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Diabetic cardiomyopathy (DCM), a common diabetic complication independent

of hypertension, coronary heart disease and heart valve disease is a major cause

of cardiovascular mortality. The pathogenesis of DCM is complex. The Nrf2-

related signaling pathway which regulates oxidative stress, energy metabolism

and mitochondrial physiology may play important role in the pathogenesis of

DCM. Current treatments for DCM focus on blood glucose and pressure

control, cardiovascular protection, lipid lowering and blockade of the renin-

angiotensin system. However, the adverse drug reactions are inevitable.

Traditional Chinese medicine (TCM) as a multi-target, multi-pathway treatment

approach is considered to be a promising therapy for DCM. We reviewed how

the Nrf2 and related signaling pathway regulated pathophysiological processes

such as oxidative stress, inflammation, myocardial fibrosis, apoptosis,

ferroptosis, autophagy and mitochondrial dysfunction in the progression of

DCM and explored the potential mechanism and clinical value of TCM in DCM

treatment. Based on a literature review, we found that various herbal

compounds and combinations could alleviate DCM via the Nrf2 signaling

pathway. This review highlighted the role of the Nrf2 signaling pathway in

DCM progression and put forward new therapeutic strategies for DCM.

KEYWORDS

Nrf2 signaling pathway, diabetic cardiomyopathy, pathogenesis, traditional Chinese

medicine, therapeutic mechanism

1 Introduction

Diabetic cardiomyopathy (DCM) is a common complication of diabetes mellitus (DM)

(1). It is a pathophysiological state characterized by metabolic disorders and microvascular

lesions, which can lead to subclinical cardiac dysfunction, including left ventricular

fibrosis, diastolic dysfunction and ultimately the heart failure (HF). In other words,

cardiovascular disease is a major cause of death in diabetic patients. However, DCM as

a unique disease is independent disease from traditional HF risks such as hypertension,

coronary heart disease and valvular heart disease (2).

During the initial stage of DCM, metabolic disorders manifest as the impaired insulin

metabolic signaling, the increased uptake of myocardial free fatty acids (FFAs) and

mitochondrial dysfunction. These factors can worsen myocardial fibrosis, accelerate
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cardiac remodeling and ultimately reduce the ejection fraction (EF)

in diabetic patients (3). In the later stages of DCM, there are more

noticeable changes in cardiac structure, including myocardial cell

necrosis, collagen accumulation, increased cross-linking of

connective tissue, myocardial interstitial fibrosis and myocardial

hypertrophy (4). With the increasing number of diabetic patients

in China, the incidence of DCM has also risen rapidly (5).

Currently, there is no specific therapy for DCM. Drug

interventions mainly focus on blood glucose and pressure

control, cardiovascular protection, lipid lowering and blockade of

the renin-angiotensin system (2, 6). Unfortunately, the

development and progression of cardiomyopathy in the patients

with diabetes remains unrecoverable due to a poor prognosis (6).

Additionally, the pathogenic factors of DCM can be proposed as

the hyperlipidemia, inflammatory cytokines, oxidative stress,

mitochondrial dysfunction and programmed cell death (7).

However, the precise pathogenic mechanisms of these pathogenic

factors in DCM still need to be clarified which is attractive for

DCM therapy.

The Nrf2 signaling as one of the most critical intracellular

signaling pathways and antioxidant defense systems controls

essential cellular function including, but not limited to, cell

proliferation, metabolism and extracellular matrix (ECM)

remodeling (8, 9). Nrf2 belongs to the Cap “n”collar (CNC)

transcription factor family and consists of multiple homologous

domains, each one with a different functions (10). Under normal

physiological conditions, Nrf2 binds to its inhibitor Keap1 in the

cytoplasm, which facilitates the rapid ubiquitination and

subsequently degradation of Nrf2 by the proteasome (11).

However, when cells experience oxidative stress, electrophilic

compounds, Nrf2 is unaffected by Keap1 and directly

translocates to the nucleus. In the nucleus, it binds to antioxidant

response elements (AREs) found in genes encoding antioxidant

enzymes such as nicotinamide adenine dinucleotide phosphate

(NADPH), quinone oxidoreductase (NQO1), glutathione

S-transferase (GST), heme oxygenase-1 (HO-1), and γ-glutamyl

cysteine synthase (γ-GCS) to increase the expression of AREs

which play the vital role of detoxification, antioxidant and anti-

inflammatory effects (12, 13). Studies have confirmed that

chronic hyperglycemia not only generates extra reactive oxygen

species (ROS) but also impairs antioxidant capacity orchestrated

by downregulation of Nrf2 in the heart (14). The molecule

agonists targeting key kinase components of the Nrf2 signaling

pathway have drawn extensive attention and have been developed

and evaluated in preclinical models of DCM (15). Therefore,

further understanding of characterization and regulatory

mechanisms governing abnormal regulation of Nrf2 signaling in

DCM from current literature researches will provide important

insights into possible future directions for targeted therapeutic

regimen and a new combinatory therapeutic approach for DCM.

Currently, the conventional treatment of DCM drugs include

metformin, thiazolidinediones (TZDs), sulfonylureas, Glucagon-

like peptide-1 receptor (GLP-1R) agonists, dipeptidyl peptidase-4

(DPP-4) inhibitors, SLGT-2 inhibitors and angiotensin-

converting enzyme inhibitors (ACEI). Unfortunately, some

contraindications and side effects from these drugs are inevitable

on account of a long-time treatment (2, 16). Traditional Chinese

medicine (TCM) has its own unique diagnosis and treatment

system, which has been used in clinical treatment for more than

2000 years in Chinese history (17). Furthermore, TCM has been

widely utilized in the treatment of DCM among clinicians in

China (18). Increasing studies confirm that TCM ameliorate

DCM through the synergistic benefits of its multiple components

and multiple targets, which involves various signaling pathways

(19). Compared to the conventional therapies, TCM is

characterized by multiple targets, multiple pathways, fewer side

effects and greater accessibility. It is considered to be a valuable

and effective therapeutic way for chronic metabolic diseases such

as DCM (20, 21). Beyond their direct protective effects on the

heart, TCM can also assist in lowering blood glucose and lipid

levels, thus indirectly reducing the metabolic burden on

myocardium (22, 23). Besides, TCM emphasizes evidence-based

and individual-based treatment, which can adjust the drug

regimen according to the patient’s physical situation in order to

reduce unnecessary side effects (24, 25). What is noteworthy is

that Nrf2 signaling is regarded as a key therapy targets based on

TCM in preventing the progression of DCM (14).

In this review, we firstly summarized the characteristics of Nrf2

signaling participation in different pathogenic factors for DCM.

Furthermore, we investigated up-to-date activators of the Nrf2

signaling pathway for DCM treatment, including compounds

from TCM and TCM formulations as well as their characteristics

on therapeutic mechanisms in order to provide valuable and

effective direction for DCM therapy.

2 Correlation between the Nrf2
signaling pathway and diabetes
cardiomyopathy

The pathogenesis of DCM is considered to involve complex

interactions among multiple factors. Nrf2 as a key transcription

factor plays a role in the progression of DCM by regulation of

mitochondrial dysfunction, reactive oxygen species (ROS)

production, apoptosis, inflammatory cytokines secretion,

myocardial fibrosis, ferroptosis and autophagy.

2.1 The role of the Nrf2 signaling pathway in
oxidative stress induced by DCM

Hyperglycemia stimulates the excessive production of ROS which

impairs the endogenous antioxidant system and leads to oxidative

stress in cardiomyocytes. As a results, inhibition of oxidative stress

can improve heart function in patients with diabetes (26). Under

normal physiological conditions, Nrf2 binds to Keap1 to form a

stable complex. However, under oxidative stress, Nrf2 is released

from Keap1 with phosphorylation and translocation into the

nucleus. The phosphorylated Nrf2 then binds to the ARE and

activates the transcription of antioxidant genes (27, 28) (Figure 1).

PI3K/Akt pathway is also involved in Nrf2 activation and nuclear

translocation. In doxorubicin (Dox)-induced H9c2 cardiomyocytes,
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activation of the PI3K/Akt signaling pathway upregulates the Nrf2

expression, which subsequently increases the protein expression of

HO-1, NQO-1, and SOD and reduces oxidative stress (29). Studies

have shown a significant downregulation of Nrf2 in both animal

models of diabetes and diabetic patients’ hearts which may be cause

of angiogenic abnormalities, endothelial dysfunction and myocardial

damage (14). While the upregulation of Nrf2 expression can protect

cardiomyocytes from hyperglycemic injury (30). Priclincal

experiments has confirmed that in the cardiomyocytes of

streptozotocin (STZ)-induced diabetic rats and high glucose-

induced H9c2 cells, the expression of Nrf2 is significantly

downregulated. On the contrary, activation of Nrf2 can stimulate its

downstream target genes expression such as SOD, HO-1, and

NQO-1, thereby improving cardiomyocyte damage caused by

oxidative stress, apoptosis and left ventricular dysfunction in

DCM rats (31).

2.2 Nrf2 signaling pathway participates in
the inflammatory response caused by DCM

During the progress of inflammatory responses in DCM, cellular

events are closely linked to redox balance (32). Metabolic disorders

resulting from diabetes trigger the production of inflammatory

factors such as IL-6, TNF-α and monocyte chemoattractant

protein-1 (MCP-1). These factors, in turn, activate the NF-κB and

Toll-like receptor-mediated inflammatory pathway and stimulate

inflammatory cell infiltration (e.g., macrophages and neutrophils)

which leads to myocardial inflammation. This process significantly

damages cardiomyocytes and exacerbates the progression of DCM

(33–35). Between the Nrf2 and NF-κB signaling pathways, there

exists a complex and dynamic interplay. Both of the pathways

modulate cellular redox homeostasis and mediate responses to

stress and inflammation (36). The Nrf2 as an upstream inhibitor

reduces intracellular ROS production, thereby inhibiting

proinflammatory signaling. Researchers have shown that activation

of Nrf2 signaling controls the redox balance that it exerts on

inflammatory networks (37). Activation of the Nrf2/HO-1/NF-κB

signaling pathway can reduce cardiomyocyte inflammation injury

caused by ischemia-reperfusion (38).

2.3 Activation of the Nrf2 signaling pathway
inhibits myocardial fibrosis caused by DCM

Myocardial fibrosis and collagen deposition represent the

critical structural modifications observed in DCM (39). The

transition from cardiac fibroblasts (CFs) to myofibroblasts is a

crucial cellular event in myocardial fibrosis (40, 41). TGF-β1 is a

well-known inducer involved in the differentiation of CFs into

FIGURE 1

The process of Keap1 regulating Nrf2. E3 and Cul3 are ubiquitin ligases. (a) Normal physiological condition. (b) Oxidative stress condition.
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myofibroblasts (42). It has been demonstrated that hyperglycemia

can upregulate the expression of TGF-β1 in CFs (43), thereby

promoting myocardial fibrosis and impairing the compliance of

cardiac tissue in diabetic patients (26). Studies have confirmed

that the activation of Nrf2 signaling pathway plays a beneficial

role in the development of myocardial fibrosis under

hyperglycemic conditions involves inhibition of various redox

signaling elements such as TGF-β1, profibrogenic genes, cardiac

remodeling-associated lncRNAs (44, 45). Preclinical experiment

indicates that activation of the Nrf2/HO-1 signaling axis inhibits

the TGF-β1/Smad2/3 signaling pathway, effectively suppressing

myocardial fibrosis in the DCM mice model (46, 47). The

primary crosstalk mechanisms between Nrf2 and TGF-β1 are as

follows. Firstly, Nrf2 reduces MMP-9 expression, which in turn

decreases the levels of TGF-β1. Secondly, Nrf2-mediated Smads

inhibition is associated with increased Smad7 levels, negatively

modulating factor of the TGF-β1 signaling pathway (48).

2.4 Nrf2 signaling pathway inhibits
apoptosis caused by DCM

It has been confirmed thatmetabolic disorders inDCMcan induce

maladaptive cardiomyocyte apoptosis. This situation can be caused by

hyperglycemia, mitochondrial damage and dysfunction, energy

metabolic disturbance, excessive ROS, endoplasmic reticulum stress

(ERS), advanced glycation end products (AGEs) and inflammation

(49, 50). Long-term hyperglycemia in diabetic patients can lead to

cardiac contractile dysfunction and remodeling, attributed to

cardiomyocyte apoptosis (51). Under hyperglycemic conditions,

oxidative stress caused by ROS is heightened and may contribute to

cardiomyocyte apoptosis (52, 53). Studies have shown that Nrf2 as

an antioxidant response element plays a vital role in preventing

ROS-induced cell apoptosis in both vasculature and heart tissue (54).

In STZ-induced diabetic rat model, cardiomyocyte apoptosis was

observed along with decreased protein expression of Nrf2 as well as

its downstream antioxidant enzymes HO-1 and γ-GCS. Blocking the

protein expression of Akt, Nrf2, HO-1, γ-GCS, and caspase3 by

PI3K-specific siRNA and a PI3K inhibitor of LY294002 exacerbates

high glucose-induced oxidative stress and cardiomyocyte apoptosis.

These results suggest that the PI3K/Akt/Nrf2/HO-1 signaling

pathway may play a significant role in the antioxidative effect of

DCM (55). Additionally, overexpression of miR-155 in H9c2 cells

induced by high glucose leads to decreasing expression of

endonuclear Nrf2 and HO-1 which accompanied by the cell

apoptosis (56). Furthermore, study demonstrates that activating the

Nrf2-related signaling pathway alleviates cardiomyocyte apoptosis in

DCM mice model (57).

2.5 Nrf2 signaling pathway inhibits
ferroptosis caused by DCM

Ferroptosis is a form of cell death characterized by the

accumulation of lipids and lipid peroxidation (58). Under

conditions of metabolic disorder, cardiomyocytes predominantly

derive energy from fatty acid oxidation, which induces excessive

fatty acid oxidation and the accumulation of peroxides and

inflammatory factors, ultimately resulting in ferroptosis and

irreversible damage to cardiomyocytes (59). However, the activation

of Nrf2 stimulates the expression of numerous antioxidant factors,

such as HO-1 and glutathione peroxidase 4 (GPX4), thereby

inhibiting the progression of ferroptosis (60). Research has shown

that activation of the Nrf2/GPX4/glutathione (GSH) pathway leads

to increased SOD levels and downregulation of both MDA and free

ferrous iron (Fe2+) which effectively mitigates oxidative stress and

ferroptosis in high glucose-induced H9c2 cells (61, 62). Besides, the

cystine/glutamate antiporter SLC7A11 as one of the key regulators

of ferroptosis is a downstream target of Nrf2. In cardiomyocytes of

DCM mice model, activation of the AMPK/Nrf2 pathway can

reverse the decrease expression of SLC7A11 and GSH levels and

consequently balance iron metabolism (63).

2.6 The role of the Nrf2 signaling pathway in
autophagy caused by DCM

Autophagy as an adaptive response can help cells to cope with

various stresses, including hyperglycemia, hypoxia, oxidative stress,

and exogenous stress (64). Autophagy occurs in almost all types of

cardiovascular cells (65). Prolonged hyperglycemia can disrupt

cardiomyocyte autophagy (66), exacerbating the progression of

DCM. Nrf2, a gene with potential antioxidant functions, is capable

of regulating autophagy through positive effect. Studies have

shown that activation of the Nrf2 signaling pathway increases

autophagy and alleviates high glucose-induced hypertrophy of

H9c2 cells (67). Activation of the PP2A/Nrf2 signaling pathway

can promote cardiomyocyte autophagy under high glucose

condition (68). However, prolonged activation of Nrf2 may

suppress autophagy via a non-canonical mechanism (69).

2.7 The role of the Nrf2 signaling pathway in
mitochondrial dysfunction caused by DCM

Mitochondria are crucial organelles in cardiomyocytes

responsible for energy supply. Studies have demonstrated that the

production of adenosine 5′-triphosphate (ATP) by mitochondria

is accompanied by the generation of ROS. Under normal

physiological conditions, cardiomyocytes activate antioxidant

defense mechanisms to counteract ROS damage. However,

mitochondrial dysfunction in metabolic disorders can disrupt the

respiratory chain, leading to excessive ROS production in the

heart. The accumulation of ROS not only impairs mitochondrial

structure and function but also promotes lipid buildup. These

effects may contribute to myocardial fibrosis and cardiac diastolic

dysfunction in the progression of DCM (70–72). Therefore,

mitochondrial dysfunction is considered a key factor of oxidative

stress. Sustained hyperglycemia acts as the primary driver of

mitochondrial impairment in cardiomyocytes (73, 74). According

to research findings, impairment of mitochondrial respiratory

function, mitochondrial membrane potential and mitochondrial

Gu et al. 10.3389/fcvm.2025.1492499

Frontiers in Cardiovascular Medicine 04 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1492499
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


biogenesis in the hearts of diabetic rats contributes to atrial

structure remodeling and alterations in electrical activity, thereby

facilitating the onset of atrial fibrillation (75). Knockout of Nrf2

gene significantly impairs mitochondrial respiratory function and

reduces mitochondrial membrane potential and decreases ATP

production in cardiomyocytes of db/db mice (76). Conversely,

activation of the Nrf2/HO-1 signaling pathway improves

mitochondrial dysfunction in cardiomyocytes (77). In diabetic

rats, activation of the SIRT1/Nrf2/HO-1/Nox-2 pathway

effectively alleviates mitochondrial dysfunction and oxidative

stress in cardiomyocytes. This is achieved by reducing ROS

production, increasing ATP levels and enhancing the activity of

mitochondrial enzymes in myocardial tissues. Ultimately, these

improvements contribute to the restoration of cardiac function in

diabetic rats (78). Therefore, the activation of Nrf2 may represent

a promising therapeutic target for the treatment of diabetic

cardiomyopathy by restoring mitochondrial function (Figure 2).

3 Traditional Chinese medicine for the
treatment of DCM through the
activation of Nrf2 signaling pathway

Pharmacological NRF2 activators have shown significant

protective effects across a range of disease models and have

yielded promising results in human intervention trials, thereby

solidifying NRF2 as a highly promising drug target (79). Existing

evidences have confirmed that some specific TCMs and their

bioactive components which have the potential efficacy of DCM

are associated with the activation of Nrf2 signaling pathway. In

this section, we presented a comprehensive overview of the

effects and mechanisms of these TCMs and their bioactive

ingredients in the context of DCM.

3.1 Bioactive compounds of Nrf2 agonists
from TCM

3.1.1 Resveratrol
The natural polyphenol compound of resveratrol (RES) was

originally derived from Veratrum grandiflorum (Maxim. ex

Baker) Loes., Polygonum cuspidatum Sieb. et Zucc., Cassia

obtusifolia L. and mulberry. In the past 20 years, nearly 200

clinical studies have evaluated RES for 24 indications, including

cancer, menopause symptoms, diabetes, metabolic syndrome, and

cardiovascular disease (80). Clinical trials confirm that RSV

significantly improves left ventricular function and reduces

premature atrial and ventricular contractions with decreasing the

serum of aspartate aminotransferase, glucose, LDL cholesterol,

alanine aminotransferase, total cholesterol and insulin resistance

index (81, 82). It is suggested that RES, as a form of Nrf2

FIGURE 2

Relationship between Nrf2 signaling pathway and oxidative stress, inflammation, myocardial fibrosis, apoptosis, ferroptosis, autophagy and

mitochondrial dysfunction.
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agonists has been shown the promising evidence of efficacy on

DCM therapy both in clinical trials and lab experiments.

Furthermore, numerous studies have demonstrated that RES

exerts its antioxidant effects and anti-inflammatory and

cardiovascular protective effects through the Nrf2 signaling

pathway. It has been shown that RES protects the hyperglycemia-

induced cardiomyocytes by promoting the Nrf2 protein

expression and its downstream of antioxidant genes (83). Besides,

intraperitoneal administration of RES for type 2 diabetic rats

reduces myocardial ischemia/reperfusion injury (MIRI) by

activating the AMPK/p38/Nrf2 signaling pathway (84, 85).

3.1.2 Quercetin
QUR, a natural flavonoid possessing antioxidant, anti-

inflammatory, anti-atherosclerotic, anti-thrombotic and

cardioprotective activities is widely distributed in Chinese herbal

medicines, fruits, leaves, vegetables, seeds and plant roots (86, 87).

Quercetin supplementation demonstrates moderate-to high-quality

evidence for reducing cardiovascular disease (CVD) risk factors.

Multiple randomized controlled trials examine the effects of

quercetin on patients with coronary artery disease and demonstrate

a significant reduction in chronic systemic inflammation (88).

Priclincal studies have shown that QUR protects the myocardium

from MIRI by inhibiting the inflammatory cascade and apoptosis

via the PI3K/Akt signaling pathway (88). QUR also alleviates

oxidative stress by enhancing the level of SOD, CAT and GPx, while

mitigating inflammation and apoptosis through down-regulating the

expression levels of IL-6 and Bax in cardiomyocytes of STZ-

nicotinamide-induced diabetic rats. The Nrf2 signaling pathway

may be a target for DCM therapy (89). In diabetic rats model, QUR

reduces the accumulation of ROS in cardiomyocytes and delays the

development of myocardial fibrosis by facilitating the nuclear

translocation of Nrf2, which subsequently increases the expression

levels of its downstream target genes including HO-1, SOD

and glutamate-cysteine ligase catalytic (GCLC) (90). QUR has also

been found to ameliorate hyperglycemia-induced myocardial

bioenergetic damage and maintain intracellular energy homeostasis

in diabetic rats by upregulating the expression levels of Nrf2, HO-1,

SOD and proliferator-activated receptor gamma coactivator-1α

(PGC-1α) (91, 92).

3.1.3 Curcumin
Curcumin (CUR), a naturally occurring polyphenolic compound

derived from medicinal plants such as Curcuma wenyujin Y.H.,

Chen et C. Ling, Curcuma longa L., and Curcuma phaeocaulis Vai.

(family Zingiberaceae), exhibits the antioxidant, anti-inflammatory,

anticancer and antiapoptotic activities (93, 94). A randomized

clinical trial suggests that curcumin significantly enhances both

insulin sensitivity and the homeostatic model assessment of

insulin resistance (HOMA-IR) (95). Preclincal study has

confirmed that CUR has protective effects on DCM via the

Nrf2-related signaling pathway (96). In high glucose-induced H9c2

cells and cardiomyocytes from type 2 diabetic rats, CUR increases

cardiomyocyte viability and antioxidant enzyme activity, reduces

ROS formation and cardiomyocyte apoptosis through activation of

the Nrf2/HO-1 signaling pathway (97). Additionally, researchers

have shown that CUR exerts protective effects against oxidative

stress and ferroptosis-induced injury in the cardiomyocytes of

diabetic rats by promoting Nrf2 nuclear translocation and

upregulating the expression of its downstream genes (59, 98).

CUR also can reduce the accumulation of superoxide and inhibit

pyroptosis in the cardiomyocytes of diabetic rats through the

activation of the AKT/Nrf2/ARE pathway (99).

3.1.4 Sulforaphane
Sulforaphane (SFN), a natural compound from the herb extracts

belonging to the Cruciferae family (100) is one of the first identified

and most potent naturally occurring Nrf2 activators (101). The

overall outcomes of the clinical trials with sulforaphane-rich

preparations have reinforced the preclinical evidence that

sulforaphane has the potential to ameliorate a variety of diseases

related to chronic metabolic and inflammatory stress (102, 103).

A diversity preclinical experiments also shown improvement effect

of sulforaphane on DCM. Studies have confirmed that SFN prevents

cardiomyocyte oxidative damage, inflammation, and fibrosis in

diabetic mouse models through the activation of the AMPK/AKT/

GSK3β/NRF2 signaling pathway (104, 105). Furthermore, SFN

alleviates cardiomyocyte hypertrophy and fibrosis in DCM mice

through upregulating the expression and transcriptional activity of

Nrf2. Silencing the Nrf2 gene in high glucose-induced H9c2 cells

abolishes the protective effect of SFN on cardiomyocyte fibrosis

(106). Moreover, SFN can prevent the cardiomyocyte ferroptosis in

DCM mice model through activation of the AMPK/Nrf2 signaling

pathway (63). These results suggest that Nrf2 and its related

signaling pathway may be the key targets of SFN for treating DCM.

3.1.5 Luteolin

Luteolin (LUT) as a natural antioxidant is widely found in fruits,

vegetables, flowers and herbs with excellent radical scavenging and

cytoprotective properties. LUT is emerging as one of the most

promising candidates in the biomedical and pharmaceutical fields

(107). Recent studies have reported that LUT exhibits

cardioprotective effects both in vitro and vivo (108). Researchers

have confirmed that LUT has a protective effect on DCM via the

Nrf2 signaling pathway. It has been proven that LUT ameliorates

cardiac function and myocardial viability in diabetic rats with

ischemia/reperfusion injury through the Nrf2-regulated antioxidative

signaling pathway (109, 110). Evidence has demonstrated that LUT

suppresses cardiomyocyte inflammation and oxidative stress, thereby

preventing myocardial fibrosis and hypertrophy in DCM mice

model via the upregulation of Nrf2, HO-1, and NQO1 (111).

Although there were limited clinical trials correlated with the

therapeutic effect of LUT on DCM, the exploration of its therapeutic

effects on human DCM and related mechanisms targeting Nrf2 will

become a hot topic among researchers.

3.1.6 Kaempferol

Kaempferol (KMP) as a plant-derived flavonoid has various

pharmacological activities such as antioxidant, anti-inflammatory,

anticancer and cardioprotective effects (112). KMP-containing

plants are used worldwide in traditional systems to treat various

conditions for centuries (113). Research has revealed that KMP
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as one of the main compounds of Eucommiae Folium exerted the

cardioprotective effect on DCM mice (114). What’s worth noting

that KMP attenuates oxidative, inflammatory and fibrotic

damages of the left ventricle (LV) in STZ-induced diabetic rats

by upregulating the SIRT1/Nrf2 signaling pathway (115). KMP

also protects against isoproterenol (ISO) -induced heart failure

in diabetic rats by inhibiting cardiomyocyte apoptosis and

activating the PI3K/Akt/GSK-3β/Nrf2 signaling pathway (116).

Additionally, KMP as the Nrf2 activator demonstrates the

beneficial effects on cardiac structure and function and its

prominent anti-cardiac remodeling properties by inhibiting

inflammatory responses and oxidative stress expression both in

vitro and vivo DCM model (117). However, clinical studies are

needed to confirm the protective effects of kaempferol observed

in laboratory settings.

3.1.7 Notoginsenoside R1

Panax notoginseng (PN) root serves as a widely recognized

nutritional supplement, health food ingredient, and traditional

medicine. It plays a crucial role in maintaining homeostasis within

the human microcirculatory system. Notoginsenoside R1 (NGR1),

an active compound derived from Panax notoginseng (PN) root, has

been reported to exhibit a range of pharmacological activities,

including anti-inflammatory, antioxidant, anticancer, antimicrobial

and angiogenic effects (118, 119). Clinical studies have

demonstrated the efficacy of incorporating NGR1, the primary

bioactive component of the XueShuanTong formula, into

conventional treatments for ischemic diseases (120). Preclincal

study has indicated that NGR1 prevents vascular smooth muscle cell

(VSMC) proliferation, migration and neointimal proliferation by

inhibiting activation of the PI3K/Akt signaling pathway (121).

Recent experiment has confirmed that NGR1 inhibits cell apoptosis

and hypertrophy by upregulating the AMPK/Nrf2 signaling

pathway and HO-1 expression. The levels of cardiac hypertrophy

markers, including auricular natriuretic peptide (ANP) and brain

natriuretic peptide (BNP) are significantly decreased (122).

3.1.8 Rg1 ginsenoside
Ginsenoside Rg1 (GRg1) is a primary active component of

Panax ginseng C.A. Mey. It has been shown to have a protective

effect on various cardiovascular diseases by regulating multiple

cellular signaling pathways (123, 124). GRg1 has been proven to

protect against DCM. Studies have demonstrated that GRg1

ameliorates cardiomyocyte oxidative stress and inflammation in

DCM rats through activation of the AMPK/Nrf2/HO-1 signaling

pathway (125). However, the precise role of GRg1 in regulating

the Nrf2 signaling pathway within the treatment of DCM

deserves further investigation.

3.1.9 Myricetin (杨梅素) and myricitrin (杨梅苷)
Myricetin, a flavonoid compound derived from various fruit,

vegetables, tea, berries and red wine (126). Myricetin displays

multiple preclinical biological effects including antioxidant, anti-

inflammatory, anticancer, antidiabetic, antiviral, antibacterial and

cardiovascular protective effects (127). Besides, clinical trials

from various studies highlight the importance of myricetin as a

chemo preventive reagent and its significant positive impact on

key risk factors for coronary heart disease (128). In both

lipopolysaccharide (LPS) -induced H9c2 cells and a C57BL/6J

diabetic mouse model, myricetin mitigates cardiomyocyte

oxidative stress and inflammation injuries (129). Studies

have shown that myricetin alleviates pressure overload-induced

cardiac hypertrophy in Nrf2 knockdown (Nrf2-KD) mice and

phenylephrine (PE)-induced neonatal rat cardiomyocytes

(NRCMs) via activation of the Nrf2 signaling pathway (130).

Additionally, myricetin attenuates oxidative stress, inflammation

and apoptosis in cardiomyocytes and improves myocardial

diastolic dysfunction in STZ-induced diabetic mice through

upregulation of the Nrf2/HO-1 signaling pathway (131, 132).

3.1.10 Naringenin (柚皮素) and naringin (柚皮苷)
Naringin, a flavanone glycoside exists in two forms: the

glycosidic form of naringin and the aglycone form of naringenin

(133). As flavonoids, naringenin and naringin possess a diverse

range of pharmacological activities including antioxidant, anti-

inflammatory, antidiabetic, anticancer and cardiovascular disease

prevention effects (134). Naringenin exhibites beneficial effects on

the lipid profile and reduces the percentages of non-alcoholic fatty

liver disease (NAFLD) grades, serving as an indicator of the

severity of hepatic steatosis for NAFLD patients. Clinical trials

demonstrate that naringenin has a beneficial effect particularly

related to cardiovascular diseases and diabetes (135). Preclinical

study indicates that naringenin alleviates pathological damage,

inflammation, lipid peroxidation and cellular ferroptosis by

modulating the Nrf2/System Xc-/GPX4 axis in the myocardial

tissue of MIRI-induced rats (136). Additionally, research has

revealed that the protective effect of naringin on cardiomyocytes

in diabetic mice which may be associated with reducing

intracellular Ca2+ overload, limiting the increase in ROS levels and

suppressing the expression level of TNF-α, IL-6, and NF-κB (137).

Studies have also demonstrated that both naringenin and naringin

ameliorate cardiomyocyte oxidative stress, inflammation and

apoptosis in STZ-induced diabetic mice through activation of the

Nrf2 signaling pathway (138, 139). Consequently, the preclinical

studies indicate that Nrf2 may serve as a potential target for

naringenin and naringin in the prevention of DCM (Figure 3).

The next section provided a review of the protective effects

of representative natural compounds on DCM and their potential

mechanisms related to the Nrf2 signaling pathway, as detailed

in Table 1.

3.2 Nrf2 agonists from Chinese herbal
prescriptions

In China, various medicinal plants are combined as TCM

prescriptions for the treatment of diseases. TCM prescriptions

known for their multi-target, multi-component and multi-

pathway characteristics, exerts synergistic effects on DCM

therapy. In this section, we reviewed representative TCM

prescriptions for DCM treatment that were associated with the

Nrf2 signaling pathway.
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3.2.1 Guan Xin Dan Shen formulation

The Guan Xin Dan Shen Formulation (GXDSF) consists of three

herbs: Dalbergia odoriferae Lignum, Salviae miltiorrhizae Radix et

Rhizoma, and Panax notoginseng Radix et Rhizoma. It has been

widely used for the management of coronary heart disease in

China by activating blood circulation, resolving blood stasis and

relieving pain (166). GXDSF has been used clinically for the

treatment of cardiovascular diseases (23). The main active

ingredients of GXDSF are ginsenoside Rg1 (9.51%), ginsenoside

Rb1 (8.63%), notoginsenoside R1 (2.34%), tanshinone IIA (1.71%),

cryptotanshinone (0.84%), tanshinone I (0.55%) and salvianolic

acid B (0.50%) (167). Salvianolic acid B and notoginsenoside R1 in

GXDSF have been shown to significantly protect H9c2

cardiomyocytes from hypoxia and reoxygenation injuries by

reducing the levels of the inflammatory factors of TNF-α and IL-

1β (168). Preclinical studies indicate that treatment with GXDSF

improves cardiac hypertrophy and dysfunction and significantly

increases the left ventricular ejection fraction (LVEF) in diabetic

mice model. Additionally, GXDSF attenuates cardiac dysfunction

and inhibits cardiomyocyte apoptosis by activating the Akt/Nrf2

signaling pathway (169).

3.2.2 Mulberry granules
Mulberry granules a traditional Chinese medicine prescription is

derived from the fruit of Morus alba L (170). It contains various

beneficial constituents especially flavonoids and alkaloids (171, 172).

In China, mulberry is commonly used to treat diabetes palpitations,

insomnia and hyperglycemia for many years (173). Clinical studies

have confirmed that mulberry twig alkaloids are effective and safe

for the treatment of type 2 diabetes (174). Besides, including

mulberry in the diet could positively influence various

cardiometabolic risk factors (175). Preclinical experiment indicates

that mulberry has been found to improve insulin sensitivity by

activating the AMPK signaling pathway in diabetic db/db mice

(176). Research has shown that mulberry ethanol extracts ameliorate

abnormal lipid metabolism and enhance antioxidant activity in

atherosclerosis (AS) rats (177). It can be speculated that mulberry

could be benefit for DCM. Furthermore, mulberry attenuates

oxidative stress induced by myocardial ischemia-reperfusion injury

through upregulating the expression of GSH, SOD, CAT and

glutathione reductase (GR) in myocardial tissue via the AMPK/Nrf2

signaling pathway (178). These preclinical studies suggest that

mulberry granules may exert protective effects on DCM through the

AMPK/Nrf2 signaling pathway. However, further clinical and

animal studies are required to investigate the mechanism by which

mulberry granules influences the progression of DCM.

3.2.3 Polyherbal formulation

The polyherbal formulation (PHF) comprises Piper nigrum

(fruit), Terminalia paniculata (bark) and Bauhinia purpurea (bark),

three of which are ayurvedic medicines and is used India’s

conventional medicinal system. Based on animal experiments,

researchers shown that PHF reduces oxidative stress and

inflammation in cardiac tissues of diabetic rats. This mechanism

may be associated with the upregulation of the Nrf2/HO-1

signaling pathway. Furthermore, PHF increases the serum levels of

SOD, CAT and GSH and decreases the serum levels IL-1β, IL-6

and TNF-α, which is closely associated with the activation of the

NF-κB/Nrf2/HO-1 signaling pathway (179). These findings

demonstrate that Nrf2 may be considered as the key targets of PHF

for preclinical treatment of DCM.

3.2.4 Benefits and challenges of TCMs as Nrf2

activators for DCM therapy
Due to the oxidative stress as an essential pathogenic factor for

DCM pathogenesis, the TCMs as Nrf2 activators exert protective

effects for cardiovascular tissues in diabetes. Aforementioned

evidences reveal that mechanism and potential of the TCMs against

DCM are prominent in the PI3K/Akt/GSK-3β, NF-κB, AMPK/p38,

SIRT1 and TGF-β/Smads signaling pathway which are crosstalk

with the activation of Nrf2. These evidences also support the

conclusion that the TCM alleviates DCM by modulating

pathological processes, including myocardial fibrosis, inflammation,

oxidative stress, metabolism disorder, cardiac hypertrophy,

apoptosis and etc. Considering the damage to multiple organs

caused by hyperglycemia as well as the intricate and prolonged

development of DCM, TCMs as the Nrf2 activators demonstrate

significant promise as a potential option for DCM due to its

advantages of multi-target and multi-pathway effects with limited

adverse reactions. However, numerous challenges remain in

elucidating both the biological activity and potential toxicity of

TCMs for their future clinical application in DCM. Additionally, the

larger clinical trials of the Nrf2 activators from TCMs are urgently

needed to further evaluation the reliability of their therapeutic effects.

4 Future prospects

The pathological mechanism of DCM involves in the

interplay of various molecular signal transduction pathways. Nrf2

as a key transcription factor in the pathogenesis of

DCM provides protection effects by reducing oxidative stress,

inflammation, myocardial fibrosis, apoptosis, ferroptosis,

autophagy and mitochondrial dysfunction. However, there are

still unexplored pathways or processes linked to Nrf2 that need

further explained its role in DCM. Copper (Cu) regulation in the

pathogenesis of DCM has been drawn attention as a new

research hotspot. Researcher speculates that in the progression of

DCM, the high levels of Cu in plasma may damage

mitochondria of vascular endothelial cells through cuproptosis or

oxidative stress pathway and then affects the diastolic and

contractile function of cardiomyocytes (180). While Cu

deficiency in myocardial cells may result in impairment of

energy metabolism (181). Animal study confirms that Cu

deficiency can inhibit the Nrf2 pathway, consequently induces

oxidative damage in the liver (182). However, the exact

mechanism by which Cu affects antioxidant related to regulation

of Nrf2 deserves as another interesting research.

This review systematically analyses the role of the Nrf2

signaling pathway in the pathogenesis and treatment of DCM

using TCM. Based on the literature, it can be concluded that

Gu et al. 10.3389/fcvm.2025.1492499

Frontiers in Cardiovascular Medicine 08 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1492499
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Nrf2 as a classical transcription factor associated with anti-

oxidative stress is a promising target for DCM treatment.

However, the role of Nrf2 in DCM also represents complex and

controversial aspect. One recent study has found that chronic

Nrf2 activation in the context of autophagy deficiency can

exacerbate DCM, suggesting that Nrf2 is not universally

beneficial (183). Additionally, although TCM formulations have

shown efficacy in ameliorating and treating DCM potentially by

targeting the Nrf2 signaling pathway in preclinical experiments,

further exploration of clinical researches is still required to

validate the safety and efficacy of TCM formulations for DCM

treatment. Furthermore, the majority studies on compounds

from TCM have primarily focused on animal and cell

experiments. How to translate these findings into clinical practice

for DCM faces several potential limitations and challenges.

Firstly, limitations of study methodology. Many studies focus on

in vitro experiments, which may differ from the in vivo conditions.

Although animal experiments are crucial for understanding TCM’s

mechanisms, it is different from human beings in terms of anatomy,

physiology and metabolism. Secondly, the complexity of TCM

components propose the challenges for revealing the precise

molecular mechanism for treatment of DCM, which hinders their

global recognition. TCM’s complex composition makes it difficult to

identify the major active ingredients. Thirdly, the clinical detection

of Nrf2 presents another significant challenge. Although Nrf2 has

been generally accepted as one of key anti-oxidative transcription

factor in the progression of DCM, it has yet to be established as a

reliable biomarker for both the diagnosis and treatment of DCM in

clinical practice. Other possible diagnostic markers that indirectly

reflect the Nrf2 activity needs to be explored. Nrf2 signaling, a key

driver of antioxidation, is commonly down-regulated in DCM.

Current TCM targeting the Nrf2 signaling pathway has been shown

FIGURE 3

The cardioprotective effect of TCM on DCM rats via Nrf2 signaling pathway. RES, resveratrol SFN, sulforaphane; NGR1, Notoginsenoside R1; GRg1,

Ginsenoside Rg1; CUR, curcumin; KMP, kaempferol; QR, quercetin; LUT, luteolin.
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TABLE 1 Effects of Chinese medicine compounds on Nrf2 signaling pathway and their roles in DCM.

NO. Chinese Medicine
Monomer

Chemical Structural
Formula

Model Regulation of Nrf2
Signaling Pathway

Main Purposed
Effects

Ref(s)

1 Resveratrol FVB mice

↑Nrf2, HO-1, SOD, NADPH

Anti-oxidative stress

(83–85)Anti-myocardial fibrosis

SD rats Anti-myocardial hypertrophy

2 Quercetin

SD rats

↑Nrf2, HO-1, SOD, GSH

Anti-oxidative stress

(90, 91)
H9c2 cells

Anti-myocardial fibrosis
Wistar rats

3 Curcumin

SD rats

↑Nrf2, HO-1, GSH

Anti-oxidative stress

(59, 97–99)
H9c2 cells Anti-cardiomyocyte apoptosis

New Zealand rabbits Anti-cardiomyocyte ferroptosis

Wistar rats Anti-inflammation

4 Sulforaphane

FVB mice

↑Nrf2, HO-1, SOD, MT, CAT

Anti-oxidative stress

(63,

104–106)

Anti-myocardial fibrosis

Anti-inflammation

C57BL/6J mice Anti-myocardial fibrosis

Anti-myocardial hypertrophy

5 Luteolin

SD rats

↑Nrf2, HO-1, SOD, GPx

Anti-oxidative stress

(109–111)

H9c2 cells Anti-inflammation

C57BL/6J mice

Anti-myocardial fibrosis

Anti-myocardial hypertrophy

Anti-mitochondrial damage

6 Kaempferol

Wistar rats

↑Nrf2, HO-1, γ-GCS

Anti-oxidative stress

(115–117)
C57BL/6J mice Anti-inflammation

Anti-myocardial fibrosis
H9c2 cells

Anti-cardiomyocyte apoptosis

7 Notoginsenoside R1 H9c2 cells ↑Nrf2, HO-1

Anti-oxidative stress

(122)
Anti-cardiomyocyte apoptosis

8 Ginsenoside Rg1 Wistar rats ↑Nrf2, HO-1, SOD, CAT

Anti-oxidative stress

(125)
Anti-inflammation

9 Myricetin C57BL/6J mice ↑Nrf2, HO-1, SOD, NQO1

Anti-oxidative stress

(131)Anti-inflammation

Anti-cardiomyocyte apoptosis

10 Myricitrin

BALB/c mice

↑Nrf2, HO-1, NQO-1

Anti-oxidative stress

(132)
Anti-inflammation

H9c2 cells
Anti-cardiomyocyte apoptosis

Anti-myocardial fibrosis

11 Naringenin
C57BL/6J mice

↑Nrf2, HO-1, SOD, NQO-1

Anti-oxidative stress

(138)Anti-inflammation

H9c2 cells Anti-cardiomyocyte apoptosis

12 Naringin SD rats ↑Nrf2 Anti-oxidative stress (139)

13 Thymoquinone Wistar rats ↑Nrf2, HO-1, SOD

Anti-oxidative stress

(140)
Anti-inflammation

14 Bakuchiol

C57BL/6J mice

↑Nrf2, SOD, GPx

Anti-oxidative stress

(141)
Anti-myocardial fibrosis

H9c2 cells
Anti-myocardial hypertrophy

Anti-cardiomyocyte apoptosis

15 Andrographolide

C57BL/6J mice

↑Nrf2, HO-1, SOD

Anti-oxidative stress

(142)
H9c2 cells

Anti-inflammation

Anti-cardiomyocyte apoptosis

(Continued)
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TABLE 1 Continued

NO. Chinese Medicine
Monomer

Chemical Structural
Formula

Model Regulation of Nrf2
Signaling Pathway

Main Purposed
Effects

Ref(s)

16 Dimethyl fumarate C57BL/6J mice ↑Nrf2, HO-1, SOD, CAT

Anti-oxidative stress

(143)Anti-inflammation

Anti-myocardial fibrosis

17 Glycyrrhizin

Zucker Diabetic Fatty

rats
↑Nrf2

Anti-oxidative stress

(144)
Anti-inflammation

Anti-myocardial fibrosis
AC16 human

cardiomyocyte

18 Scutellarin C57BL/6J mice ↑Nrf2, HO-1, SOD, CAT

Anti-oxidative stress

(145)
Anti-inflammation

Anti-myocardial fibrosis

19 Bail calin C57BL/6J mice ↑Nrf2, HO-1, NQO1

Anti-inflammation

(146)
Anti-myocardial fibrosis

Anti-myocardial hypertrophy

Anti-cardiomyocyte apoptosis

20 Honokiol

SD rats

↑Nrf2, HO-1, NQO1

Anti-oxidative stress

(147)
H9c2 cells Anti-cardiomyocyte apoptosis

21 Cyclovirobuxine D

SD rats

↑Nrf2, NQO1 Anti-oxidative stress (148)
The primary

neonatalrat

cardiomyocyte

22 Sinapic acid Wistar rats ↑Nrf2, HO-1

Anti-oxidative stress

(149)
Anti-inflammation

Anti-cardiomyocyte apoptosis

23 Oleanolic acid SD rats ↑Nrf2, HO-1

Anti-oxidative stress

(150)
Anti-cardiomyocyte apoptosis

24 Fucoxanthin SD rats ↑Nrf2, HO-1, SOD

Anti-oxidative stress

(151)Anti-myocardial fibrosis

Anti-myocardial hypertrophy

25 6-Gingerol

C57BL/6J mice

↑Nrf2, HO-1

Anti-oxidative stress

(152)
Anti-inflammation

H9c2 cells
Anti-cardiomyocyte ferroptosis

Anti-cardiomyocyte apoptosis

26 Piceatannol

SD rats

↑Nrf2, HO-1

Anti-oxidative stress

(153)
Anti-inflammation

H9c2 cells
Anti-cardiomyocyte ferroptosis

Anti-cardiomyocyte apoptosis

27 Fortunellin

C57BL/6J mice

↑Nrf2, HO-1, SOD, CAT

Anti-oxidative stress

(154)
H9c2 cells Anti-inflammation

28 Costunolide

C57BL/6J mice

↑Nrf2, HO-1

Anti-oxidative stress

(155)
Anti-inflammation

H9c2 cells
Anti-cardiomyocyte ferroptosis

Anti-myocardial hypertrophy

29 Geniposide SD rats ↑Nrf2, HO-1 Anti-oxidative stress (156)

(Continued)
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promise in preclinical trials. Further improvement understanding of

the regulatory mechanisms of Nrf2 signaling and extensive clinical

trial studies of natural Nrf2 activators will provide new approaches

for the treatment of DCM patients in the near future.
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TABLE 1 Continued

NO. Chinese Medicine
Monomer

Chemical Structural
Formula

Model Regulation of Nrf2
Signaling Pathway

Main Purposed
Effects

Ref(s)

30 Butin

C57BL/6J mice

↑Nrf2, HO-1 Anti-oxidative stress (157)
H9c2 cells

31 Kolaviron SD rats ↑Nrf2, SOD

Anti-oxidative stress

(158)
Anti-inflammation

32 Diallyl trisulfide SD rats ↑Nrf2, HO-1 Anti-oxidative stress (159)

33 Phloretin C57BL/6J mice ↑Nrf2, HO-1, SOD, NQO1

Anti-oxidative stress

(160)Anti-myocardial fibrosis

Anti-myocardial hypertrophy

34 Gastrodin H9c2 cells ↑Nrf2, GSH, SOD, CAT Anti-oxidative stress (161)

35 Esculeoside A H9c2 cells ↑Nrf2, OH-1, GSH, SOD

Anti-oxidative stress

(162)
Anti-inflammation

Anti-cardiomyocyte apoptosis

36 Ginsenoside Rb1 Wistar rats ↑Nrf2, HO-1, SOD, CAT

Anti-oxidative stress

(163)
Anti-myocardial fibrosis

37 Asiaticoside db/db mice ↑Nrf2, HO-1 Anti-oxidative stress (164)

38 Pterostilbene SD rats ↑Nrf2, HO-1

Anti-oxidative stress

(165)
Anti-inflammation

↑ signifies increase/activation.
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