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Purpose of Review: Pulmonary arterial hypertension (PAH) is a progressive

clinical syndrome characterized by pulmonary vascular remodeling and

elevated pulmonary artery pressure, associated with high morbidity and

mortality. While targeted therapies have improved patient prognosis, restoring

normal hemodynamics and reversing vascular pathology remain unmet

challenges. Heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1), an

RNA-binding protein integral to mRNA processing and post-transcriptional

regulation, governs critical processes including cell proliferation, apoptosis,

angiogenesis, and endothelial homeostasis. However, its role in PAH

pathogenesis remains poorly defined. This review synthesizes current evidence

on HNRNPA2B1 in PAH, evaluates its potential mechanistic contributions, and

discusses therapeutic implications. Given the fact that much of the

connections between PAH and HNRNPA2B1 are speculative, rigorous

mechanistic studies are imperative to clarify its pathobiological relevance.

Recent Findings: Emerging preclinical evidence suggests that HNRNPA2B1

silencing attenuates monocrotaline (MCT)-induced pulmonary hypertension

(PH) in rat models. Mechanistically, HNRNPA2B1 modulates vascular smooth

muscle cell (VSMC) proliferation via cross-talk between multiple signaling

cascades and macrophage polarization dynamics, both central to pulmonary

vascular remodeling. Nevertheless, clinical translatability remains uncertain, as

no studies have yet conclusively validated HNRNPA2B1 as a druggable target

in human PAH.

Summary: Recent evidence suggests HNRNPA2B1 has emerged as a potential

therapeutic target for PAH. However, further studies are essential to elucidate

its role in modulating the pathogenic mechanisms underlying PAH.

KEYWORDS

pulmonary arterial hypertension, HNRNPA2B1, vascular remodeling, smooth muscle

cells, endothelial cell

1 Introduction

Pulmonary hypertension (PH) is a progressive disorder characterized by elevated

pulmonary arterial pressure and vascular remodeling, culminating in right heart failure

and premature mortality. Globally, PH imposes a significant economic burden, with an

estimated prevalence affecting approximately 1% of the population (1).

PH encompasses five distinct clinical subtypes: group 1 pulmonary arterial

hypertension (PAH), group 2 PH associated with left heart disease (PH-LHD), group 3

PH associated with lung diseases and/or hypoxia, group 4 PH associated with

pulmonary artery obstruction, and group 5 PH with unclear and/or multifactorial

mechanisms. The pathogenesis of PAH is intricately multifaceted, involving a spectrum

of mechanisms, such as endothelial cell dysfunction, aberrant smooth muscle cell
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proliferation, plexiform lesions, inflammation, immune responses,

cytokine activity, chronic thrombosis, small vessel occlusion,

anti-apoptotic processes, as well as metabolic and hormonal

influences (2). Currently, the most commonly studied animal

models primarily replicate Group 1 and Group 3 PH. This

review primarily focuses on Group 1 PH. Patients with PAH are

hemodynamically defined by pre-capillary PH, except in cases of

other underlying causes of pre-capillary PH (1). Although

targeted therapies have significantly improved the prognosis of

PAH patients, it remains a challenge to reduce pulmonary

arterial pressure to normal levels and reverse pulmonary vascular

remodeling. Targeted therapies for PAH primarily target three

pathways: endothelin receptors on pulmonary arterial smooth

muscle cells (PASMCs), which promote vasoconstriction and cell

proliferation; the nitric oxide-induced activation of soluble

guanylate cyclase (sGC); and the prostacyclin metabolic pathway.

Therefore, calcium channel blockers are used to treat PAH

patients who show a positive response to acute vasoreactivity

testing (1). There are also new drugs under clinical investigation

that target other pathways and have been reported to improve

patient symptoms and hemodynamics (2). With these therapies,

5-year survival improved by more than 60% in 2015 (3).

However, these drugs cannot reverse vascular remodeling,

although they function by inducing vasodilation to alleviate

clinical symptoms. Therefore, it is crucial to explore the

pathophysiological mechanisms of PAH in order to provide early

interventions and improve prognosis.

Heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1)

is an RNA-binding protein (RBP) that regulates the mRNA expression

of several genes and exhibits diverse biological effects, making it a

potential therapeutic target for multiple diseases.

The role of HNRNPA2B1 has primarily been studied in the

field of cancer. The mechanisms driving PAH development

partially overlap with those of carcinogenesis. Cell proliferation

and anti-apoptotic phenotypes are also key features of PAH.

HNRNPA2B1 can promote cell proliferation and prevent

apoptosis through various pathways, and it can also promote

tumor cell proliferation through mechanisms such as epithelial-

mesenchymal transition (EMT) and angiogenesis (4, 5). However,

its role in PAH was not elucidated until 2022. Silencing of

HNRNPA2B1 can mitigate monocrotaline (MCT)-induced PAH

in rats (6). Moreover, HNRNPA2B1 is upregulated and localized

in the nucleus of patients with idiopathic pulmonary

hypertension (IPAH), where it participates in the development of

PAH by regulating the cell cycle (6). However, the detailed

mechanisms remain under investigation. HNRNPA2B1 has been

reported to promote proliferation and prevent apoptosis by

activating the STAT3 and Erk1/2 signaling pathways (7).

Importantly, these two signaling pathways are also crucial for

promoting proliferation and preventing apoptosis in PASMCs (8,

9). Furthermore, HNRNPA2B1 regulates the maturation of

mRNA precursors by recognizing the N6-methyladenosine

(m6A) post-transcriptional modification (10). It is also associated

with the exosomal secretion of miRNAs in endothelial cells

(ECs) (11). Currently, miR-424/503 has been identified as an

important component of pulmonary vascular EC homeostasis, and

miRNAs may serve as potential targets for treating PAH (12–15).

HNRNPA2B1 may also contribute to the occurrence of PAH

partly through these pathways. Although HNRNPA2B1 expression

in pulmonary arterial endothelial cells (PAECs) is not significantly

different from that in normal control cells (6), it may still exert its

effects in PAH ECs by sorting and exporting specific miRNAs. In

conclusion, HNRNPA2B1 shows great potential as a therapeutic

target for PAH. We have comprehensively reviewed and presented

the potential mechanisms through which HNRNPA2B1 drives the

development of PAH.

2 HNRNPA2B1

HNRNPA2B1 is a member of the heterogeneous nuclear

ribonucleoprotein (HNRNP) family. Structurally, HNRNPA2B1

consists of two RNA recognition motifs (RRMs) located at its

N-terminus, referred to as RRM1 and RRM2, and a C-terminal

low-complexity region rich in glycine residues, which includes an

RGG box, a core PrLD domain, and an M9 nuclear localization

signal (M9-NLS) (16). The RRMs and the RGG box are crucial

for RNA binding (16, 17). HNRNPA2B1 can bind to specific

m6A-modified regions on mRNA through its RRM domains,

thereby mediating the translation and degradation of downstream

mRNA (18). Although the RGG box significantly affects binding

strength, its impact on specific RNA binding is relatively small

(19). HNRNPA2B1 plays a role in mRNA splicing, mRNA

modification, promotion of pre-mRNA synthesis, transport of

mature mRNA, and maintenance of mRNA stability; therefore,

its role spans almost the entire process, from mRNA synthesis to

maturation (10, 20, 21). As an m6A reader, HNRNPA2B1 can

recognize the m6A-specific motifs RGAC and interact with the

microprocessor complex protein DGCR8, regulating selective

splicing and processing of target mRNAs (10). HNRNPA2B1

may regulate the splicing and processing of target mRNAs by

recognizing m6A, thereby activating or inhibiting downstream

mechanisms involved in various pathophysiological processes.

HNRNPA2B1 was initially discovered as a tumor-associated

antigen in non-small cell lung cancer (22, 23). Patients with non-

small cell lung cancer who are positive for HNRNPA2B1 have a

worse prognosis (24). HNRNPA2B1 is involved in various

pathological and physiological processes, including inflammation

(25), immunity (26), oxidative stress, cell proliferation, apoptosis

(27), EMT (28), and metabolism (29). It is implicated in the

development of various diseases such as cancers, rheumatic

immune system diseases, neurological disorders, and viral

infections (30). However, few studies have elucidated the

relationship between PAH and HNRNPA2B1. Research suggests

that HNRNPA2B1 may play a potential role in the underlying

mechanisms of PAH. Pulmonary vascular remodeling is a basic

pathological feature in all groups of PH. In PAH, the affected

vessels are small arteries, whereas in conditions like pulmonary

venous obstructive disease, pulmonary capillary

hemangiomatosis, or PH-LHD, the medium-sized veins and

capillaries are primarily involved. It is characterized by the

accumulation of different vascular cells (PASMCs, PAECs,
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fibroblasts, myofibroblasts, and pericytes) in the pulmonary artery

wall, as well as the disappearance of precapillary arterioles and

excessive infiltration of inflammatory cells around the vessels,

such as B and T lymphocytes, mast cells, dendritic cells, and

macrophages (31). The underlying mechanisms include abnormal

proliferation and migration of PASMCs, dysfunction of ECs,

infiltration of inflammatory cells, activation of fibroblasts in the

vascular adventitia, and accumulation of extracellular matrix, all

contributing to structural changes in the vessel wall. As an RNA-

binding protein, HNRNPA2B1 is involved in pathological

processes such as cell proliferation, migration, angiogenesis,

EMT, cell metabolism, and inflammation through mechanisms

including the regulation of gene transcription, m6A modification,

miRNA sorting, and exosome secretion. HNRNPA2B1 has been

implicated in the pathological mechanisms of various cell types,

including smooth muscle cells (6, 32, 33), endothelial cells (11,

34), fibroblasts (35), and macrophages (36). Therefore,

HNRNPA2B1 may contribute to pulmonary vascular remodeling

by modulating the pathological processes in these cells.

3 HNRNPA2B1 as a key factor in PAH

3.1 The role of HNRNPA2B1 in smooth
muscle cells

3.1.1 HNRNPA2B1 promotes PASMCs proliferation

and phenotypic transformation
Microscopic remodeling of the pulmonary arteries is the

hallmark pathological change in the progression of PAH. Excessive

proliferation of PASMCs leads to thickening of the medial

vascular layer. PASMC abnormalities are believed to be crucial in

the early development of PAH. Normal PASMCs are highly

differentiated cells with a contractile phenotype. However, in PAH,

PASMCs undergo excessive proliferation, migration, and invasion,

accompanied by increased extracellular matrix secretion, leading to

a synthetic phenotype. This transition is known as phenotypic

switching in PASMCs (38). In experimental PAH, including both

MCT-induced and hypoxia-induced models, PASMCs undergo

phenotype switching. Targeting phenotypic switching can improve

preclinical pulmonary hypertension (39–41). Various signaling

pathways, transcription factors, cytokines, and inflammatory

mediators can trigger phenotypic switching of PASMCs. These

details have been comprehensively discussed in previous reviews

(42). The phenotypic switching of PASMCs ultimately results in

pulmonary vascular thickening, loss of elasticity, distal vessel

muscularization, and eventually vascular remodeling, particularly

in the early stages of PAH (43). The dedifferentiation and

proliferation of PASMCs can be regulated by signaling pathways

such as STAT/ERK (7), PI3K/AKT/mTOR (44), AKT/STAT3 (27),

ILF3/AKT (45), ERK/MAPK (46), Wnt-β/catenin (47), as well as

epigenetic mechanisms like histone modification and DNA

methylation, which control the phenotypic transformation of

PASMCs (42). The treatment goal of PAH could also be to reverse

or inhibit the abnormal proliferation and dedifferentiation

of PASMCs.

HNRNPA2B1 plays a role in vascular SMCs, including

coronary artery, SMCs and PASMCs (48, 49). HNRNPA2B1 has

the potential to regulate the phenotype of SMCs. HNRNPA2B1

can transcriptionally regulate the expression of SMCs genes by

directly binding to the promoters of the Smαa and Sm22α genes,

its knockdown leads to the downregulation of specific smooth

muscle markers and transcription factors, indicating its crucial

role in SMC differentiation (50). Besides, HNRNPA2B1 can

promote cell proliferation in various pathways, these mechanisms

can also promote PASMCs proliferation (see Table 1).

HNRNPA2B1 regulates the biological processes of multiple

mRNAs and exerts biological effects, while being itself regulated

by various factors. All these interactions results in a tight

regulation of cellular metabolism. HNRNPA2B1 can modulate

the cell cycle by regulating the expression of cell cycle-related

proteins such as cyclin-dependent kinases and cyclin-dependent

kinase inhibitors, thereby influencing cell metabolism (32).

Additionally, HNRNPA2B1 can promote cell proliferation and

invasion through mechanisms involving exosome sorting and

regulating of various microRNAs (miRNAs) (47). Furthermore, it

is involved in regulating transcription factors such as ZEB (36),

as well as lipid synthesis (51), oxidative stress, and serine

metabolism (52). In conclusion, HNRNPA2B1 may play a role in

the phenotypic switching of PASMCs through multiple

mechanisms. The mechanisms by which HNRNPA2B1 may

affect the proliferation and phenotypic transformation of

PASMCs were illustrated in Figure 1 and Table 1.

3.1.2 HNRNPA2B1 regulates cell metabolic

reprogramming
Metabolic reprogramming refers to the alteration of cellular

metabolism in response to various stress conditions. Under

normal circumstances, the main energy source for cells is

oxidative phosphorylation through the tricarboxylic acid cycle

(TCA cycle). However, in PAH, PASMCs shift their energy

production toward glycolysis, a phenomenon known as the

“Warburg effect”. During the Warburg effect, cells exhibit

increased cytoplasmic glycolysis and glutaminolysis, while

mitochondrial biogenesis and fatty acid oxidation are inhibited.

Consequently, PASMCs in PAH primarily rely on glycolysis for

energy production to support their growth. The promotion of

glycolytic metabolism through metabolic reprogramming

enhances PASMC survival and proliferation.

Abnormal PASMC metabolism may serve as a potential

therapeutic target for PAH, with preliminary success observed

in clinical trials. TEPP-46, an activator of pyruvate kinase M2

(PKM2), has been shown to normalize glycolysis and

mitochondrial abnormalities in fibroblasts from PAH patients

(84). Notably, PKM2 inhibitors reduce pulmonary artery

pressure in Group 2 PH and reverse pulmonary vascular

remodeling (85). Furthermore, PKM2 is highly expressed in

PASMCs in Group 1 and Group 4 PH and accelerates their

abnormal proliferation (86, 87). Interestingly, as a member of

the HNRNP family, HNRNPA1 inhibition can downregulate

PKM2 expression (87). Additionally, HNRNPA2B1 regulates

PKM2 splicing, upregulates PKM2 expression, and
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TABLE 1 Mechanisms by which HNRNPA2B1 may regulate PASMC metabolism.

Disease Cells/Tissues Upstream
regulation

Role of gene
overexpression

Role of gene
knockout/
knockdown

Mechanisms Literatures Literatures
related to

PH

PAH PASMCs - - ↓Cell proliferation;

↑Apoptosis

↓Target mRNAs

containing

CUAGACUAGA, UAA

[CG]UUAU, and GCC

[GC]AAG[GA][AG]

[GA]CC motifs

(6) -

Atherosclerosis VSMCs Down-regulated

by lncRNA

AC105942.1

- Reversal VSMCs

proliferation

induced by Ang II

↓CDK4; ↑P27 (32) (53)

Breast cancer Breast cancer cell - - ↓Cell proliferation;

↑Apoptosis; ↑

S phase of the cell

cycle

↓STAT3/ERK1/2 (7) (54, 55)

Ovarian cancer Ovarian cancer cell - - ↓NUF2; ↓Cell

proliferation;

↑Apoptosis

↓PI3K/AKT/mTOR (44) (56)

Glioma Glioma cell - - ↓Cell proliferation;

↑Apoptosis

↓AKT/STAT3 (27) (55, 57)

Multiple myeloma Multiple myeloma

cells

- ↑Cell

proliferation;↑ILF3/

AKT

↓Cell proliferation;

↑Apoptosis; ↓ILF3/

AKT

↑↓ILF3/AKT (45) (57, 58)

Colorectal cancer Colorectal cancer

cells

Interaction with

circMYH9

- ↓Cell proliferation ↓P53; ↓Serine

metabolism and ROS

(52) (59)

Colorectal cancer Colorectal cancer

cells

- - ↓Cell proliferation;

↑Apoptosis; ↑Cell

cycle arrest

↓ERK/MAPK (46) (63)

Hepatocellular

carcinoma

Hepatocellular

carcinoma cells

Decreased by

knockdown of

PCAT6 mediated

by miR-326

- ↓Cell proliferation

and invasion

- (60) (64)

Adenocarcinoma

of lung

Adenocarcinoma of

lung cells

Up-regulated by

INC00963

- ↓Cell proliferation,

invasion and EMT

↓ZEB1 (36) (65)

Nasopharynx

cancer

Nasopharynx

cancer cells

Decreased by

knockdown of

SOX2-OT

mediated by miR-

146b-5

↓Cell proliferation,

↑Cell proliferation

- - (61) (66)

Colorectal cancer Colorectal cancer

cells

Stabilized by

CRNDE mediated

by inhibiting

ubiquitination

through TRIM21

↑Cell proliferation and

migration; ↑KRAS/

MAPK

↓Cell proliferation

and migration;

↓KRAS/MAPK

↑↓KRAS/MAPK (62) (63)

Adenocarcinoma

of the lung

Lung

adenocarcinoma

cells; embryonic

kidney cells

- - ↓Cell stemness,

proliferation,

migration and

tumor growth

↓miR-106b-5p;

↑SFRP2; ↓Wnt-β/

catenin

(47) (72)

Non-small cell

lung cancer

Non-small cell lung

cancer cells

- - ↓Cell proliferation

and migration; ↓

MEG3 m6a;

↑MEG3 mRNA

↓miR-21-5p; ↑PTEN;

↓PI3K/AKT

(67) (73)

Pancreatic cancer Pancreatic cancer

cells

Decreased by

knockdown of Fyn

↓Bcl-x(s); ↓apoptosis ↑Bcl-x(s) and Bcl-x

(s)/Bcl-x(L);

↑apoptosis

↓↑Bcl-x(s) (68) (74)

Esophagus cancer Esophagus cancer

cells

- - ↓Adipogenesis;

↓Cell proliferation,

migration and

invasion

↓ACLY and ACC1 (51) (75)

Esophagus cancer Esophagus cancer

cells

- - ↓Cell proliferation ↓miR-17, miR-18a,

miR-20a, miR-93 and

miR-106b

(69) (76–78)

Esophagus cancer Esophagus cancer

cells

Interaction with

p53-G245S

- ↑Secretion of

exosomes; ↑Cell

proliferation

↓AGAP1 (70) (59)

(Continued)
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subsequently modulates cellular metabolic reprogramming (29,

88). In an acute myocardial infarction model, shikonin

inhibited HNRNPA2B1 activity and decreased PKM2

expression, thereby improving post-infarction inflammation,

apoptosis, and fibrosis (89). These studies suggest that

HNRNPA2B1, as an RBP, may regulate PASMC metabolic

reprogramming by modulating PKM2 mRNA expression.

3.2 HNRNPA2B1 regulates EC function
through exosome sorting

HNRNPA2B1 promotes cell proliferation and inhibits

apoptosis. While tumor cells have been the main focus of studies

on HNRNPA2B1, fewer studies have focused on its effects on

SMCs, and even less evidence exists regarding its role in ECs. No

TABLE 1 Continued

Disease Cells/Tissues Upstream
regulation

Role of gene
overexpression

Role of gene
knockout/
knockdown

Mechanisms Literatures Literatures
related to

PH

- skeletal muscle cells Up-regulated by

miR-206 and

lncRNA-lncA2B1

- ↓Cell proliferation ↓miR-206 and MyHC (71) (79)

Non-small cell

lung cancer

Non-small cell lung

cancer cells

- - ↓Cell proliferation;

↑Apoptosis

↓ERK/p53/HDM2 and

CKD2; ↑P21 and P27

(80) (59, 63)

ovarian cancer ovarian cancer cells Decreased by

knockdown of

miR-30c-5p

- ↓Cell proliferation,

migration and

invasion

↓CDK19 (81) (81)

Non-small cell

lung cancer

Non-small cell lung

cancer cells

- - ↓Cell proliferation;

↑Apoptosis

c-Myc–LINC01234–

HNRNPA2B1–miR-

106b-5p–CRY2–c-Myc

(82) (83)

FIGURE 1

Potential mechanism of HNRNPA2B1 promotes phenotypic switching of PASMCs. KRAS, kirsten rat sarcoma viral oncogene homolog; MAPK,

mitogen-activated protein kinase; ERK, extracellular regulated protein kinases; STAT3, signal transducer and activator of transcription; NUF2,

Ndc80 kinetochore complex component; PI3K, Phosphoinositide 3-kinase; AKT, also known as protein kinase B or PKB; mTOR, Mammalian target

of rapamycin; CyclinD1, G1/S specific cyclin D1; PCNA, Proliferating cell nuclear antigen; Bcl-2, B-cell lymphoma-2; ILF3, Interleukin enhancer

binding factor 3; PTEN, Phosphatase and tensin homolog; MEG3, Maternally Expressed 3; PHGDH, Phosphoglycerate dehydrogenase; SG

metabolism, serine/glycine metabolism; SFRP2, secreted frizzled related protein 2; WNT, Wingless/Integrated.
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significant difference in HNRNPA2B1 expression has been

observed in PAECs from PAH mouse models (6), however, it is

speculated to regulate miRNA sorting into exosomes, thereby

modulating EC function through intercellular signaling. Notably,

exosome therapy has shown promising results in experimental

PAH (90). SMCs can promote the release of specific miRNA-

loaded exosomes under hypoxia or TGFβ1 stimulation, which

regulate EC metabolism through intercellular crosstalk (83, 91).

Macrophage immune regulation plays an important role in PAH,

and exosome therapy using mesenchymal stem cells has been

shown to be effective in PAH animal models (90). miR-503 plays

a critical role in PAEC proliferation and metabolism, not only

inhibiting their proliferation but also exerting paracrine effects

on PASMCs to suppress their proliferation and migration (12).

In human umbilical vein endothelial cells (HUVECs),

HNRNPA2B1 negatively regulates miR-503 exosomal sorting by

inhibiting its secretion. However, in the presence of beraprost

sodium, HNRNPA2B1 translocates to the nucleus and promotes

miR-503 exosomal secretion, thereby exerting anti-tumor effects

(11). In PAH, miR-503 overexpression inhibits ERK1/2

phosphorylation via targeting FGF2 and FGFR1, subsequently

suppressing cell proliferation (12). Platelet-derived growth factor

(PDGF) induces miR-185 expression in SMCs, and HNRNPA2B1

binds to the “GGAG” exosomal motif within miR-185. Through

exosome transfer to ECs, this complex targets CXC motif

chemokine ligand 12 (CXCL12), inducing angiogenesis.

Importantly, HNRNPA2B1 inhibition significantly reduces

neovascularization (49). These findings suggest that exosomes

carrying functional miRNAs mediate crosstalk between ECs

and SMCs.

HNRNPA2B1 can also promote the exosomal sorting of miR-

122-5p (92, 93), miR-934, and lncRNA H19 (94). miR-122-5p is

upregulated in hypoxia-induced pulmonary microvascular

endothelial cells (PMECs), as well as in the lung tissues of SuHx

rats, MCT rats, and IPAH patients. It may contribute to the

pathogenesis of IPAH through the regulation of

dihydrolipoamide S-acetyltransferase (DLAT) and regulating

synaptic membrane exocytosis 1 (RIMS1), although the exact

mechanisms require further investigation (95). Additionally, miR-

122-5p regulates fatty acid utilization through 1-acylglycerol-

3-phosphate O-acyltransferase 1 (AGPAT1) and promotes

vascular development in ECs (96). miR-934 is transferred from

tumor cells to macrophages via exosomal sorting, where it

promotes macrophage polarization through the PTEN/PI3K/AKT

signaling pathway. LncRNA H19 promotes the proliferation and

migration of colorectal cancer cells through the Raf/ERK

signaling pathway (97). Notably, H19 expression is significantly

elevated in the pulmonary artery endothelium, and its deficiency

improves pulmonary vascular remodeling. These effects are

linked to the inhibition of EndMT via the TGF-β signaling

pathway (98). Previous studies have established the role of these

signaling pathways in EndMT.

In summary, exosomes released by SMCs, mesenchymal stem

cells, and other cell types under pathological conditions can act

on ECs through intercellular communication, with HNRNPA2B1

functioning as a key regulator of miRNA-loaded exosome

sorting. Therefore, HNRNPA2B1 may regulate EC function by

modulating the secretion of specific miRNAs via exosomal

sorting mechanisms. The mechanisms through which

HNRNPA2B1 regulates endothelial cell function via exosome-

mediated signaling were illustrated in Figure 2.

Inflammation plays a crucial role in the onset and progression

of cardiovascular diseases (99, 100), including PAH (101). In lung

biopsies of PAH patients, multiple inflammatory cell types—

macrophages, mast cells, T lymphocytes, B lymphocytes,

dendritic cells, and neutrophils—have been detected around the

remodeled pulmonary vascular system (37, 102). Macrophages

are pivotal in the inflammatory processes underlying pulmonary

hypertension. Consequently, targeting inflammation and

immunity has become a major therapeutic strategy for PAH

management. However, the exact role and mechanism of anti-

inflammatory therapy in PAH remain unclear. Reports indicate

that during inflammation and hypoxia, circulating monocytes are

recruited to the lungs, replace resident stromal macrophages, and

contribute to pulmonary vascular remodeling (103). These

recruited cells differentiate in response to microenvironmental

changes during lung injury or hypoxic exposure. Early in

hypoxia, macrophages accumulate around pulmonary vasculature,

exhibit a hypoxic response, and release pro-inflammatory

cytokines. Subsequently, perivascular macrophage accumulation

decreases, and the cells adopt a tissue-repair and anti-

inflammatory phenotype (104). Polarized macrophages drive

PAEC dysfunction, PASMC proliferation, and activation of pro-

inflammatory fibroblast phenotypes by coordinating pro- and

anti-inflammatory mediators (105). Studies demonstrate that

HNRNPA2B1 promotes macrophage polarization through

multiple mechanisms. Under IL-4/IL-13 stimulation, lincRNA-

MIR99AHG is upregulated in macrophages, translocates to the

nucleus, and binds to HNRNPA2B1, thereby promoting

polarization (106). In models of intestinal inflammation and

obesity, HNRNPA2B1 exacerbates inflammation by enhancing

mRNA stability of pro-inflammatory genes (e.g., TNF-α, IL-6,

IL-1β), positioning it as a therapeutic target (25). Beyond direct

macrophage regulation, HNRNPA2B1 modulates macrophage

function by enhancing exosome secretion from other cell types.

For example, in breast cancer, HNRNPA2B1 mediates exosomal

sorting of miR-184-3p; upon macrophage uptake, this miRNA

targets EGR1 to inhibit JNK signaling and induce polarization

(107). In glioma, HNRNPA2B1 packages circNEIL3 into

exosomes, which are delivered to tumor-associated macrophages

to promote progression (108). Furthermore, neddylation-

mediated degradation of HNRNPA2B1 downregulates

mitochondrial trifunctional enzyme subunit α (MTPα), inhibiting

NF-κB activation and inflammatory pathways (109).

In summary, the role of HNRNPA2B1 in inflammation

remains unclear; however, as an RNA-binding protein (RBP), it

regulates the expression of multiple RNAs and participates in

exosome-mediated sorting processes. Given that inflammation is

a complex process, a delicate balance between pro- and anti-

inflammatory mechanisms exists under normal physiological

conditions. However, when this balance is disrupted, pathological

changes in the pulmonary vasculature occur. Therefore, the
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mechanisms of HNRNPA2B1 in inflammation may involve its

regulation of both pro- and anti-inflammatory signaling

pathways. In conclusion, HNRNPA2B1 may regulate the

initiation and progression of pulmonary hypertension through

inflammatory signaling pathways. Figure 3 illustrates how

HNRNPA2B1 contributes to pulmonary hypertension via

macrophage-mediated regulation of inflammation.

3.3 Potential role of HNRNPA2B1 in orther
types of cells

In addition to the aforementioned cell types, fibroblasts and

platelets also play roles in the onset and progression of PAH.

Upon activation, fibroblasts exhibit excessive proliferation and

reduced apoptosis, accompanied by upregulated inflammatory

cascades and metabolic reprogramming. These processes may

drive the migration of myofibroblasts to the tunica media or

intima, contributing to vascular wall thickening (110). Fibroblasts

further disrupt the balance between extracellular matrix (ECM)

protein production and degradation, thereby promoting ECM

remodeling. Activated platelets, on the other hand, form white

thrombi at sites of vascular intimal injury, exacerbating

thrombosis and PAH progression (111). Additionally, they

secrete vasoconstrictors, growth factors, and inflammatory

mediators to further promote PAH development (112). However,

the relationship between HNRNPA2B1 and fibroblasts or

platelets remains poorly understood. Bioinformatics analyses have

shown no significant difference in HNRNPA2B1 expression

between PAH tissues and controls (113). Thus, further studies

are required to investigate whether HNRNPA2B1 contributes to

PAH pathogenesis by activating fibroblasts and platelets.

3.4 Therapeutic prospects of targeting
HNRNPA2B1 in PAH

HNRNPA2B1 can serve as a potential therapeutic target for

various diseases due to its biological functions. Several

compounds that target HNRNPA2B1 exert therapeutic effects

FIGURE 2

Potential mechanism of HNRNPA2B1 regulating exosome secretion. AGPAT1, 1-acylglycerol-3-phosphate O-acyltransferase 1; CXCL12, CXC motif

ligand 12; CXCR4, CXC motif chemokine receptor 4; PTEN, phosphatase and tensin homolog; AKT, also known as protein kinase B or PKB; PI3K,

phosphoinositide 3-kinase; ERK1/2, Extracellular regulated protein kinases 1/2; DLAT, dihydrolipoamide S-Acetyltransferase; RIMS1, regulating

synaptic membrane exocytosis 1; PAH, pulmonary artery hypertension; Endmt, endothelial to mesenchymal transition; FGF2, fibroblast growth

factor 2; FGFR1, fibroblast growth factor receptor 1; PAEC, pulmonary artery endothelial cell; PASMC, pulmonary arterial smooth muscle cell.
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through pathways implicated in the development of PH. Table 2

shows the therapeutic prospect of Targeting HNRNPA2B1 in

diseases. The broad-spectrum antiviral drug PAC5, for example,

binds to a pocket near the Asp49 RNA recognition motif

(RRM1) of HNRNPA2B1, inducing its translocation into the

cytoplasm and activating the TBK1-IRF3 pathway to exert

antiviral effects (114). In the tumor microenvironment, the

natural compound Sanggenol-O and its synthetic derivative MO-

460 inhibit hypoxia-inducible factor 1 alpha (HIF-1α) expression

via HNRNPA2B1, thereby triggering apoptosis (115),

highlighting their potential as anticancer agents.

Animal experiments demonstrate that HNRNPA2B1

interference reverses pulmonary hypertension in MCT-induced

rat models (6). For instance, overexpression of the anti-aging

enzyme SIRT6 inhibits hypoxia-induced proliferation of human

pulmonary artery smooth muscle cells (HPASMCs) by activating

the HIF-1α/PDK4 signaling pathway (116). SIRT6 also forms

complexes with HNRNPA2B1, DGCR8, and Drosha to regulate

FIGURE 3

HNRNPA2B1 promotes pulmonary hypertension via macrophage polarization. PAH, pulmonary artery hypertension; IL-13, interleukin 13; IL-4,

interleukin 4; NEDD8, neural precursor cell expressed developmentally down- regulated 8; MTPα, mitochondrial trifunctional protein α; CPT1,

carnitine palmitoyltransferase 1A; NF-κB, nuclear factor kappa B subunit; TNF-α, tumor necrosis factor-α; IL-6, interleukin 6; IL-1β, interleukin 1β;

LPS, lipopolysaccharides; HFD, high-fat-diet; DSS, dextran sodium sulfate.

TABLE 2 Therapeutic prospects of targeting HNRNPA2B1 in diseases.

Medicine siRNA Target Mechanisms Diseases Literatures Literature related to
PAH

PAC5 HNRNPA2B1 Transfer it into the cytoplasm,

↑TBK1-IRF3

HBV, COVID-

19

(114) -

Sanggenol-O,MO-

460

- HNRNPA2B1 ↓HIF-1α, ↑apoptosis. Cancer (115) (122)

Tripterygium

wilfordii

- HNRNPA2B1 ↓PI3K-AKT, ↓cell proliferation Cancer (118) (119)

Apigenin - HNRNPA2B1 ↓proliferation of PASMCs, ↑apoptosis PAH (121) (120)

- HNRNPA2B1 PTEN\AKT

\mTOR

↓proliferation, ↑apoptosis CAD (48) -

- HNRNPA2B1 - ↓cell proliferation, ↑apoptosis PAH (6) -
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macrophage pyroptosis and suppress inflammation under high

glucose conditions (117). Additionally, Tripterygium wilfordii has

emerged as a potential therapeutic agent for PAH (118). Studies

indicate that it inhibits tumor cell proliferation by destabilizing

HNRNPA2B1 mRNA and suppressing the PI3K-AKT pathway

(119). The natural flavonoid apigenin, which inhibits PASMC

proliferation and induces apoptosis, shows promise as a

preventive or therapeutic option for PAH (120). Apigenin binds

to the C-terminal of HNRNPA2B1, preventing its dimerization

and potentially modulating its role in apoptosis (121). These

findings collectively suggest HNRNPA2B1 as a promising

therapeutic target for PAH, though further experimental

validation is required.

4 Summary and prospect

This review article highlights the potential mechanisms of

HNRNPA2B1 in the pathogenesis of PAH. Figure 4 illustrates

how HNRNPA2B1 may influence pulmonary hypertension by

regulating PASMCs, PAECs, and macrophages. To date, only one

study has demonstrated the role of HNRNPA2B1 in MCT-

induced PH, though the specific mechanisms remain unexplored.

Numerous studies suggest that HNRNPA2B1 is involved in cell

proliferation, apoptosis, and PASMC metabolism (Figure 1);

however, its exact mechanism of action in PASMCs is still

unclear. The pathophysiology of PAH is complex, and the MCT-

induced PH model fails to fully replicate the clinical features

observed in PAH patients. Whether the proposed mechanisms

can be generalized to other experimental models remains

uncertain. Currently, no drugs targeting HNRNPA2B1 for PAH

treatment exist. While gene knockdown models show promise in

animals, their translational relevance to humans has yet to be

established, underscoring the need for further research.

Additionally, the regulatory role of HNRNPA2B1 in EC

function is poorly characterized. Although studies report no

significant difference in HNRNPA2B1 expression in PAECs from

PAH patients, it may still modulate exosome-mediated miRNA

sorting mechanisms in ECs (Figure 2). Research on

HNRNPA2B1-PAEC interactions in PAH remains in its

early stages.

Structurally, the A2 and B1 isoforms of HNRNPA2B1 differ by

only a 12-amino acid sequence, yet they exhibit distinct RNA-

binding preferences. The ratio of these isoforms may vary across

tissues and pathological stages, necessitating deeper functional

characterization of this molecule (Figure 3).

Finally, HNRNPA2B1 regulates the Warburg effect and

macrophage polarization—processes implicated in PAH

progression. Nevertheless, the discussion of the relationship

between HNRNPA2B1 and PAH is speculative, and there is

currently no direct evidence to establish a connection between

them. Therefore, further investigations are required to delineate

its role in PAH mechanisms.

In summary, HNRNPA2B1 acts as an RBP through m6A-

dependent mechanisms and regulates cell proliferation, apoptosis,

metabolism, the immune microenvironment, and angiogenesis,

all of which are important for the development of PAH. It is

involved in the entire process, from mRNA generation to

FIGURE 4

The potential mechanisms of action of HNRNPA2B1 in different cell types of pulmonary hypertension.
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maturation, as well as in miRNA exosome sorting. However, the

specific mechanisms need further confirmation. Targeted therapy

involving HNRNPA2B1 is promising, but still in its early stages.

Efforts to design and optimize treatment strategies targeting

HNRNPA2B1 should continue.
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