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Background and objective: Risk-based predictive models are a reliable tool for

early identification of hypertensive cognitive impairment. However, the evidence

of the combination of individual factors and natural environmental factors is still

insufficient. The aim of this study was to establish a well-performing machine

learning (ML) model based on personal and natural environmental factors to

help assess the risk of early cognitive impairment in hypertension.

Methods: In this study, a total of 757 Chinese hypertensive patients from from

different regions of Shandong Province, China (aged 31–95, male 49.01%) were

randomly divided into training group (70%) and verification group (30%).

Modelling variables were determined by a 5-fold cross-validated least absolute

shrinkage and selection operator (LASSO) regression analysis. Five ML classifiers,

XGB (extreme gradient boosting), LR (logistic regression), AdaBoost (adaptive

boosting), GNB (gaussian naive bayes), and SVM (support vector machines),

have been developed. Area under the ROC curve (AUC), accuracy, sensitivity,

specificity, and F1 scores were used to access the model performance. Shape

Additive explanation (SHAP) models reveal the feature importance. The clinical

performance of the model was evaluated by Decision Curve Analysis (DCA).

Results: Cognitive impairment was diagnosed in 17.44% (n= 132). LASSO regression

analyses suggested that age, waist circumference, urban green coverage, educational

levels, annual sunshine hours, and area whole-day average noise were considered

significant predictors of early cognitive impairment in hypertension. The obtained

XGBoost model yielded good predictive performance with the AUC (0.893), F1

score (0.627), accuracy (0.837), sensitivity (0.780), and specificity (0.853). The

predictive model’s clinical net benefit was confirmed through DCA analysis.

Conclusion: The XGBoost model developed based on personal factors and natural

environmental factors can predict early cognitive impairment of hypertension with

superior predictive performance. Larger population cohorts are needed in the

future to validate these findings and potentially enhance the ability to identify the

occurrence of early cognitive impairment in people with hypertension.
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1 Introduction

Dementia, an increasingly prevalent and challenging

neurodegenerative disease, affects about 50 million people

worldwide (1), a number that is expected to triple by 2050 (2).

Cognitive impairment is the preclinical stage of dementia, and

active prevention can reduce the likelihood of developing

dementia. Hypertension is one of the major risk factors for

cognitive impairment (3) and is associated with a 1.62-fold

increase in the risk of cognitive impairment (4). Currently, there is

no conclusive evidence supporting the role of pharmacological

therapies in preventing cognitive decline (5). In recent years, there

has been a rapid increase in the number of patients with

hypertensive cognitive disorders seeking medical help and

counselling. The specific mechanisms that trigger and promote

cognitive decline are unclear, and treatment options are limited, so

there is an urgent need to develop more precise treatment

strategies for hypertensive cognitive disorders.

Risk factors for cognitive impairment have not been fully

explored. Most studies have focused on individual factors such as

aging, smoking, physical inactivity, low levels of education,

obesity, vitamin D deficiency, diabetes, and hypertension (6, 7),

but these cannot fully explain cognitive impairment. Increasing

evidence supports the need to focus the risk of cognitive

impairment on environmental factors. In addition, it is

increasingly recognized that environmental factors may hold

promise for future predictive methods and are more universal

than brain imaging markers and cerebrospinal fluid (CSF).

Several studies have reported the relationship between natural

environmental factors and cognitive impairment, including

climate (8), greenness (9), air pollution (10), noise exposure (11),

etc. These modifiable natural environmental factors are

considered promising predictors of cognitive impairment, despite

varying reported results.

Recently, related risk factors and predictive models for

hypertensive cognitive impairment developed based on these risk

factors have been preliminarily explored, especially in the

Chinese population. Zhang et al. (12) showed that plateau

environment, age, abdominal circumference, and serum uric acid

(SUA) were independent risk factors for hypertensive cognitive

impairment. Li et al. (13) reported that duration of hypertension,

systolic blood pressure (SBP), homocysteine (Hcy), and SUA

were risk factors for cognitive dysfunction, and duration of

education was negatively correlated with cognitive dysfunction.

Ma et al. (14) also revealed that low levels of education, elevated

body mass index (BMI) and waist- to- height ratio (WHR) were

independent risk factors for hypertensive cognitive impairment.

Lu et al. (15) developed a predictive model of hypertensive

cognitive impairment based on a number of influencing factors

including hypertension grade, smoking, sleep disorder, and

duration of hypertension, and the AUC, sensitivity, and

specificity of the model were 0.765, 0.630, and 0.877, respectively.

Currently recognized cognitive impairment is more likely to

involve a combination of factors (5), and prevention strategies

based on modifiable factors appear to be more important. To the

best of our knowledge, a predictive model based on personal and

natural environmental factors for early cognitive impairment in

hypertensive patients has not been developed.

Machine learning (ML) can be based on important information

modeling, which helps reveal the relationship between factors and

diseases in complex data environments (16). ML techniques have

shown benefits in developing risk prediction models for

cardiovascular and cerebrovascular events (17–20). Furthermore,

predictive models for cognitive impairment based on ML algorithms

have also been reported (21–24). However, evidence for ML-based

risk prediction models for early cognitive impairment in hypertension

remains limited, especially when environmental factors are involved.

Therefore, we aimed to develop for the first time a superior ML

prediction model that considers modifiable personal and

environmental exposure factors to predict the risk of early

cognitive impairment in hypertension, with the hope of

providing optimal strategies for the early diagnosis and

management of hypertensive cognitive impairment.

2 Methods

2.1 Participants and study design

This study received approval from the Institutional Review Board

(IRB) of the Affiliated Hospital of Shandong University of Traditional

ChineseMedicine [Approval Number: (2023) Ethics ReviewNo. (109)-

KY] with the informed consent of all participants. In this study, the

research area is Shandong Province, China (115–120°E and 35–38°

N). We collected 803 hypertension patients from 8 hospitals in 5

prefecture-level cities by stratified sampling between May 2022 and

February 2024. Finally, a total of 757 hypertensive patients recruited

from four prefecture-level hospitals in Yantai, Jinan, Weifang and

Dongying in Shandong Province were eligible for the development

and validation of the prediction model. Participants were included if

they were (1) 30 years of age or older; and (2) essential hypertension.

Participants were excluded if they (1) had a history of neurological

disease (e.g., Parkinson’s disease, stroke, epilepsy, brain tumor, brain

trauma, mental or psychiatric illness, and dementia) or (2) had a

history of cardiovascular disease (e.g., severe arrhythmia, heart

failure, and cardiac surgery) or (3) had severe vision or hearing

impairment. A detailed study flow diagram of the selection of

participants is shown in Figure 1. For better analysis, we excluded 30

individuals with missing data, 10 individuals with abnormal data,

and 6 individuals with the Mini-Mental State Examination (MMSE)

scores below 18 points. Data collection and quality control were

standardized across all centers through electronic medical records

and centralized the Standard Operating Procedure (SOP) training,

with key variables (e.g., MMSE) demonstrating high inter-site

reliability (Kappa >0.8, ICC >0.9).

2.2 Assessment of hypertension and early
cognitive impairment

All patients were diagnosed by experienced cardiologists using

the following criteria. Diagnostic criteria for hypertension are (25):
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(1) systolic blood pressure (SBP)≥ 140 mmHg, or (2) diastolic

blood pressure (DBP)≥ 90 mmHg, (3) and/or the use of

antihypertensive medications. In addition, early cognitive

impairment was determined by the Chinese version of the

MMSE assessment questionnaire. MMSE scores range from 0 to

30, with low scores representing poor cognitive function (26).

MMSE scores above 27 are considered normal cognitive function,

and MMSE scores above 18 and below 27 are identified as early

cognitive impairment (27, 28).

2.3 Predictors and feature selection

Based on previously reported cognitive impairment factors,

personal factors (age, sex, estimated duration of hypertension,

levels of education, type of work, smoking, drinking, BMI, waist

circumference, waist-to-hip ratio) and natural environmental

factors (air temperature, annual sunshine hours, urban

precipitation, relative humidity, area whole-day average noise

value, traffic average noise value, per capita public green areas,

urban green coverage) were analyzed. Basic information about

the participants, including age, sex, estimated duration of

hypertension, education levels, type of work, smoking and

drinking, was obtained through questionnaires. Anthropometric

indicators including weight (kg), height (cm), hip circumference

(cm) and waist circumference (cm) were standardized

measurements. BMI was obtained by dividing weight into

kilograms by height in meters squared in kg/m2 (29). WHR was

obtained by dividing waist circumference (cm) by hip

circumference (cm). We obtained annual average data from the

Shandong Meteorological Bureau and local authoritative

environmental monitoring stations for 2018–2022, including air

temperature, annual sunshine hours, urban precipitation, relative

humidity, area whole-day average noise value, traffic average

noise value, per capita public green areas, urban green coverage.

Air temperature (°C) is the temperature of the air and is

calculated by dividing the average monthly temperature over 12

months by 12. Annual sunshine hours (h) are the number of

hours the sun actually hits the ground and are calculated by

adding up the number of hours of sunshine over 12 months.

Precipitation (mm) is the depth of liquid or solid water (after

melting) that falls from the sky to the ground and accumulates

on the ground without evaporation, penetration, or loss and is

calculated by the cumulative amount of monthly precipitation

over 12 months. Relative humidity (%) is the ratio of the actual

water pressure in the air to saturated water pressure at the

prevailing temperature and is calculated by adding up the

average monthly humidity over 12 months and dividing by 12.

Monitoring sites used to measure noise include major urban

traffic intersections and residential areas. Area whole-day average

noise value (db) mainly includes industrial noise, traffic noise,

construction noise, social noise. Traffic average noise value (db)

depends mainly on the load or traffic flow on the road (30).

Traffic flow is determined by the number of vehicles passing

FIGURE 1

Basic research flow diagram. Flowchart shows the details of

participant selection and ML model development and validation.

A total of 757 participants were included according to standard

procedures, including 625 individuals with NCI and 132 individuals

with early cognitive impairment. 757 participants were randomly

divided into two groups: 70% for training and 30% for validation. In

this study, the model was trained and validated for 10 repetitions

using a five-fold CV. Finally, we developed predictive models using

five classifiers, including XGBoost, Logistic, AdaBoost, GNB, and

SVM, and further explored the performance of the predictive

model through ROC curve, SHAP model, and DCA analysis. MMSE,

mini-mental state examination; NCI, no cognitive impairment; CI,

cognitive impairment; LR, logistic regression; GNB, Gaussian naive

Bayes; SVM, support vector machines; ML, machine learning; ROC,

receiver operating characteristic; SHAP, shape additive explanation;

DCA, decision curve analysis.
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through the center of the intersection in a unit of time. Per capita

public green areas (m2) in built-up areas refers to the average area

of public green space occupied by each resident of a city. Urban

green coverage rate (%) is obtained by the ratio of green

coverage area to built-up area in urban built-up area.

We chose LASSO regression for feature selection because of its

ability to handle high-dimensional, small sample datasets through

L1 regularization, which automatically eliminates irrelevant

features by shrinking their coefficients to zero while retaining

critical predictors (31). This approach balances sparsity and

computational efficiency, addressing overfitting risks inherent in

limited data. Though recursive feature elimination (RFE) and

Shape Additive explanation (SHAP) -based methods offer

interpretability (32, 33), their limitations outweighed their

benefits: Computational Costs: RFE’s iterative process and

SHAP’s prediction dependency become infeasible with large

feature sets. Noise Sensitivity: Both methods struggle with

redundant/noisy features common in small samples, risking false-

positive selections. Scalability Issues: RFE’s recursive elimination

and SHAP’s permutation evaluations degrade performance as

feature counts increase. LASSO’s integrated feature selection and

regularization mechanism eliminated iterative processing needs,

making it uniquely suited for our dataset.

2.4 Outcomes

In this study, a total of 757 patients with hypertension were

included for analysis, of which 132 (17.44%) participants were

identified as having early cognitive impairment. Finally, we

screened 6 core predictors from 18 variables, including 3

personal parameters (age, waist circumference, educational levels)

and 3 natural environmental parameters (urban green coverage,

annual sunshine hours, and area whole-day average noise value),

to develop and validate the predictive model of cognitive

impairment in hypertension.

2.5 Development and validation of Ml
models

The flow of machine learning model development and validation

is shown in Figure 1. First, we selected predictors and randomly

assigned participants to two groups: 70% for model development

and training, and 30% for model evaluation and validation to

prevent model overfitting. A five-fold CV was used to train and

verify the model. Then, ROC curve analysis was performed to

evaluate and compare the predictive performance of five ML

classifiers [XGBoost, logistic regression (LR), AdaBoost, GNB, and

SVM], including AUC, sensitivity, specificity, accuracy, and F1

scores. Finally, we further explored the significance of predictors

and the clinical applicability of the predictive model through

SHAP and DCA analysis. According to the classification confusion

matrix (34), the ML model is defined as true positive (TP) and

true negative (TN) if it can correctly predict cognitive impairment;

conversely, the ML model was defined as false positive (FP) or

false negative (FN). Sensitivity is defined as the percentage of

samples that test positive and is calculated by the formula:

Sensitivity = TP/(TP + FN). Specificity is defined as the percentage

of samples that are actually negative that are judged to be

negative, and the formula is calculated as follows:

specificity = TN/(TN + FP). Accuracy refers to the proportion of

samples correctly classified for a given data in the total samples,

and its calculation formula is: Accuracy = (TP + TN)/

(TP + TN + FP + FN). F1 score is used to measure the overall

performance of the classifier, and its formula is as follows: F1

score = 2×precision × recall/(precision + recall).

2.6 Statistical analyses

Continuous data were represented by mean ± standard

deviation (SD) or median [25th, 75th], while categorical data

were expressed by number (%). We performed the t-test,

Mannwhitney-U test, Analysis of Variance (ANOVA), and Chi-

square test to select variables with comparative differences

between groups for further LASSO regression dimension

reduction, and screened predictors for modeling through five-fold

cross-validation (CV). All patients were randomly assigned to a

training or validation group (7:3), and predictive models were

developed using five classifiers (XGBoost, LR, AdaBoost, GNB,

and SVM). We developed ROC curves and compared the AUC,

accuracy, sensitivity, specificity, and F1 scores of the five models.

Finally, we used SHAP analysis to determine the importance of

features in the predictive model, and developed DCA curves to

evaluate the clinical applicability of the predictive model. All

statistical analysis results were obtained using Python version 3.7

and R 3.6.3. A p < 0.05 was considered statistically significant,

and a 2-sided test was performed.

3 Results

3.1 Comparison of personal and
environmental factors between early
cognitive impairment and controls

Table 1 shows the personal and environmental factors for all

patients. The mean age of all participants was 67.11 ± 11.47

years, with 48.98% male. Of the 757 participants, 132 (17.44%)

had early cognitive impairment. Compared to NCI, individuals

with early cognitive impairment were older, had a longer

estimated duration of hypertension, lower educational

attainment, and larger waist circumference, and were more likely

to perform manual labor (all p < 0.05). In addition, participants

with early cognitive impairment lived in areas with lower

temperatures and urban green coverage, fewer hours of annual

sunshine, higher relative humidity, and area whole-day average

noise value (all p < 0.05). However, there were no significant

differences between the two groups in gender, smoking, drinking,

BMI, waist-to-hip ratio, urban precipitation, traffic average noise

value, and per capita public green areas (all p > 0.05).
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3.2 Predictors were screened by LASSO
regression analysis

For the simplicity of the model, we performed LASSO regression

analysis to reduce the dimension of 10 indicators with statistical

differences in Table 1, including age, estimated duration of

hypertension, educational levels, type of work, waist circumference,

air temperature, annual sunshine hours, relative humidity, area

whole-day average noise value, and urban green coverage. As

shown in Figure 2, as the log (λ) value increases, the normalization

coefficients of the 10 candidate parameters are compressed to

varying degrees until all changes are zero (35). Finally, we selected

four predictors for model development, including age, education

levels, waist circumference, annual sunshine hours, area whole-day

average noise, and urban green coverage.

3.3 Development of predictive models
based on five classifiers

Figure 3 shows the performance of predictive models based on

different classifiers. Current results suggest that the best

performance model was the XGBoost model, with an AUC of

0.893, accuracy of 0.837, sensitivity of 0.780, specificity of 0.853,

and F1 score of 0.627. The AdaBoost model ranked second in

performance, with AUC of 0.854, accuracy of 0.715, sensitivity of

0.902, specificity of 0.672, and F1 score of 0.519. Compared with

the other four models, the SVM model has poor performance, with

AUC of 0.645, accuracy of 0.628, sensitivity of 0.750, specificity of

0.605, and F1 score of 0.427. Figure 4 shows the training and

validation ROC curves for the five classifiers. The AUC of the

XGBoost model in the training set was 0.893 (Figure 4A), and the

AUC of the validation set was 0.770 (Figure 4B). The predictive

performance (including accuracy, sensitivity, specificity, and F1

score) of the XGBoost model was significantly better than that of

the other four classifiers (all P-values < 0.05).

3.4 Outcomes of XGBoost model evaluation

Figure 5 shows the evaluation of the XGBoost model. Based on

a five-fold CV, the mean AUC for the XGBoost training and

validation model was 0.880 (Figure 5A) and 0.804 (Figure 5B).

The predicted probability of early cognitive impairment was

positively correlated with the actual probability, and the XGBoost

model had excellent calibration (P > 0.05).

3.5 DCA analysis of predictive model

To evaluate the clinical application of the model, we performed

DCA analysis. Figure 6 show the threshold probability for XGBoost

TABLE 1 Comparison of personal and environmental factors between cognitive impairment and controls.

Indicators Total (N = 757) NCI (N= 625) CI (N= 132) P value

Personal factors

Age, years 67.11 ± 11.47 65.27 ± 11.21 75.83 ± 8.22 <0.001*

Sex (men), n (%) 371 (49.01) 307 (49.12) 64 (48.49) 0.894

Estimated duration of hypertension, months, median [IQR] 117.00 [59.00, 179.00] 109.00 [58.00, 176.00] 134.00 [67.00, 212.00] 0.017*

Educational levels, n (%) <0.001*

Primary school or below 299 (39.50) 209 (33.44) 90 (68.18)

Junior high school or senior high school 411 (54.29) 369 (59.04) 42 (31.82)

University or above 47 (6.21) 47 (7.52) 0 (0.00)

Type of work, n (%) <0.001*

Manual 406 (53.63) 306 (48.96) 100 (75.76)

Mental 104 (13.74) 100 (16.00) 4 (3.03)

Both manual and mental 247 (32.63) 219 (35.04) 28 (21.21)

Current drinker, n (%) 195 (25.76) 168 (26.88) 27 (20.46) 0.125

Current smoker, n (%) 231 (30.52) 199 (31.84) 32 (24.24) 0.085

BMI, kg/m2, mean ± SD 24.97 ± 3.30 24.87 ± 3.31 25.45 ± 3.19 0.068

Waist circumference, cm, mean ± SD 84.02 ± 15.38 83.28 ± 15.76 87.53 ± 12.83 0.001*

Waist-to-hip ratio, mean ± SD 0.86 ± 0.12 0.86 ± 0.13 0.87 ± 0.09 0.494

Environmental factors

Air temperature, °C, mean ± SD 13.92 ± 0.83 13.96 ± 0.85 13.71 ± 0.74 <0.001*

Annual sunshine hours, h, mean ± SD 2,374.66 ± 39.90 2,376.05 ± 40.84 2,368.08 ± 34.35 0.021*

Urban precipitation, mm, mean ± SD 775.17 ± 23.04 775.35 ± 23.95 774.28 ± 18.09 0.562

Relative humidity, %, mean ± SD 64.10 ± 3.17 63.97 ± 3.22 64.73 ± 2.85 0.007*

Area whole-day average noise value, db, mean ± SD 54.46 ± 0.93 54.42 ± 0.97 54.65 ± 0.69 0.001*

Traffic average noise value, db, mean ± SD 67.38 ± 0.71 67.40 ± 0.72 67.28 ± 0.61 0.051

Per capita public green areas, sq.m/person, mean ± SD 16.34 ± 1.64 16.30 ± 1.69 16.53 ± 1.37 0.092

Urban green coverage, %, mean ± SD 41.02 ± 0.43 41.03 ± 0.44 40.92 ± 0.32 <0.001*

NCI, no cognitive impairment; CI, cognitive impairment; BMI, body mass index.

*Statistically significant (P < 0.05).
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Model. Primary analysis demonstrated optimal performance within

15% (Δnet benefit = 0.041) - 25% (Δnet benefit = 0.068) threshold

range. The maximum net benefit of 0.085 (95% CI: 0.062–0.109)

was obtained at the 20% threshold. Specifically, at a threshold

probability of 0.20 (representing 20% risk of early cognitive

impairment), the XGBoost model demonstrated superior clinical

utility with a maximum net benefit of 0.085 (95% CI: 0.062–

0.109). This corresponds to identifying 8.5 true positive cases per

100 patients while avoiding unnecessary interventions in 14.7%

of cases (false positives), translating to a risk-benefit ratio of 1:1.72.

3.6 Feature importance of predictive model

Figures 7A, B show the feature importance of the XGBoost

model based on SHAP analysis. SHAP values represent the

combination of feature importance and feature effects. Figure 7B

shows the order of importance of the features: age > waist

circumference > urban green coverage > educational levels > hours

of annual sunshine > area whole-day average noise. Current

results indicate that age is the most important feature in

predicting Shapley value. Aging is positively associated with

Shapley value, and older age was more likely to be predicted to

have cognitive impairment. Secondary to age is waist

circumference. Having a larger waist circumference, higher area

whole-day average noise (colored pink) was associated with

Shapley values and was a positive predictor of early cognitive

impairment in hypertension. Having lower urban green coverage

and educational attainment, fewer hours of annual sunshine

(blue color) were associated with Shapley values and were

negative predictors of early cognitive impairment in

hypertension. In summary, age, waist circumference, and area

whole-day average noise were positive predictors of early

cognitive impairment in hypertension, while urban green

coverage, educational levels, and annual sunshine hours were

negative predictors of cognitive impairment in hypertension. It

suggests the threat of personal factors (older age, larger waist

circumference, lower education level) and environmental factors

(lower urban green coverage, fewer hours of annual sunshine,

and higher area whole-day average noise value) to the risk of

early cognitive impairment in hypertension.

4 Discussion

Our findings suggested that age, waist circumference, urban

green coverage, educational levels, annual sunshine hours, and

area whole-day average noise were significant predictors of early

cognitive impairment in hypertension. Five ML models of

XGBoost, LR, AdaBoost, GNB and SVM based on multiple

predictors were developed and validated. The XGBoost model

performed significantly better than other classifier models, with

FIGURE 2

Coefficient plot and adjustment parameters in LASSO models. Each line in the figure represents the trajectory of a standard coefficient of an influence

factor, and the number at the top of the figure is the number of remaining non-zero coefficient variables. The red dot and the upper and lower ends of

the line segment represent the mean and range of the binomial deviation corresponding to each log (λ) value, and the black dashed line corresponds

to the log (λ) value as the determined optimal penalty coefficient.
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AUC (0.893), sensitivity (0.780), specificity (0.853), accuracy

(0.837), and F1 score (0.627). DCA analysis shows that the

current predictive model has excellent clinical practicability.

These findings may provide evidence for diagnosis and risk

prediction of early cognitive impairment in hypertension.

Evidence for the use of predictors in clinical practice remains

highly controversial and evidence-based data is lacking to

recommend a diagnostic assessment of an individual risk for

preclinical stages of cognitive impairment. The predictive model of

cognitive impairment based on risk factors is still in the exploratory

stage, but promising. To date, most of the development of

predictive models for cognitive impairment has focused on a single

personal factor, while designs for environmental factors have not

been reported. Recently, there has been growing recognition that

cognitive decline is often attributed to a combination of risk factors

(5), in which both personal and natural environmental factors are

considered to be significant influencing factors on cognitive

impairment. In this study, with the advantages of multicollinearity

and overfitting among effective control variables (36), LASSO

regression helped us screen for six predictors of early cognitive

impairment in hypertension, including age, education level, waist

circumference, annual sunshine duration, area whole-day average

noise, and urban green coverage. Further SHAP analysis revealed

the feature importance of the predictive model.

At present, exploring the relationship between personal factors

and cognitive impairment is still mainstream. In this study, we

observed that aging is the most important risk factor. Aging is a

common risk factor for hypertension and cognitive decline.

Multidimensional homeostasis dysfunction and impaired cellular

stress recovery caused by aging can accelerate the destruction of

the cerebral blood supply and blood-brain barrier in patients

with chronic hypertension, leading to cognitive decline (3).

FIGURE 3

Performance of developed predictive models based on different classifiers. AUC, area under the curve; XGBoost, extreme gradient boosting; LR,

logistic regression; AdaBoost, adaptive boosting; GNB, Gaussian naive Bayes; SVM, support vector machines.

Zhong et al. 10.3389/fcvm.2025.1477185

Frontiers in Cardiovascular Medicine 07 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1477185
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 4

ROC curves for models developed with six predictors. (A) Training ROC analysis results of five classifiers. (B) Verification ROC analysis results for five

classifiers. ROC curve, receiver operating characteristic curve; AUC, area under the curve; XGBoost, extreme gradient boosting; AdaBoost, adaptive

boosting; GNB, Gaussian naive Bayes; SVM, support vector machines.

FIGURE 5

ROC curves for training and verification of the XGBoost model by 5-fold CV. (A) ROC analysis results of the XGBoost training model. (B) ROC analysis

results of the XGB verification model. ROC curve, receiver operating characteristic curve; AUC, area under curve; XGBoost, adaptive boosting.
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Epidemiological evidence strongly support that hypertension is

associated with cognitive decline, especially in midlife (37).

A Finnish study reported that middle-aged people with

SBP≥ 160 mmHg were independently associated with a >2-fold

increased risk of Alzheimer’s disease (AD) (38). In older adults,

however, the link between hypertension and cognitive function

remains controversial (39). Waist circumference, an important

measure of central obesity, was observed in this study as a

secondary risk factor for cognitive impairment in hypertension.

Several recent studies have also reported a strong correlation

FIGURE 6

DCA analysis was performed to evaluate the clinical usefulness of the XGB model. The y-axis indicated the net benefit; the x-axis indicated the

threshold probability. The solid red line shows the net benefit rate of the XGB forecast model. Within a certain threshold range, the XGB model

has a higher net benefit. DCA, decision curve analysis.

FIGURE 7

Interpretation of the obtained model based on SHAP analysis. (A) Prediction direction of model features. (B) Ranking the importance of model features.

The vertical axis of the graph represents features and the horizontal axis represents SHAP observations. Each point represents a feature and a Shapley

value, which represents the contribution of each feature to the model output. Feature values are represented by color, and feature importance is

arranged from top to bottom along the Y-axis. Pink shows a positive association with early cognitive impairment in hypertension, blue shows a

negative association with early cognitive impairment in hypertension.
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between waist circumference and cognitive decline (40–42). As

waist circumference increases, chronic low inflammation

associated with obesity can lead to multiple chronic diseases and

neuroinflammation, which is an important pathway for cognitive

decline (43). Previous studies have shown that that educational

attainment can have a positive impact on cognitive function (44,

45). A similar conclusion was observed in our study, which

showed an independent positive association between low

educational attainment and cognitive impairment in

hypertension. Emerging evidence suggests that the effect of

education level on cognitive function in late-life is associated

with promoting individual differences in cognitive ability that

occur in early adulthood but persist into old age (44).

Interestingly, we observed that patients with early cognitive

impairment simultaneously exhibited larger waist circumference

and a higher proportion of engaging in physical labor; however,

this finding is not contradictory. Many of these individuals are

manual laborers, often shift workers, who typically have higher

alcohol consumption, larger waistlines, and increased energy

intake (46). Evidence strongly links shift work to a higher risk of

abdominal obesity (47), likely due to metabolic dysfunction from

circadian rhythm disruption. Thus, these findings indicate shared

pathophysiological mechanisms, such as metabolic disturbances

from circadian dysrhythms, rather than contradictory outcomes.

Recently, increasing attention has been paid to the impact of

environmental factors on cognitive function. In this study, we

observed less annual sunlight hours as a risk factor for cognitive

impairment in hypertension. Sunlight exposure is an important

factor affecting circadian rhythm and sleep-wake time (48), and

disruption of circadian rhythm and lack of sunlight are related to

mood fluctuations (49), all of which may have an impact on

cognitive function. Both Zhu et al. (50) and Chantranupong et al.

(51) have reported that sunlight can alter mood, behavior, and

cognition, while enhancing learning and memory. Moreover,

previous studies consistently indicated that long-term residential

natural sunlight exposure is associated with a lower risk of

cognitive decline (49, 52–54). In general, less annual sunshine

means that patients live in rainy and hazy weather, high humidity,

low oxygen content in the air, low sympathetic excitability, and

easy to produce mood swings. In addition, the relative decline in

outdoor activities is not conducive to interpersonal interaction,

and may induce insomnia, anxiety, and depression, which can

lead to cognitive decline. Area whole-day average noise is another

important environmental factor in current models for predicting

cognitive impairment in hypertension. Similar to our study, a

large number of scholars have also demonstrated that chronic

noise exposure (CNE) is an independent risk factor for cognitive

impairment (55–58). Animal research has shown that CNE can

cause neuroendocrine disorders, overactivation of sympathetic

regions of the autonomic nervous system, and an increase in stress

hormones that affect the brain and behavior (59), meanwhile,

noise exposure can also trigger endothelial and neuronal

dysfunction, which activates inflammatory and oxidative stress

pathways (60), which may explain the adverse cognitive effects of

noise. In addition, anxiety and depression caused by

environmental noise exposure have also become longitudinal

predictors of impaired cognitive function (61, 62). Green spaces

are conducive to better cognitive function. In this study, urban

green coverage was also identified as a significant factor in early

cognitive impairment in hypertension. Urban greening benefits

residents by regulating climate, air quality and water resources,

and a comfortable experience can bring a good mood to residents.

Hu et al. (63) reported that participants with the most green space

had a 20% lower risk of cognitive impairment [hazard ratio (HR):

0.80, 95% CI: 0.73–0.89]. Recent systematic review and meta-

analysis (57) suggested that the protective effect of more greenness

(OR = 0.97, 95% CI: 0.95–0.995) on cognitive function. In

addition, a population-based cohort study (9) also highlighted the

protective effects of greenness on cognitive function. Taken

together, our findings may shed light on future research to better

understand the role of natural environmental factors in the

association between cognitive impairment.

Today, ML has provided a new paradigm for monitoring

cognitive impairment, but there is little evidence of its application

to hypertensive cognitive impairment. Hu et al. (21) established a

logistic regression model for Chinese community-dwelling elderly

with normal cognition using age, instrumental activities of daily

living, marital status, and baseline cognitive function, with a

consistency index of 0.814 (95% CI 0.781–0.846). Yadgir et al.

(22) developed an ML model to assist in screening for cognitive

impairment in the emergency department, the best performing

algorithm was the XGBoost model with an AUC of 0.72,

sensitivity of 0.73, and specificity of 0.64. Tan et al. (34) developed

an ensemble model based on three classifiers using age, race,

highest education, and neuroimaging markers with an AUC of

0.80, accuracy of 0.83, F1 score of 0.87, sensitivity of 0.86, and

specificity of 0.74. Liu et al. (24) noted that random forest models

had high accuracy for all outcomes at Year 2 (AUC = 0.81), Year 4

(AUC = 0.79), and cross-sectional Year 4 (AUC = 0.80). Ciarmiello

et al. (64) developed a deep learning model using radiomic and

amyloid PET load, with an AUC of 0.71, accuracy of 0.57, and F1

score of 0.48. Na et al. (65) developed a gradient enhancer (GBM)

model to predict cognitive impairment after 2 years, which

showed good performance with sensitivity of 0.967, specificity of

0.825, and AUC of 0.921. Similar ML predictive models for

cognitive impairment have also been reported in other studies as

well (66–69). According to the latest systematic review (70), SVM

is the most common machine model developed to predict

dementia, with an average accuracy of 75.4%, while convolutional

neural network (CNN) has a higher average accuracy of 78.5%. In

this study, XGBoost showed the best predictive performance in

our prediction models based on five classifiers, with AUC (0.893),

sensitivity (0.780), specificity (0.853), accuracy (0.837), and F1

score (0.627). The several recent studies conducted by Du et al.

(71) have consistently demonstrated the superior performance of

the XGBoost model in disease prediction and diagnosis. Our

developed model has some advantages. Our previous study

revealed that hip circumference, age, education level, and physical

activity are significant predictors of early cognitive impairment in

individuals with hypertension (72). The XGB model, which is

based on hip circumference, age, education level, and physical

activity, demonstrated a stronger predictive effect on the risk of
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cognitive impairment in hypertensive patients. It achieved an AUC

of 0.88, F1 score of 0.59, accuracy of 0.81, sensitivity of 0.84, and

specificity of 0.80. However, it should be noted that environmental

exposures were not included in this analysis. In this study, we

investigated a multi-center population of hypertensive patients

and integrated natural environmental factors into the model

development process. Subsequently, we identified the most

superior predictive model for further analysis.

Inevitably, the limitations of the current study must be

considered. First, we only analyzed patient data from four

hospitals in Shandong Province, with a limited sample size, and

this data may not cover all regions and residents. Second, we

selected only a few important individual and natural

environmental factors as predictors for model development and

may have overlooked some other important indicators, such as

lifestyle (73), genetics (74), air pollution (75), and drinking water

quality (76). Third, the design of the cross-sectional study makes

it difficult to determine causality between hypertension and

cognitive impairment. Fourth, although the MMSE questionnaire

assessment has a better diagnostic value for early cognitive

impairment, the Montreal Cognitive Assessment (MoCA) may be

more appropriate for screening in this study (77). Finally, given

the variability of natural environmental factors at different

latitudes, the generalizability of current results to populations at

other latitudes remains limited. Nevertheless, we conducted a

comprehensive assessment of cognitive function in hypertensive

patients from multiple regions, and used detailed residence

information to link physical environment data to each patient.

To our knowledge, this is the first reliable ML predictive model

of early cognitive impairment in hypertension developed and

validated based on simple personal and natural environmental

factors, which indeed provides a new perspective for diagnostic

decision-making and prevention of cognitive impairment in

hypertension in a clinical setting. The preliminary findings

warrant further validation through longitudinal cohort studies to

establish temporal causality and robustness of observed patterns.

5 Conclusions

In conclusion, the XGBoost model based on age, waist

circumference, urban green coverage, educational levels, annual

sunshine hours, and area whole-day average noise has superior

predictive performance and clinical practicability, which provides

a reliable and economical tool for the diagnosis and risk

prediction of early cognitive impairment in hypertension. Further

investigations, including the design of large-sample multicenter

research, multimodal and multidimensional data, predictor

thresholds, and model optimization, should be considered in

future research.
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