ 87.24 16.44 13.2 4.92

3 √ √ 87.71 78.61 14.82 5.33

4 √ √ 80.65 68.02 46.69 11.9

5 86.84 77.33 16.87 5.65

The bold values are the best results in the comparative experiment.

TABLE 5 The effect of different components of the proposed method on the performance metrics with the 5% labeled CETUS dataset.

Method Adaptive channel
attention block

CBAM3 CBAM4 CBAM4
（up）

Dice
(%)

Jaccard
(%)

95HD
(voxel)

ASD
(voxel)

1 √ 84.75 73.8 10.7 2.69

2 √ √ 83.27 71.64 13.2 3.8

3 √ √ 86.47 76.33 9.68 2.12

4 √ √ 81.72 69.73 15.48 4.36

5 85.24 74.56 10.42 2.85

The bold values are the best results in the comparative experiment.

TABLE 7 Results of slice selection experiments on the 5% labeled
LA dataset.

Method Dice Jaccard 95HD ASD

1 84.51 73.38 11.48 2.98

2 86.2 75.92 9.36 2.57

3 86.47 76.33 9.68 2.12

4 84.6 73.59 10.76 2.94

The bold values are the best results in the comparative experiment.
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presented. For Method 1, the results were as follows: Dice

coefficient was 86.97%, Jaccard index was 77.25%, 95HD was

18.64, and ASD was 5.14. In the 3D segmentation results,

although the edge segmentation was acceptable, many parts

were unrelated to the ground truth labels. For Method 2, the

results were as follows: Dice coefficient was 86.47%, Jaccard

index was 76.58%, 95HD was 20.63, and ASD was 6.49. There

were significant parts that were unrelated to the ground truth

FIGURE 9

The 3D segmentation results and the different slice supervision signals on the LA dataset.

TABLE 8 Results of slice selection experiments on the 5% labeled
CETUS dataset.

Method Dice Jaccard 95HD ASD

1 86.97 77.25 18.64 5.14

2 86.47 76.58 20.63 6.49

3 87.71 78.61 14.82 5.33

4 86.41 76.59 19.56 5.67

The bold values are the best results in the comparative experiment.

FIGURE 10

The 3D segmentation results and the different slice supervision signals on the CETUS dataset.
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labels. In Method 3, the segmentation results were the best, with

all four performance metrics reaching their highest values: Dice

coefficient was 87.71%, Jaccard index was 78.61%, 95HD was

14.82, and ASD was 5.33. Figures 9, 10 indicate that better

segmentation results were achieved from slices in the middle

from both views. Regarding Method 4, the results were as

follows: Dice coefficient was 86.41%, Jaccard index was

76.59%, 95HD was 19.56, and ASD was 5.67.

4.5 Ablation study

In our framework, we conducted ablation experiments to evaluate

the effectiveness of the CutMix module, the multi-view guide module,

and the CBAP-VNet model. The following are the results of our

ablation experiments conducted on the 5% labeled LA dataset and

the 5% labeled CETUS dataset. To better understand and evaluate the

components of our method, we sequentially introduced each setting

of our experiment: (1) the CutMix module, (2) the multi-view guide

module, and (3) CBAP-VNet. The results are shown in Tables 9, 10.

The experimental results show that segmentation performance

steadily improved across the four metrics throughout the entire

training process as the three modules were sequentially

combined. In Table 9, when all three modules were used on the

LA dataset, the Dice coefficient reached 86.47%, the Jaccard

index was 76.33%, the 95HD was 9.68, and the ASD was 2.12.

Table 10, presents the results when all three modules were used

on the CETUS dataset. The result showed that the Dice

coefficient was 87.71%, the Jaccard index was 78.61%, 95HD was

14.82, and ASD was 5.33. The ablation experiments demonstrate

that each module had a significant enhancing effect on the

segmentation results of the two datasets.

5 Conclusions

This paper proposes a novel framework for 3D cardiac image

segmentation based on the mean teacher network structure. We

employed multi-view supervision to obtain supervision slices

from both coronal and transverse views. In this way, the

proposed model gathered more comprehensive supervision

information and paid more attention to core and edge regions.

In addition, we improved the segmentation network by

incorporating CBAM and adaptive channel attention into the

VNet architecture to capture better features for segmentation.

Due to the limited size of medical image datasets, we applied the

CutMix data augmentation technique to increase the dataset size.

In this way, the proposed method achieved better segmentation

performance. The experimental results demonstrated the

feasibility and effectiveness of our proposed model.
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TABLE 9 Results of ablation experiments on the 5% labeled LA dataset.

Method Mix Multi-view CBAP-VNet Dice Jaccard 95HD ASD

1 83.87 72.58 11.83 2.92

2 √ 84.65 73.67 11.41 2.55

3 √ √ 85.24 74.56 10.42 2.85

4 √ √ √ 86.47 76.33 9.68 2.12

The bold values are the best results in the comparative experiment.

TABLE 10 Results of ablation experiments on the 5% labeled CETUS dataset.

Method Mix Multi-view CBAP-VNet Dice Jaccard 95HD ASD

1 84.44 73.59 22.19 6.46

2 √ 85.22 74.68 21.08 6.5

3 √ √ 86.84 77.33 16.87 5.65

4 √ √ √ 87.71 78.61 14.82 5.33

The bold values are the best results in the comparative experiment.
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