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Objective: Carotid plaque represents an independent risk factor for

cardiovascular disease and a significant threat to human health. The aim of

the study is to develop an accurate and interpretable predictive model for

early detection the occurrence of carotid plaque.

Methods: A cross-sectional study was conducted by selecting coal miners who

participated in medical examinations from October 2021 to January 2022 at a

hospital in North China. The features were initially screened using extreme

gradient boosting (XGBoost), random forest, and LASSO regression, and the

model was subsequently constructed using logistic regression. The three

models were then compared, and the optimum model was identified. Finally, a

nomogram was plotted to increase its interpretability.

Results: The XGBoost algorithm demonstrated superior performance in feature

screening, identifying the top five features as follows: age, systolic blood

pressure, low-density lipoprotein cholesterol, white blood cell count, and

body mass index (BMI). The area under the curve (AUC), sensitivity, and

specificity of the model constructed based on the XGBoost algorithm were

0.846, 0.867, and 0.702, respectively.

Conclusions: It is possible to predict the presence of carotid plaque using

machine learning. The model has high application value and can better predict

the risk of carotid artery plaque in coal miners. Furthermore, it provides a

theoretical basis for the health management of coal miners.
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1 Introduction

Carotid plaque is an independent risk factor for stroke (1), coronary heart disease (2),

and atherosclerotic cardiovascular disease (3). These diseases are the major cause of

disability and death globally (4, 5), and they pose a serious economic burden in both

developed and developing countries (6). A study has shown that the prevalence of

carotid plaque in the middle-aged and elderly population in China is 60.3% (7). As the
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population of China continues to age and urbanize, the prevalence

of cardiovascular and cerebrovascular diseases is expected to

increase (8). In some research, occupational stress is identified as

a risk factor for cardiovascular disease, with the potential for

atherosclerosis to develop as a result of long-term occupational

stress (9). China is the world’s largest coal producer, with 95% of

its coal sourced from underground mining (10), which employs

over six million workers (11). In comparison to the general

population, coal miners are exposed to a number of harmful

factors, including dust (12) and shift work (13). Additionally,

they tend to engage in a range of adverse lifestyle habits, such as

smoking (14)and alcohol consumption, which can increase the

likelihood of developing carotid plaques. Therefore, it is crucial

to implement early screening and intervention strategies for coal

miners to delay the occurrence and progression of carotid

plaque. The majority of studies to date have focused on disease

risk in the general population (15, 16), with fewer studies

investigating the prediction of disease risk in coal miners.

Predictive models can estimate the probability or risk of an

outcome using the characteristics of an individual (17), which is

called a diagnostic model. Diagnostic models are of crucial

significance in healthcare. They reduce testing costs, enhance the

accuracy, efficiency and objectivity of decision-making. They

facilitate clinicians in diagnosing and treating patients more

effectively, thereby improving the quality of healthcare and the

patient care experience.

This study used extreme gradient boosting (XGBoost), random

forests, and LASSO regression to filter features for predicting

carotid plaque risk in coal miners. Then, logistic regression was

applied to create a simple practical risk prediction model to

identify at-risk individuals.

2 Material and methods

2.1 Data sources and subjects

Data were retrospectively collected from coal miners who

attended physical examinations at a hospital in North China

between October 2021 and January 2022. After excluding

incomplete data recorders, attendees younger than 18 years or

older than 60 years, and participants with cardiovascular disease,

2,956 participants were included in the study for the

prediction model.

2.2 Ethical approval

All procedures were approved by the Research Ethics

Committee of the Second People’s Hospital of Shanxi Province

and were conducted strictly in accordance with internationally

recognized ethical standards for human research. All participants

in this survey were aware of the research contents and

precautions and participated voluntarily.

2.2 Potential predictors and case definition

A review of the pertinent literature on carotid plaque and an

analysis of the accessibility of predictors led to the identification

of 27 potential factors: (1) Demographic characteristics: gender,

age; (2) Physical examination indicators: height (HT), weight

(WT), body mass index (BMI), systolic blood pressure (SBP),

diastolic blood pressure (DBP); (3) Laboratory tests: total

cholesterol (TC),triglycerides (TG), high-density lipoprotein

cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-

C), fasting blood glucose (FBG), alanine aminotransferase (ALT),

aspartate aminotransferase (AST), direct bilirubin (DBIL), total

bilirubin (TBIL), alkaline phosphatase (ALP), uric acid (UA),

platelet count (PLT), white blood cell count (WBC), creatinine

(CRE); (4) Lifestyle habits: smoking, alcohol consumption; (5)

Occupational factors: years of working experience, exposure to

dust (rock dust and coal dust), exposure to hazardous gases

(carbon monoxide and hydrogen sulfide); (6) Other indicators:

fatty liver disease (FLD).

Cases were defined as whether participants were diagnosed

with carotid plaque by carotid ultrasound. The diameters and

IMT of the distal common carotid artery, the carotid bulb, and

the proximal internal carotid artery were measured within 1–1.5

cm below the level of the bifurcation of the participant’s internal

and external carotid arteries by an experienced physician to

observe the presence of atherosclerotic plaque.

2.3 Data processing and predictive
modelling

To make full use of the data and evaluate the model’s

performance, we first randomly divided the dataset into a

training set (70%) and a test set (30%), which were used for

model training. To ensure the robustness and generalizability of

our model, all the data in the training set were utilized in ten-

fold cross-validation for model training.

The statistical analyses in this study were conducted using IBM

SPSS 26.0. The data, which exhibited a normal distribution, were

expressed as “`x ± s”, and t-tests were employed for comparisons

between groups. The data, which did not exhibit a normal

distribution, were expressed as “[M (P25, P75)]”, and rank-sum

tests were employed for comparisons between groups. The data

for categorical variables were expressed as percentages, and the

Pearson χ
2 test was employed for comparisons between groups.

The level of the test was set at α = 0.05 in this paper. R4.2.3 was

employed for the purpose of feature screening, model

construction, the generation of nomograms, and the assessment

of the effects.

XGBoost, random forest, and LASSO regression were used to

select the features from the training set as input variables, and

the incidence of carotid artery plaque as the output variable to

construct a logistic regression model. Considering the potential

multicollinearity among different variables, which may lead to

model instability, the study evaluated the features selected by
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three machine learning algorithms based on correlation statistical

charts as part of model selection. The performance of the three

models was compared by the area under the ROC curve (AUC),

net reclassification index (NRI), and integrated discriminant

improvement index (IDI), and ultimately selected the model with

the best performance. Subsequently, the optimal model was used

to construct a nomogram, which was evaluated using decision

curves (DCA) and clinical impact curves (ICI).

3 Results

3.1 Basic characteristics of the study object

A total of 2,956 individuals were included in this study, with a

prevalence of carotid plaque of 10.52%. Patients who developed

carotid plaque were older and had a higher prevalence in men

compared to the no carotid plaque group. They also had higher

BMI, systolic blood pressure, diastolic blood pressure, total

cholesterol, triglycerides, LDL cholesterol, fasting blood glucose,

alkaline phosphatase, white blood cell count, creatinine, years of

working experience, a higher prevalence of fatty liver disease, and

higher rates of alcohol and smoking. The statistical analysis

revealed that there were significant differences in the predictors

between healthy individuals and patients with carotid plaque

(Table 1). Following the random allocation of the data, a total of

2,069 individuals were included in the training set, with a

prevalence of carotid plaque of 10.54% (Supplementary

Table S1), and a total of 887 individuals were included in the test

set, with a prevalence of carotid plaque of 10.48%

(Supplementary Table S2).

3.2 Screening of features

The correlation statistics chart in the training set demonstrates

a robust correlation between the selected features (Supplementary

Figure S1). Consequently, three machine learning algorithms

were selected to filter the features and subsequently construct the

prediction model.

In the XGBoost algorithm, the hyperparameters of the model are

selected through cross-validation and random search. The optimal

number of iterations of the model is obtained by monitoring the

number of iterations of the model using the test data, thereby

preventing overfitting (Supplementary Figure S2). The optimal

number of iterations and the optimal hyperparameters of the

model were then incorporated into the model. The relative

importance of the features was determined by training the model

on the training set. Features with the highest feature importance

were extracted and plotted on a bar graph (Supplementary

Figure S3). The five most important features were selected for the

next step of model construction, and the resulting prediction

model was named the “XGBoost model”.

In the random forest model, the minimum mean squared error

and the Gini coefficient are employed as the pivotal

TABLE 1 Basic characteristics of the study population.

Characteristic Carotid plaque P

value
Yes (n= 311) No

(n = 2,645)

Sex, n (%) <0.001

Female 34 (10.9%) 744 (28.1%)

Male 277 (89.1%) 1,901 (71.9%)

Age (years), (mean ± SD) 47.5 ± 6.53 38.6 ± 7.73 <0.001

HT (cm), median (IQR) 169.50 (164.90–

174.00)

170.10 (164.40–

175.10)

0.774

WT (kg), median (IQR) 76.00 (68.20–

83.00)

17.70 (64.80–82.40) 0.004

BMI (kg/m2), median

(IQR)

26.34 (24.41–

28.36)

25.52 (23.21–27.82) <0.001

SBP (mm/Hg), mean (SD) 143.00 (19.10) 132.00 (16.60) <0.001

DBP (mm/Hg), mean (SD) 86.00 (13.40) 78.70 (11.70) <0.001

TC (mmol/L), median

(IQR)

4.71 (4.15–5.27) 4.37 (3.85–4.92) <0.001

TG (mmol/L), mean (SD) 1.96 (1.33) 1.74 (1.22) 0.006

HDL-C (mmol/L), mean

(SD)

1.20 (0.31) 1.23 (0.30) 0.077

LDL-C (mmol/L), median

(IQR)

3.02 (2.60–3.56) 2.73 (2.25–3.23) <0.001

FBG (mmol/L), mean (SD) 5.86 (1.56) 5.41 (1.07) <0.001

ALT (U/L), mean (SD) 26.80 (16.80) 25.8 (19.4) 0.324

AST (U/L), mean (SD) 22.20 (9.78) 20.7 (9.25) 0.013

DBIL (µmol/L), mean (SD) 5.06 (1.80) 5.09 (1.96) 0.812

TBIL (µmol/L), mean (SD) 12.50 (5.51) 12.60 (6.16) 0.626

ALP (U/L), mean (SD) 87.90 (23.10) 81.50 (22.50) <0.001

UA (µmol/L), median

(IQR)

324.00 (267.00–

385.00)

314.00 (259.00–

378.00)

0.208

PLT (109/L), median (IQR) 242.00 (210.00–

288.00)

254.00 (216.00–

296.00)

0.046

WBC (109/L), mean (SD) 7.88 (2.06) 7.36 (1,96) <0.001

CRE (µmol/L), mean (SD) 75.00 (11.60) 72.00 (14.20) <0.001

FLD, n (%) <0.001

Yes 146 (46.9%) 888 (33.6%)

No 165 (53.1%) 1,757 (66.4%)

Years of working (years), n (%) <0.001

1–10 23 (7.4%) 874 (33.0%)

11–20 120 (38.6%) 1,217 (46.0%)

≥21 168 (54.0%) 554 (20.9%)

Dust exposure, n (%) 0.471

Yes 170 (54.7%) 1,384 (52.3%)

No 141 (45.3%) 1,261 (47.7%)

Harmful gas exposure, n (%) 0.589

Yes 86 (27.7%) 689 (26.0%)

No 225 (72.3%) 1,956 (74.0%)

Alcohol drinking, n (%) <0.001

Yes 132 (42.4%) 792 (29.9%)

No 179 (57.6%) 1,853 (70.1%)

Smoke, n (%) <0.001

Yes 185 (59.5%) 978 (37.0%)

No 126 (40.5%) 1,667 (63.0%)

HT, height; WT, weight; SBP, systolic blood pressure; DBP, diastolic blood pressure; TC, total

cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-

density lipoprotein cholesterol; FBG, fasting blood glucose; ALT, alanine transaminase;

AST, aspartate aminotransferase; DBIL, direct bilirubin; TBIL, total bilirubin; ALP, alkaline

phosphatase; UA, uric acid; PLT, blood platelet count; WBC, white blood cell count; CRE,

creatinine; FLD, fatty liver disease; Exposure to rock dust and coal dust; Exposure to

carbon monoxide and sulfur dioxide.
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hyperparameters in the training set to filter the features. The

relative importance of the features is then plotted (only the top

ten features are plotted, Supplementary Figure S4). Subsequently,

the intersection of the top ten features is taken as the input

variable for logistic regression analysis, and the constructed

prediction model is designated as the “RF model”.

Finally, LASSO regression was employed to identify the most

pertinent features. In the LASSO regression model, the value of λ

was selected through cross-validation, and the maximum penalty

parameter λ with the lowest mean square error within one

standard deviation was ultimately selected (Supplementary

Figure S5). A total of five meaningful variables were obtained

under this λ for the subsequent model construction, and

the constructed predictive model was designated as the

“LASSO model”.

3.3 Construction and evaluation of the
model

Logistic regression models were constructed using features

selected by XGBoost, Random Forest and LASSO regression,

respectively. The data from the training and test sets were

incorporated into the three models to generate their respective

ROC curves (Figure 1). The AUCs of the three models in the

training set are 0.846, 0.846 and 0.852, respectively. The AUCs of

the three models in the test set are 0.817, 0.815 and 0.817,

respectively. The AUCs of the “LASSO model” in the training

and test sets are higher than those of the other models, although

the differences are relatively minor.

The accuracy of the three models in the training cohort and

test sets was evaluated by the net reclassification index (NRI)

and the integrated discrimination improvement index (IDI),

respectively (Table 2). It can be seen that the accuracy of

“XGBoost model” is slightly better than the other models.

There was a strong correlation between the characteristics of

“RF model” and “LASSO model”, including systolic blood

pressure (SBP) and diastolic blood pressure (DBP), total

cholesterol (TC) and low-density lipoprotein cholesterol (LDL-

C) (Supplementary Figure S1). The inclusion of variables with

strong correlations in a predictive model can lead to an

increase in the variance of parameter estimates, which in turn

reduces predictive accuracy. In severe cases, anomalies may

occur in which the predictive model does not reflect the

relationship between the input and output variables, but rather

their joint influence on the output variables. Therefore, the

“XGBoost model” is chosen as the final model in this study,

and the formula of the model is shown below:

P ¼
e�13:5554þ0:1544�Ageþ0:0349�DBPþ0:3557�HDL�Cþ0:0754�WBCþ0:0092�BMI

1þ e�13:5554þ0:1544�Ageþ0:0349�DBPþ0:3557�HDL�Cþ0:0754�WBCþ0:0092�BMI

A forest plot was constructed based on the characteristics of

the “XGBoost model” (Figure 2). It was found that age,

diastolic blood pressure (DBP), low-density lipoprotein

cholesterol (LDL-C), and white blood cell count (WBC) were

the risk factors for carotid artery plaques among coal miners,

with odds ratios (ORs) greater than 1 and statistically

significant differences.

FIGURE 1

Presents the receiver operating characteristic (ROC) curves for the three models analyzed in the training (A) and test (B) sets.

TABLE 2 Presents an assessment of the accuracy of the model, as
measured by the Net Reclassification Index (NRI) and the Integrated
Discriminant Improvement Index (IDI).

Comparison model NRI P value IDI P value

Training set

XGB model vs. RF model −0.001 0.939 0.027 0.211

XGB model vs. LASSO model 0.004 0.803 0.001 0.948

RF model vs. LASSO model 0.006 0.752 −0.026 0.461

Test set

XGB model vs. RF model 0 1 0.015 0.599

XGB model vs. LASSO model 0.021 0.461 0 1

RF model vs. LASSO model 0.021 0.461 0.041 0.595
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3.4 Visualization of the prediction model
and evaluation of its effectiveness

A nomogram was constructed using the features from the

XGBoost model to assess the risk of carotid plaque in miners

(Figure 3A). Using the first sample in the training set as an

example, a nomogram was created to locate the risk score for age

(Figure 3B). A straight line was drawn vertically on the “scores”

axis to determine how many scores correlate with the risk for

age. This process is repeated for each trait, with the sum placed

on the “total points” axis. Finally, a straight line is drawn

vertically down to give the risk of carotid plaque in miners.

In parallel, the decision curve analysis (DCA) and clinical

impact curve (CIC) of the nomogram were plotted on the

training and test sets. The prevalence of carotid plaque in miners

was found to be approximately 13.06% in the previous study,

thus serving as the baseline prevalence of carotid plaque in

miners to plot the DCA and CIC. The analysis of the decision

curves revealed that the threshold range of the nomogram in the

training set was 0.02–0.40, with the highest net gain of 0.88

(Figure 4A). In the test set, the threshold range was 0.03–0.42,

with the highest net gain of 0.82 (Figure 4B). The results of the

DCA were used to plot clinical impact curves, which were

employed to assess the clinical utility of the nomogram. The

results of the clinical impact curves demonstrated that the

predicted probabilities were in good agreement with the actual

probabilities (Figure 5A), and similar results were obtained in the

test set (Figure 5B).

4 Discussion

In this study, a predictive model was developed to predict the

risk of carotid plaque in coal miners. Three machine learning

algorithms were employed to filter the features, and based on the

filtered features, a predictive model was constructed using logistic

regression. Following the comparison of the three models, the

XGBoost model was identified as the most effective, with an

AUC, sensitivity and specificity of 0.846, 0.867 and 0.702,

respectively. This may be attributed to the XGBoost approach,

which combines the prediction results of multiple weak learners

(decision trees) to construct a more effective model, ultimately

improving overall performance. Furthermore, XGBoost employs

early “stops” to prevent overfitting, thereby enhancing its

generalizability. Finally, a nomogram has been constructed based

FIGURE 2

Presents the construction of a forest plot based on the features of the “XGBoost model”.

FIGURE 3

Nomogram for predicting carotid artery plaque in miners. The blue areas in the plots indicate the distribution of variables in each feature. (A)

Nomogram constructed based on the data in the training set; (B) Case nomogram plotted using the first sample in the training set as an example.
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on the features of the “XGB model”, facilitating the prediction

probability of individual samples.

In comparison to other studies, our research team developed a

carotid plaque risk prediction model that applies to coal miners.

This model included a greater number of characteristics (18, 19),

such as years of work experience, dust exposure, exposure to

hazardous gases, and lifestyle habits. All of these characteristics

are relevant to miners, and although they were not included in

the final prediction model, the differences between healthy

individuals and patients with carotid plaques were statistically

significant. This suggests that these characteristics may provide

food for thought for future studies. Xie et al. identified a

significant association between air pollution and carotid plaque

using a COX proportional risk model (12), whereas other studies

did not include this feature. Coal miners are often exposed to

hazardous gases such as dust, carbon monoxide and hydrogen

sulphide. Sugiura et al. employed multivariate logistic regression

to ascertain an association between unhealthy lifestyle habits,

such as habitual smoking, and atherosclerosis (14); other studies

did not adjust for lifestyle characteristics.

The predicted probabilities of the three prediction models

exhibited minimal discrepancy (the difference between the

FIGURE 4

Presents the decision curve analysis of the nomogram in the training set (A) and the test set (B) the horizontal coordinates represent the probability

thresholds. The line labeled “None” indicates the net clinical gain curve if all patients are not intervened. The line labeled “All” is the net clinical gain

curve if all patients are intervened. The red line represents the net benefit curve for “treating” patients within each prediction threshold in the training

(or test) set. The bottom horizontal line represents the loss: benefit ratio, which represents the proportion of loss and benefit at different

probability thresholds.

FIGURE 5

Presents the clinical impact curve analysis of the nomogram in the training set (A) and test set (B) the horizontal coordinates represent the probability

thresholds, while the vertical coordinates indicate the number of individuals. The red line illustrates the number of individuals predicted by the model

to be at high risk at different probability thresholds, while the blue line depicts the number of individuals predicted to be at high risk who actually

experienced an outcome event at different probability thresholds. The bottom horizontal line represents the loss: gain ratio, which indicates the

proportion of losses and gains at different probability thresholds.
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predictions was not statistically significant). We identified the

features that appeared twice in the three models as the most

crucial features, which were age, systolic blood pressure, diastolic

blood pressure, total cholesterol and low-density lipoprotein

cholesterol. Among these, age, as the most crucial feature,

demonstrated a robust correlation in all three models, which is

consistent with previous findings (20). Hypertension has been

demonstrated to elevate the risk of carotid plaque formation, a

finding consistent with our own observations (21, 22). However, a

study conducted in a middle-aged and elderly population

indicated that systolic and diastolic blood pressure exert distinct

effects on carotid plaque, with one being a risk factor for plaque

development and the other a protective factor (23). This is

contrary to the previously held view that systolic blood pressure is

a risk factor for carotid plaque formation. This discrepancy may

be attributed to the fact that systolic blood pressure tends to

increase with age (24), while diastolic blood pressure tends to

decrease (25), which is considered a protective factor. In contrast,

the present study’s main population consisted of miners

undergoing a physical examination, who were considerably

younger and in better physical condition. The relationship between

diastolic blood pressure and carotid plaque remains unknown. Our

findings may provide insight into this relationship. Additionally,

our study found that elevated blood lipids (e.g., total cholesterol

and low-density lipoprotein cholesterol) were associated with the

prevalence of carotid plaque, consistent with previous studies (26,

27). Furthermore, we included BMI and white blood cell count

(WBC) as predictors in the XGBoost model. Elevated BMI is an

important risk factor for carotid plaque formation, as it can

increase peripheral vascular resistance, which in turn promotes

plaque formation (28, 29). One study has shown that the arteries

of obese individuals begin to harden during adolescence (30),

which emphasizes the importance of maintaining a normal BMI.

A number of epidemiological studies have demonstrated a

correlation between inflammatory biomarkers (e.g., white blood

cell count) and the formation of carotid plaques (31, 32). This is

consistent with our findings. Furthermore, inflammation has been

identified as a risk factor for carotid plaque even in individuals

with a normal weight and a healthy metabolic profile (33).

In this study, we constructed a nomogram for the prediction of

carotid plaque risk in miners based on the features identified by the

“XGBoost model”. We then introduced the decision curve analysis

(DCA) and the clinical impact curve (CIC) to evaluate the

performance of the nomogram. The CIC is the weighted average

of the absolute mean difference between the observed probability

and the predicted probability. It can be used to quantitatively

evaluate the results of binary classification and thus provide a

more comprehensive evaluation of the effect of the nomogram (34).

This study is subject to several limitations. Firstly, the data used

to train the model in this study was derived from the physical

examination of miners, which is cross-sectional in nature and

therefore unable to demonstrate a causal relationship between

traits and diseases. Secondly, the features encompassed in this

study remain insufficiently comprehensive. For instance, prior

studies have demonstrated that night shift work is correlated

with an elevated risk of carotid plaque (35), and night shift work

is highly prevalent among miners. Night shift work is likely to

have a direct bearing on miners’ health; the specific occupations

of miners, such as coal miners, electricians, and ventilation

workers, are associated with exposure to different levels of

harmful gases and dust, which may seriously affect their health;

therefore, failure to consider these factors may lead to biased

research results. Thirdly, the research population chosen in this

study pertains specifically to coal miners in a particular area,

which might have an impact on the generalization of the results.

The fact that the working conditions and living environments of

coal miners in this area could differ from those in other regions

or workers with diverse occupational backgrounds constrains the

universality and generalizability of the research findings. Fourth,

the dataset used in this study exhibits a significant class

imbalance, with a much lower number of positive cases

compared to negative cases. While this imbalance reflected real-

world clinical scenarios and ensured the model’s robustness, it

may also pose challenges for model training and performance

evaluation. Future studies could contemplate including night shift

work as an independent variable and conducting research among

coal miners in various regions, with distinct working conditions

and living habits, to enhance the diversity of the sample and the

representativeness of the research results. Additionally, future

work may explore data balancing methods to further optimize

model performance.

5 Conclusions

In this study, we employed three machine learning methods to

screen for features and constructed a predictive model for carotid

plaque risk in coal miners using logistic regression. The XGBoost

algorithm demonstrated the most effective performance in the

screening of features, with an AUC, sensitivity, and specificity of

0.846, 0.867, and 0.702, respectively. This method contributes to

the personalized risk assessment of carotid plaque in coal miners

and has the potential to enhance the cost-effectiveness of carotid

ultrasound testing.
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