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Identification of signature genes
and subtypes for heart failure
diagnosis based on
machine learning
Yanlong Zhang1, Yanming Fan1, Fei Cheng1, Dan Chen2 and
Hualong Zhang1*
1Department of Cardiology, Xingtai People’s Hospital, Xingtai, Hebei, China, 2Department of Pediatrics
Hematology and Oncology, Xingtai People’s Hospital, Xingtai, Hebei, China
Background: Heart failure (HF) is a multifaceted clinical condition, and our
comprehension of its genetic pathogenesis continues to be significantly limited.
Consequently, identifying specific genes for HF at the transcriptomic level may
enhance early detection and allow for more targeted therapies for these individuals.
Methods: HF datasets were acquired from the Gene Expression Omnibus (GEO)
database (GSE57338), and through the application of bioinformatics and
machine-learning algorithms. We identified four candidate genes (FCN3,
MNS1, SMOC2, and FREM1) that may serve as potential diagnostics for HF.
Furthermore, we validated the diagnostic value of these genes on additional
GEO datasets (GSE21610 and GSE76701). In addition, we assessed the different
subtypes of heart failure through unsupervised clustering, and investigations
were conducted on the differences in the immunological microenvironment,
improved functions, and pathways among these subtypes. Finally, a
comprehensive analysis of the expression profile, prognostic value, and
genetic and epigenetic alterations of four potential diagnostic candidate genes
was performed based on The Cancer Genome Atlas pan-cancer database.
Results: A total of 295 differential genes were identified in the HF dataset, and
intersected with the blue module gene with the highest correlation to HF
identified by weighted correlation network analysis (r=0.72, p= 1.3 × 10−43),
resulting in a total of 114 key HF genes. Furthermore, based on random forest,
least absolute shrinkage and selection operator, and support vector machine
algorithms, we finally identified four hub genes (FCN3, FREM1, MNS1, and
SMOC2) that had good potential for diagnosis in HF (area under the
curve > 0.7). Meanwhile, three subgroups for patients with HF were identified
(C1, C2, and C3). Compared with the C1 and C2 groups, we eventually
identified C3 as an immune subtype. Moreover, the pan-cancer study revealed
that these four genes are closely associated with tumor development.
Conclusions: Our research identified four unique genes (FCN3, FREM1, MNS1,
and SMOC2), enhancing our comprehension of the causes of HF. This
provides new diagnostic insights and potentially establishes a tailored
approach for individualized HF treatment.
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Introduction

Heart failure (HF) represents a multifaceted clinical syndrome

and the final phase of cardiovascular disease (1, 2). It poses a

significant global public health challenge that is evolving rapidly,

and the mortality rate within 4–5 years is approximately 50% (3),

causing a heavy social and economic burden (3). Recently, the

application of microarray technology along with integrated

bioinformatics analysis has facilitated the identification of potential

key genes linked to various diseases, which may subsequently serve

as biological indicators for diagnosis and prognosis (4–6).

Nevertheless, our comprehension of the genetic mechanisms

underlying HF pathogenesis is still highly limited. Consequently,

for early diagnosis and targeted treatment of these patients,

specific HF genes should be identified at the transcriptome level.

Cancer is alsowidely recognized as a common co-morbidity inHF,

with estimates suggesting that 5%–25% of total fatalities may be linked

to cancer (7–9). While the two diseases might seem distinct entities,

awareness is growing that cancer and heart failure share several

common features. Notably, various potential tumor biomarkers,

including CA125 and human epididymis protein 4 (HE4), have

demonstrated a strong ability to forecast outcomes in HF as well

(10–13). Following a myocardial infarction, cardiomyocytes exhibit a

strong stress response, resulting in the activation of the nuclear factor

NF-kB (14), a significant mechanism that promotes tumor growth.

This activation leads to the induction of genes involved in cell

proliferation, survival, angiogenesis, and metastasis (15, 16). These

findings could indeed align with this idea, and tumor biomarkers

might generally indicate the advancement of pathways that have

traditionally been associated with specific cancers, but they may also

play a significant role in the progression of heart failure. However,

alterations in the transcriptome of immune cells may influence the

prognosis of HF. It is thought that ongoing inflammation and

immune irregularities play a role in the disease mechanisms

throughout the range of HF (17). Recent studies have shown that

immune cells, including macrophages and T cells, play a crucial part

in the advancement and evolution of heart failure. Activation of

inflammatory T lymphocytes and accumulation of inflammatory

macrophages in the heart have been associated with adverse

outcomes in individuals with HF (18).

Currently, HF biomarkers such as brain natriuretic peptide (BNP)

or its precursor N-terminal proBNP (NT-proBNP) have been broadly

validated for HF diagnosis. However, these markers may show

variable sensitivity and specificity across different demographic

groups, including elderly patients, women, and those with obesity

or renal failure (19). Moreover, research emphasizes that using a

combination of biomarkers may offer superior predictive value than

relying on a single marker (20). Consequently, integrating multiple

biomarkers into the clinical evaluation of heart failure is particularly

important. Recent research has shown that machine-learning

algorithms have successfully been employed to analyze vast datasets

consisting of clinical, laboratory, and biomarker information. In one

study, a novel model combining several machine-learning

techniques achieved an accuracy of 87% in predicting heart failure,

significantly improving the prediction capabilities compared to

traditional models based solely on clinical data (21). Consequently,
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we retrieved microarray datasets associated with HF from the Gene

Expression Omnibus (GEO) database. Our objectives are multi-fold:

to foster the integration of diverse data sources, enhance the

accuracy of prediction models, accomplish robust validation of

biomarkers, and construct a theoretical framework for the diagnosis

and treatment of HF. We intend to achieve these goals by

synergistically applying a variety of standard analysis techniques in

tandem with machine-learning methodologies.
Materials and methods

Datasets and source

A study procedure flowchart is shown in Supplementary

Figure 1. Data on mRNA expression, alterations in copy number,

DNA methylation 450 K data, mutation data, and clinical

information of 33 cancers from The Cancer Genome Atlas

(TCGA) database were used. We retrieved gene expression profile

data of three different HF cohorts (GSE57338, GSE21610, and

GSE76701) from the GEO database, which is affiliated with the

National Center for Biotechnology Information (NCBI) (https://

www.ncbi.nlm.nih.gov). The following criteria were used to

screen datasets. (1) The keyword “Heart Failure” was used to

identify the microarray data utilized in this study. (2) Each

dataset must encompass a minimum of four samples each from

patients with heart failure and control subjects. (3) We only

considered datasets that contained readily accessible expression

information. Table 1 presents the characteristics of the datasets.
Data processing and differential gene
analysis

We performed log2 transformation and then normalized the raw

count expression data using the function “normalizeBetweenArrays”

in the R package “limma.” To ensure accuracy and consistency, we

removed probes corresponding to multiple molecules and retained

only the probe with the highest signal value for each molecule.

Next, we merged the gene expression data from GSE21610 and

GSE76701 into a new matrix as the training group. Following the

merging of the two datasets, the function “ComBat” in the

R package “sva” was then utilized to remove the batch effect.

Robust multi-array averaging (RMA) was employed for

background correction and imputation of missing values. The final

merged dataset consisted of 313 samples including 177 patients

with HF and 136 controls. To gain insights into the differences

between heart failure and normal samples, we used the limma

package and identified genes with adjusted p-values <0.05 and |

log2(FC)|≥ 0.5 as the differentially expressed genes (DEGs).
Weighted correlation network analysis

The network created using the weighted correlation network

analysis (WGCNA), in the R package “WGCNA,” was used to
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TABLE 1 Datasets used in this study.

GEO dataset Platform Disease Sample Year References

Control Case
GSE57338 GPL11532 Heart failure 136 177 6 May 2014 (22)

GSE21610 GPL570 Heart failure 8 30 30 April 2010 (23)

GSE76701 GPL570 Heart failure 4 4 11 January 2016 (24)
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investigate gene modules that display relationships. The genes

exhibiting the highest variance, specifically the top quarter from

the GSE57338 dataset, were chosen as the input data to enhance

the precision of the findings. The ideal soft threshold power was

identified through the scale-free topology criterion and a

topological overlap matrix was generated. Modules containing

more than 200 genes were selected using the hierarchical

clustering tree methodology. Finally, a correlation analysis of

module traits was conducted to identify the most important one

related to HF and complete the visualization of the signature

gene network.
Functional enrichment analysis

The R package “clusterProfiler” was utilized to perform

enrichment analysis for biological functions in Gene Ontology (GO)

and pathways in the Kyoto Encyclopedia of Genes and Genomes

(KEGG). The GO categories encompass biological processes (BPs),

molecular functions (MFs), and cellular components (CCs).
Machine-learning models for feature
selection and visualization

Three machine-learning algorithms were used to further

identify candidate genes for the diagnosis of heart failure. First,

to enhance prediction accuracy and interpretability, we employed

least absolute shrinkage and selection operator (LASSO)

regression to select key features from the training dataset

(GSE57338). LASSO is a regression method designed for high-

dimensional data. It introduces a penalty term to the least

squares method, compressing some regression coefficients to

zero, which achieves variable selection and improves the model’s

generalization capability (25). In this study, we used the “glmnet”

package in R to perform LASSO regression, and optimal lambda

parameters were determined using 10-fold cross-validation, with

the Lambda.1se value corresponding to the minimum cross-

validation error selected as the model’s optimal value. Next, we

performed support vector machine recursive feature elimination

(SVM-RFE) analysis using the “e1071” packages, which was used

to iteratively remove less significant features and determine the

optimal variables (26) for the classification of cancer using only

two types of data in feature extraction. Finally, the random forest

(RF) algorithm was executed using the “randomForest” package

for classification, regression, and feature selection by building

multiple decision trees, aggregating their results, and providing a

robust evaluation of feature importance while handling noisy
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data (27). The intersecting genes from LASSO, SVM-RFE, and

RF were considered candidate hub genes for HF diagnosis.
Validation of diagnostic model

Receiver operating characteristic (ROC) curves were

constructed to determine the diagnostic value of the candidate

genes. The area under the curve (AUC) was calculated to

quantify their value, with an AUC value greater than 0.7 being

considered the ideal diagnostic threshold. To validate the

robustness of these core genes, we conducted an analysis of

individual and combined genes using the merged dataset

(GSE21610 and GSE76701) for external validation. We assessed

the discriminatory ability of the diagnostic model using ROC

curves once again.
Recognition of distinct subtypes by
unsupervised clustering

The “partitioning around medoid” approach was employed to

recognize subtypes of patients with HF, utilizing the

ConsensusClusterPlus package. When determining the ideal

number of subtypes, we evaluated the cumulative distribution

function (CDF) curve performance, consensus matrix, and

changes in the area under the CDF curve, and ensured a steady

cluster score exceeding 0.9.
Gene set enrichment analysis (GSVA)

Functional improvements in various subtypes were assessed

using the “GSVA” package. The gene sets (h.all.v7.5.symbols.gmt

and c2.cp.kegg.v7.2.symbols) were obtained from the Molecular

Signatures Database (MSigDB) database. We visualized important

paths between groups using the R package “ComplexHeatmap.”
Tumor microenvironment characteristics

To estimate the cell abundance of the tumor microenvironment

(TME), we utilized a compendium of microenvironment genes

related to specific immune cell subsets. GSVA was used to

evaluate the enrichment of 24 types of tumor immune

microenvironment cells. The immune checkpoints’ distribution

was analyzed, and the ESTIMATE R package was utilized to

determine the immune and stromal scores of the tumor tissue.
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We also analyzed the expression of immunomodulatory factors,

including chemokines, immune inhibitors, and immune

stimulators, and the major histocompatibility complex (MHC) in

different subtypes.
Somatic copy number alteration and single
nucleotide variation analysis

The amplification and deletion of heterozygosity and

homozygosity were considered to enhance the somatic copy

number alteration (SCNA) of every gene, with more than 5%

classified as high-frequency SCNA. To evaluate the connection

between expression levels and SCNA, Pearson’s correlation was

computed using the expression values alongside the copy number

segment values for each gene. For the calculation of the single

nucleotide variation (SNV) percentage, the mutation frequency of

SNVs in the coding region of each gene was determined by the

following formula: number of mutated samples divided by the

number of cancer samples. An oncoplot illustrating the SNV was

created using maftools.
Prognostic pan-cancer analysis of the hub
genes for HF

Cox regression analyses, both univariate and multivariate, were

conducted to evaluate the associations of different variables with

overall survival (OS) in the “survival” package. The generation of

Kaplan–Meier curves, accompanied by the log-rank test, was

carried out with the aid of the “survminer” package.
Statistical analysis

Data analysis was conducted using R software (version 4.0.0).

Differences between two groups were assessed using the

Wilcoxon test. Correlations were assessed using Pearson’s

correlation test. We performed the “K-means” method to identify

subtypes, based on the “ConsensusClusterPlus” package. The

CDF curve, consensus matrix, relative alterations in the area

under the CDF curve, and a consistent cluster score (>0.9) were

considered when selecting the optimal subtype numbers. The

diagnostic ability of each key gene was evaluated by the AUC

score. The false discovery rate (FDR) was calculated using the

Benjamin–Hochberg method to adjust the p-value. All statistical

tests were two-sided and p < 0.05 indicated statistical significance.
Results

Identification of differentially expressed
genes

A comprehensive analysis utilizing the Lima package revealed

295 differential genes within the combined dataset, comprising
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157 genes that were upregulated and 138 that were

downregulated (Figures 1A,B).
Weighted gene co-expression network
analysis and key module identification

We utilized WGCNA to determine the most significant

modules associated with heart failure. To approximate a scale-

free topology for the network, a soft threshold power of 6 was

applied (Figure 1C). Ultimately, we obtained six gene co-

expression modules. The results showed that the blue

module was significantly associated with heart failure and

showed the strongest correlation (correlation coefficient = 0.72,

p = 1.3 × 10−43) (Figures 1D–F). Consequently, we chose the blue

module as the primary module for further analysis.
Functional enrichment analysis of heart
failure

Afterward, we intersected DEGs with the blue module genes to

obtain 114 key HF genes (Figure 2A). We performed GO

enrichment analysis and the results showed that the key genes

of HF mainly play a role in angiogenesis regulation and

proliferation metabolism (Figure 2B). Further pathway

enrichment analysis also found that they are mainly involved in

the reactive oxygen species pathway, bile acid metabolism, and

epithelial-mesenchymal transition (Figure 2C).
Identification of hub genes via machine
learning

Three machine-learning algorithms (RF, LASSO, and SVM-

RFE) were employed to identify hub genes related to heart

failure. The RF algorithm, based on the “randomforest”

R software package, sorted genes according to their

importance calculations (nrep = 1,000, which indicates that

the number of iterations in the Monte Carlo simulation was

1,000; and nstep = 5, which indicates that the number of steps

forward was 5). Figure 2H shows the relationship between

the error rate and the number of classification trees. Finally,

we selected the top 20 genes as potential candidates for heart

failure (Figure 2D). We used the LASSO algorithm to further

reduce the dimensionality and narrow down the range of

feature genes. We used regularization methods in the model

training to limit the complexity of the model and prevent

overfitting. Finally, we retained 12 genes from 54 feature

genes under the optimal log(λ) of −2.756 (Figures 2E,F).

Through the 10-fold cross-validation, the minimum binomial

deviation with optimal log(λ) was observed, indicating the 12

genes were optimally selected by LASSO. The SVM-RFE

algorithm demonstrated the greatest precision, recognizing

114 genes while maintaining a steady precision score of 0.958

thereafter. To identify the optimal quantity of the hub genes,
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FIGURE 1

Identification of hub genes. (A) Volcano plot. Red dots are upregulated genes and blue dots are downregulated genes. (B) Heatmap plot. We showed the
top 30 upregulated and the top 30 downregulated genes in the HF and control groups. (C) The scale-free fit index for soft-thresholding powers and
mean connectivity. (D) Gene co-expression modules. (E) Gene and trait clustering dendrograms. (F) The correlation of the blue module and the
HF group.
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we selected the top 70 genes based on the SVM-RFE

outcomes as our candidate genes (Figure 2G). Through the

intersection of the outcomes from all three algorithms, we

pinpointed four hub genes relevant to HF: FCN3, FREM1,

MNS1, and SMOC2 (Figure 2I).
Frontiers in Cardiovascular Medicine 05
Diagnostic value assessment

We analyzed the expression of the four key genes, FCN3,

MNS1, SMOC2, and FREM1, in the normal and HF groups

(Figures 3A–D). Furthermore, we assessed the diagnostic
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FIGURE 2

Machine learning for screening candidate diagnostic biomarkers for HF. (A) The intersection of DEGs and the blue module. (B) KEGG enrichment
analysis results. (C) GO enrichment analysis results. (D) Biomarker screening in the RF model. (E,F) Biomarker screening in the LASSO model.
(G) Biomarker screening in the SVM model. (H) Error rate for the data as a function of the classification tree. (I) Venn diagram showing the four
candidate diagnostic genes identified via the previous three algorithms.
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FIGURE 3

Validation of the diagnostic efficacy of characteristic genes. (A–D) Expression of hub genes in patients with HF compared to normal controls in
GSE57338. (E,F) The ROC curve of each candidate gene in the training and test sets. (G,H) The ROC curve of the diagnostic model in the training
and test sets.
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significance of these genes utilizing ROC curves. In the training

dataset (GSE57338), the areas under ROC curves for FCN3,

MNS1, SMOC2, and FREM1 were 0.952, 0.938, 0.943, and 0.958,

respectively (Figure 3E). Furthermore, after merging and

normalizing the data of GSE21610 and GSE76701 to be used as

the validation set, the areas under ROC curves for FCN3, MNS1,

SMOC2, and FREM1 were 0.865, 0.807, 0.909, and 0.768,

respectively (Figure 3F). All four gene signatures demonstrated

high accuracy, with AUC values exceeding 0.7, indicating their

predictive effectiveness. Nevertheless, when the four genes were

integrated into a single diagnostic model, the AUC values for

both the training and test datasets were 0.980 and 0.921,

respectively (Figures 3G,H). This outcome demonstrated that the

combination of these genes holds significant potential for

diagnosis and could also function as valuable targets for both the

prevention and management of HF.
Identification of subtypes of patients with
HF

To clarify the expression patterns associated with the immune

microenvironment in HF, we utilized the consensus clustering

algorithm to categorize the 176 HF tissue samples according to

the four key genes. The similarity matrix was interpreted as the

consensus matrix to determine the ultimate subtypes. Utilizing

the results from consensus clustering, the CDF plot, the relative

change in the area of the CDF curve, and the consistent cluster

score, we determined that k = 3 was the best choice for

categorizing 176 patients into three distinct subtypes

(Figures 4A–C). Subsequently, we analyzed the biological

functions and signaling pathways that were enriched, utilizing

gene sets from the MSigDB, and conducted GSVA to assess the

score for each patient. Compared to subtype 1 and subtype 2,

patients with subtype 3 demonstrated the most immune

activation (complement, interferon alpha response, and IL6-JAK-

STAT3 signaling) and signaling-related processes (IL2-STAT5

signaling, TNFα signaling via NF-κB, and PI3K-AKT-mTOR

signaling). Further KEGG enrichment analysis also confirmed

these results (Figures 4D,E).
Differentiation of immune characteristics
between subtypes

Given the significant differences in immune processes among

the clusters, we assessed the levels of infiltration by immune cells

in the microenvironment and immune checkpoint expression in

different groups. As shown in Figure 5A, the abundance of

immune cell types was calculated using tumor immune

estimation resource (TIMER) algorithms. The greatest infiltration

of fibroblasts was noted in patients with subtype 3 compared to

those in the subtype 1 and subtype 2 groups. In addition, a

qualitative assessment of immune characteristics was conducted

by comparing the immune scores, stromal scores, and estimate

scores across each subtype. Patients with subtype 3 exhibited
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higher scores compared to the other subtypes (Figure 5B).

Furthermore, CD8T cells, naive CD4T cells, regulatory T cells,

macrophages, and activated dendritic cells (DCs) demonstrated

elevated enrichment scores within the immune

microenvironment of subtype 3 (Figure 5C). To investigate the

variations in immune features across the different subtypes, we

additionally assessed the expression levels of genes that regulate

immunity within each subtype (Figure 5D). In immune

microenvironment subtype3, all chemokines, immune inhibitor

genes, immune stimulator genes, and MHCs were consistently

highly expressed. Taking the results mentioned above into

account, we ultimately classified subtype 3 as an immune subtype.
Pan-cancer analysis of characteristic genes

Subsequently, we explored the varying expression levels of

these four hallmark genes across 20 different cancer types and

their corresponding normal tissues. It is important to highlight

that the expression levels of FCN3, FREM1, MNS1, and SMOC2

were markedly elevated in various types of cancerous tissues

(Figure 6A). Subsequently, our goal was to concentrate on the

signature genes that showed significant associations with patient

survival across 33 distinct types of cancer. Our analysis revealed

that all identified signature genes exhibited a strong correlation

with the OS of patients in a minimum of three of these cancer

categories (Figure 6B). For copy number analysis, the results

showed that general somatic copy number alterations occurred at

high frequencies (>5%) in most cancer types (Figure 6D). FCN3,

FREM1, MNS1, and SMOC2 presented diverse somatic copy

number alteration profiles. We further investigated how SCNA

influences gene expression and found the expression of FCN3,

FREM1, MNS1, and SMOC2 was significantly positively

associated with SCNA in most cancers (Figure 6C), which

indicated that aberrant SCNA of a gene might contribute to the

progression of various cancers. In the mutation analysis, the

main variant type was missense mutation. The mutation

percentages for FCN3, FREM1, MNS1, and SMOC2 were 7%,

57%, 11%, and 14%, respectively (Figure 6F). As shown in

Figure 1D, FREM1 had higher SNV frequencies in skin

cutaneous melanoma (SKCM) and uterine corpus endometrial

carcinoma (UCEC) (Figure 6F).
Discussion

In this research, datasets from HF microarrays were

acquired from the GEO database, leading to the identification

of DEGs. Subsequently, we chose significantly modular genes

using WGCNA. Three distinct machine-learning models

using the LASSO, RF, and SVM-RFE techniques, respectively,

were employed to identify hub genes associated with HF.

Ultimately, a total of four genes (FCN3, FREM1, MNS1, and

SMOC2) exhibited significant co-expression in individuals

suffering from heart failure. These discoveries could enhance
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FIGURE 4

Identification and enrichment analysis of HF subtypes. (A) Consensus clustering matrix when k = 3. (B) Consensus CDF curves when k = 2–10.
(C) Relative alterations in CDF delta area curves. (D,E) Signal pathway enrichment analysis of 50 hallmark gene sets and KEGG analysis.
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our comprehension of the mechanisms that drive the

development of HF.

Current research on biomarkers for HF plays a critical role in

understanding the pathophysiology and guiding clinical

decisions. In particular, natriuretic peptides are well-

established in clinical practice for diagnosing and

prognosticating heart failure. However, they do have

limitations related to specificity and can be influenced by

various factors such as renal function, age, and obesity

(20, 28). Studies have shifted focus toward novel biomarkers,

such as soluble suppression of tumorigenicity 2 (sST2),

high-sensitivity troponin, and growth differentiation factor 15

(GDF-15), which show promising prognostic capabilities in
Frontiers in Cardiovascular Medicine 09
both acute and chronic heart failure settings (29, 30). In our

research, we specifically employed machine-learning techniques

to meticulously screen biomarker combinations that hold

significant potential in the diagnosis of heart failure. During

the subtype analysis based on the combination of the four

biomarker genes, a notable discovery was made. Subtype 1

predominantly exhibited enrichment in replication and repair-

related pathways. Significantly, subtype 3 was chiefly enriched

in immune-related pathways, such as the TGF-β signaling

pathway, the IL6-JAK-STAT3 signaling pathway, and the INF

signaling pathway. This finding potentially implies that

immune pathways could have a substantial impact on both the

diagnosis and treatment of heart failure, thus offering novel
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FIGURE 5

The immune characteristics of distinct HF subtypes. (A) Immune checkpoint expression and immune cell infiltration enrichment in the three subtypes.
(B) The differences in ESTIMATEScore among the three subtypes. (C) The differences in infiltrated immune cells among the three groups. (D) Heatmap
showing the differences in immune regulatory genes between subtypes.
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insights into the underlying mechanisms and potential

therapeutic strategies for this complex cardiovascular disorder.

Subsequently, the four possible biomarkers were examined and

their relationship with heart failure was explored in conjunction

with existing literature. FCN3 is part of the innate immune

system and serves as a strong activator for the lectin-based

complement pathway (31). Research conducted previously
Frontiers in Cardiovascular Medicine 10
indicates that the levels of FCN3 expression were notably

reduced in various cancerous tissues, including squamous cell

lung carcinoma (32), hepatocellular carcinomas (33), and ovarian

cancer (34). However, other studies have shown that lower serum

levels of FCN3 could correlate with adverse outcomes in heart

failure, suggesting its potential as a prognostic marker. Its

expression was found to be decreased in patients with ischemic
frontiersin.org
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FIGURE 6

Pan-cancer validation of characteristic genes. (A) Histogram (upper panel) showing the number of upregulated or downregulated differentially
expressed genes (DEGs) and the heatmap showing the fold change and FDR of four characteristic genes in each cancer. (B) Summary of the
correlation between the four characteristic genes and survival of cancer patients. Red points indicate a high-risk prognostic factor, while green
points indicate a protective factor. (C) Spearman’s correlation analysis between copy number alteration and the expression of the four
characteristic genes. (D) Somatic copy number variant analysis. (E) Mutation analysis of the four characteristic genes. Numbers represent the
number of samples that have the corresponding mutated gene for a given cancer. (F) An oncoplot showing the mutation distribution of the four
characteristic genes and a classification of SNV types.
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cardiomyopathy, indicating a protective role against the

progression of heart failure through the regulation of immune

cell infiltrations, particularly impacting neutrophils and

monocytes (35, 36). SMOC2 is a protein that is secreted into the

matrix and plays a role in several pathophysiological processes,

including angiogenesis, tumor development, tissue fibrosis, and

calcification (37–39), and can also serve as a predictive

biomarker for various diseases (40–43). SMOC2 has been

depicted as significantly associated with the pathophysiology of

heart failure. Numerous research efforts have demonstrated that

SMOC2 facilitates tissue fibrosis through the modulation of

fibroblast conversion into myofibroblasts, potentially resulting in

fibrosis within the lungs, kidneys, and various other organs (38,

44). Meanwhile, a reduction in SMOC2 levels has the potential

to mitigate myocardial fibrosis through the suppression of the

ILK/p38 signaling pathway (45). Furthermore, in studies

involving rat models of heart failure, knockdown of SMOC2

resulted in improved cardiac function and attenuation of collage

deposition, showcasing its potential involvement in cardiac

remodeling and fibrosis. Moreover, alterations in autophagy

observed with SMOC2 knockdown demonstrate its influence on

cellular stress responses in heart tissue, implying that SMOC2

can be a target for therapeutic strategies in heart failure

management (46, 47). Among the four diagnostic biomarkers,

MNS1 is thought to play a role in chromatin dynamics and

cellular maintenance, and any dysfunction in its expression or

localization can impact cardiomyocyte survival, stability, and,

consequently, cardiac performance and health (48). Recent

studies have revealed that MNS1 could be involved in the control

of meiosis and germ cell differentiation, affecting the mating and

recombination processes during meiosis (49), and serving as a

diagnostic indicator in heart failure research (50, 51). Similar to

MNS1, there is limited research on FREM1-specific functions in

heart failure, but it is hypothesized to play roles in tissue

remodeling and repair processes after myocardial injury (35).

Jiang et al. discovered that elevated levels of the MNS1 gene, in

conjunction with FREM1, might influence the development of

heart failure by modulating the metabolism of bile acids, fatty

acids, and heme (50). In conclusion, biomarkers such as FCN3

and SMOC2 exhibit potential for diagnosis, emphasizing the

necessity of continued investigation into their roles as diagnostic

tools and therapeutic targets in heart failure management.

Currently bioinformatic studies on HF due to the different

datasets and analysis methods selected, the Hub genes obtained

by each study are also different. Research has suggested three

potential biomarker genes (ASB14, CD163, and CCL5) associated

with heart failure through the traditional protein–protein

interaction algorithm (52). Kong et al. reported that combined

analysis using WGCNA and machine-learning algorithms

(LASSO, SVM-RFE, and RF) identified CHCHD4, TMEM53,

ACPP, AASDH, P2RY1, CASP3, and AQP7 as potential

biomarkers for HF based on the GSE57338 dataset (53). In

addition, there have also been studies using machine-learning

algorithms (LASSO regression and the SVM-RFE algorithm)

based on multiple datasets to identify SDSL as a driver gene in

patients with heart failure (54). Compared with previous
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methodologies, this study established an integrated analytical

framework that synergizes WGCNA with machine-learning

algorithms across multi-cohort datasets. Furthermore, we

implemented consensus clustering analysis on rigorously

screened hub genes, successfully identifying molecular subtypes

characterized by distinct immune microenvironment profiles.

Our results and theirs can complement each other and provide

novel insights into potential clinical treatment strategies for

patients with heart failure.

Significant clinical and experimental evidence indicates that HF

is a complex pathophysiological condition characterized by

essential roles played by myocardial remodeling, inflammatory

activation, and the activation of myofibroblasts and immune cells

(55). A key factor in the occurrence and progression of

cardiovascular disease is immune cell infiltration (56, 57).

Infiltration and activation of different myocardial immune cells

cause heart inflammation, tissue damage, and ultimately heart

failure (58). Single-cell RNA sequencing demonstrated that most

innate immune cell subsets, including mast cells, monocytes,

macrophages, neutrophils, dendritic cells, and natural killer cells,

were significantly activated in mice with heart failure induced by

pressure overload (59). In this research, when compared with the

control group, we observed a higher quantity of DCs, mast cells,

and T cells in HF samples, highlighting their significant roles in

the etiology of HF. Our results confirm the results of Patella

et al. and Abdolmaleki et al. who reported that mast cells are

increased in HF, with a corresponding increase in T cells (60,

61). In addition, based on the four diagnostic marker genes

identified in this study, we identified three unique subtypes, each

exhibiting different enriched functions and pathways, alongside

variations in immune cell infiltration and immunological

characteristics. These findings provide a new perspective on how

the immune microenvironment within heart tissues relates to the

prognosis and categorization of patients with HF.

Recent studies have demonstrated that changes in the

microenvironment not only cause pathological changes such as

cardiomyocyte hypertrophy and energy metabolism disorders,

but also indirectly stimulate tumor tissues via the influence of

growth factors, cytokines, and chemokines acting through

paracrine or endocrine mechanisms in the bloodstream (62, 63).

Several investigations have examined the occurrence of cancer

among individuals with a previous diagnosis of heart failure,

revealing a confirmed heightened risk (14, 64). In a case-control

study, Hasin et al. investigated the risk of cancer occurrence

among patients with HF, revealing that those with HF faced a

60% increased likelihood of developing malignancies, in contrast

to non-HF controls (65). The research specifically identified that

lung and skin cancers were the two most prevalent new-onset

malignancies in the heart failure population examined, with renal

and urinary cancers following closely, as both exhibited identical

hazard ratios. Essentially, all forms of cancer occurred more

often except for prostate carcinoma (64). Moreover, substances

released by tumors can lead to cardiovascular problems

regardless of the cardiotoxicity associated with anti-cancer

therapies (66, 67), but further investigation in this domain is

necessary (68, 69).
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The novel aspects of our study are as follows. First, through

integrative bioinformatics analysis employing three distinct

machine-learning algorithms, we systematically identified FCN3,

FREM1, MNS1, and SMOC2 as novel combinatorial biomarkers.

Second, external cohort validation demonstrated that our four-

gene signature exhibits robust diagnostic performance. Finally,

our consensus clustering analysis revealed three distinct immune

subtypes based on the expression patterns of these biomarkers,

unveiling significant heterogeneity in the cardiac immune

microenvironment. Our findings contribute to improving

diagnostic accuracy and stratified clinical management while

enhancing the clinical practicality of early heart failure detection

and optimizing targeted drug treatment models. Furthermore,

these immunophenotypic classifications can not only inform

personalized immunomodulatory treatment strategies but also

establish a foundation for precision clinical trial designs through

immune-stratified patient selection.

Nonetheless, this study has certain limitations. First, since the

research relied on publicly accessible datasets, the sample size

was still small. More datasets are needed to validate our

diagnostic model and further prospective samples for

experimental assessment are necessary to ensure further

validation. Second, the dataset we used comes from myocardial

tissue, and insufficient validation of the peripheral blood datasets

may limit the applicability of the diagnostic model. Finally, due

to the lack of information on crucial clinical characteristics such

as survival time, smoking, drinking, and previous therapies, it is

impossible to fully assess or control for potential confounding

factors in our analyses.
Conclusion

Overall, our study revealed that FCN3, FREM1, MNS1, and

SMOC2 can serve as diagnostic biomarkers for HF, deepening

the understanding of its pathogenesis.
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