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Mitochondrial dysfunction as a
central hub linking Na+/Ca2+

homeostasis and inflammation in
ischemic arrhythmias:
therapeutic implications
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Guohui Chen, Pei Wei, Fei Lin* and Guoan Zhao*

Department of Cardiology, Life Science Center, The First Affiliated Hospital of Xinxiang Medical

University, Weihui, Henan, China

Ventricular arrhythmia is the primary cause of sudden cardiac death in patients

with myocardial infarction (MI). Myocardial inflammation and Na+/Ca2+

imbalance are the main triggering factors for life-threatening tachyarrhythmias

after MI, which induce ion channel dysfunction, intracellular environment

imbalance, tissue damage, and other alterations, subsequently resulting in

modifications in cardiac conduction velocity and pathways. Subsequent

adverse fibrotic remodeling provides a substrate for ventricular

tachyarrhythmia (VT). Mitochondria, as the intersection site of these

pathophysiological changes and the center of Na+/Ca2+ homeostasis and

inflammatory crosstalk, may be key sites for the occurrence and development

of ischemic arrhythmia. This review briefly outlines the roles of inflammation,

Na+/Ca2+ homeostasis, and mitochondria in the damage, repair, and structural

remodeling of infarcted hearts, in which these three are interconnected to

provide a large number of substrates for VT.
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1 Introduction

Ventricular arrhythmia (VA) is the main cause of sudden cardiac death (SCD) in

patients with myocardial infarction (MI) (1). SCD accounts for approximately 50% of

all cardiovascular deaths and is the primary manifestation of heart disease (2).

Approximately 250,000–400,000 people die from SCD annually in the United States. In

North America and Europe, the annual incidence of SCD in the general population

ranges from 50 to 100 deaths per 100,000 individuals. In China, the incidence of SCD

is approximately 41.84/100,000, which has significantly increased. While primary and

secondary prevention has improved over recent years and the mortality rate from

coronary heart disease has substantially decreased, the decline in SCD rate has been

much smaller (3, 4). In addition to congenital cardiac structural abnormalities,

cardiomyopathy, and primary cardiac ion channel diseases, slowing of conduction and

increased dispersion of action potential repolarization caused by ischemia play

important roles in SCD occurrence (5).
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Myocardial inflammation and Na+/Ca2+ imbalance are the

main triggering factors of life-threatening tachyarrhythmias after

MI (6, 7). In the early stages, the aggregation of inflammatory

factors mediates myocardial cell damage, leading to a change in

ion channel function and a direct action on arrhythmia. In the

subsequent healing phase of MI, inflammatory cells not only

activate the repair of myofibroblasts and vascular cells but may

also cause adverse fibrotic remodeling of the living segment.

Cardiac hemodynamic and structural changes can cause left

ventricular dilatation and dysfunction, providing a substrate for

the ventricular tachyarrhythmia (VT) reentry circuit (8). With

these structural modifications, alterations in intercellular coupling

and ion channels further augment the susceptibility to VA.

Therefore, the inhibition of myocardial inflammation,

electrophysiological changes in the Na+/Ca2+ imbalance, and

subsequent structural changes can significantly prevent the

occurrence of VA and reduce SCD mortality in patients with MI.

Mitochondria are the main organelles of cardiomyocytes

and are primarily responsible for adenosine triphosphate

(ATP) production, metabolic regulation, oxidative stress, and

inflammatory responses (9). In recent record, abnormal

automaticity, triggered activity, and reentry are the three main

mechanisms underlying cardiac arrhythmia (10). Mitochondrial

dysfunction is closely associated with cardiac arrhythmia. For

instance, triggered activity is caused by diastolic sarcoplasmic

reticulum (SR) Ca2+ release. The mitochondrial Ca2+ content

affects SR Ca2+ release by activating the ryanodine receptor 2

(RyR2) channels (11). Mitochondrial dysfunction causes

abnormal ion channel function, Na+/Ca2+ imbalance, increased

reactive oxygen species (ROS) production, changes in

mitochondrial permeability, and activation of inflammatory

factors, which in turn cause apoptosis and lead to fibrosis

(12, 13). Fibrosis is one of the substrates for reentry (14). This

review briefly outlines the roles of inflammation, Na+/Ca2+

homeostasis, and mitochondria in the damage, repair, and structural

remodeling of the infarcted heart; describes how these three are

interconnected in this dynamic process to provide a large number of

substrates for VA; and discusses the difficulties and challenges faced

by current related research and clinical practice.

2 Mechanism of ischemic arrhythmias

Electrophysiological changes in the ischemic region after acute

MI are rapid, ranging from normal electrical activation to severe

abnormal electrical activation, and repolarization occurs within

1 min. In the early stages of MI, the action potential duration

(APD) is shortened, the amplitude is decreased, and the

ascending velocity of the ascending branch is slowed, followed by

a significant post-repolarization refractory period. The excitation

threshold decreases at 1–3 min after coronary artery occlusion

and then increases rapidly. At approximately 5 min after

coronary artery occlusion, the threshold is 10 times higher

than that before coronary artery occlusion, and excitability

progressively increases as the tissue transitions from the normal

area to the ischemic area. The absolute and relative refractory

periods of the ischemic myocardium are shortened by 40–50 ms.

At approximately 15 min after coronary occlusion, the cells

completely lose their ability to respond, and their excitability

gradually disappears. Coronary artery occlusion occurs at

20 min to 2 h after the occurrence of conduction disorders,

along with prolonged mild simple conduction time and severe

complete atrioventricular block, resulting in arrhythmia.

Electrocardiography reveals ST segment elevation, delayed

activation, QRS fragmentation, t-waves and QRS alternans, and

conduction block (15).

2.1 Altered functions of multiple ion
channels

Changes in ion channel function play an important role in the

electrophysiological changes that occur during arrhythmias. The

dysfunction of various cardiac ion channels, such as Na+, K+,

and Ca2+ channels, increases the susceptibility to arrhythmia

after MI (16, 17). K+ starts to change during the early stages of

acute myocardial ischemia. Long-term ischemia leads to an

increase in extracellular K+ concentration, which is the substrate

and trigger for cardiac conduction velocity (CV) changes and

arrhythmia (18). An increase in extracellular K+ concentration

changes the resting membrane potential of cardiomyocytes,

reduce the activity of voltage-gated Na+ channels, leads to a

decrease in cell excitability and CV, and promotes unidirectional

blockage and reentry (19, 20). CV and APD are important

factors in the occurrence of arrhythmias, and changes in CV

play important roles in the generation and maintenance of

arrhythmias. Voltage-optical mapping studies of isolated hearts

have shown that the induction of ventricular fibrillation (VF) at

high activation frequencies is associated with decreased CV (21).

It has also been suggested that arrhythmias may result from local

CV heterogeneity (22). Many factors affect the CV, including

coupling with non-muscle cells (23, 24), extracellular gaps, gap

links, and extracellular ion concentrations (25–27). Among these,

the upstroke velocity of the action potential is the key factor that

affects CV, and the upstroke velocity mainly depends on the

recovery of the Na+ channel. Therefore, the CV is closely related

to Na+ channels (28).

The major subtype of voltage-gated Na+ channels, Nav1.5,

encoded by the SCN5A gene, is mainly expressed in the

intercalated discs of the heart. It is the key channel for

maintaining a normal CV and determining the excitability and

conductivity of the heart. It also interacts with cAMP-dependent

protein kinase A (PKA) and calmodulin-dependent kinase II

(CaMKII). It can bind to various proteins such as CaMKII and

membrane-associated guanylate kinase (MAGUK) to form

macromolecular compounds that regulate gene transcription,

protein synthesis, trafficking, membrane incorporation, channel

function, and ultimately degradation (29, 30). Nav1.5 remodeling

is a key basis for the occurrence of VA reentry into the border

zone of MI. Recent studies have shown that the autoimmune

response against Nav1.5 can cause conduction defects (31) and

complete inactivation of Nav1.5 due to a molecular dynamics
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disorder, can cause long QT syndrome type 3 (LQT3).

Non-equilibrium gating leading to decreased availability of

the Nav1.5 closed conformation can cause Brugada syndrome

(BrS). Moreover, Nav1.5, dysfunction can lead to VA in

pathophysiological conditions of heart disease, such as heart

failure, dilated cardiomyopathy, and diabetic heart disease

(32–34). Previous studies have determined that SCN5A mutations

can induce a decrease in the amount and function of Nav1.5,

using genetic, electrophysiological, and molecular methods,

leading to a series of VA such as LQT3, BrS, torsades de pointes,

and idiopathic ventricular fibrillation. This process can be

affected by time, temperature, environmental factors, and genetic

factors (35, 36).

The heart beats rhythmically to drive the blood through the

body. Cardiac action potentials are generated by the

simultaneous opening and closing of many transmembrane ion

channels. Dynamic changes in Ca2+ concentration play a key role

in this process (37). RyR2 is the main Ca2+ release channel

during systole and sarcoendoplasmic reticulum Ca2+-ATPase

(SERCA) is the main Ca2+ uptake channel during systole in the

SR, which is involved in excitation-contraction coupling. The

amount of Ca2+ released by the SR through RyR2 largely

determines the Ca2+ transient state (38). Ca2+ flows into the cell

and is released from the SR via RyR2 to trigger the contractile

myocardium, after which Ca2+ is mostly taken up or loaded into

the SR via SERCA to trigger the diastolic myocardium. Genetic

and acquired defects in RyR2 or SERCA have been suggested to

be associated with a range of heart diseases, including life-

threatening arrhythmias and heart failure (39) (40). These defects

typically manifest as an impaired ability of RyR2 to remain

closed during the diastolic phase of the cardiac cycle, resulting in

enhanced diastolic Ca2+ release (DCR, manifested as Ca2+ sparks

and Ca2+ waves) (41). The diastolic release of Ca2+ from the SR

leads to prolonged APD and increased arrhythmic risk (10).

Increasing the RyR2 activity in the ventricle and alleviating its

inhibitory effect on RyR2-mediated Ca2+ release have been

reported to independently cause catecholaminergic polymorphic

VT (42). Furthermore, Xie et al. discovered that type 2a SERCA

(SERCA2a) knockdown mice had a reduced arrhythmic risk of

ischemic cardiomyopathy due to decreased SR diastolic Ca2+ leak

(40). Therefore, intracellular Ca2+ homeostasis imbalance is a key

factor in ischemic arrhythmia (43).

CaMKII is a multifunctional serine/threonine protein kinase

widely expressed in vivo. Its activity is mainly modified and

regulated by changes in intracellular Ca2+ content, and regulates

intracellular Ca2+ dynamics, contractility, metabolism, and gene

expression by phosphorylating various downstream targets (44).

CaMKII has been identified as an important modulator of

excitation-contraction and excitation-transcription coupling, a

key determinant of the response to pathological cardiac

remodeling, and is activated upon MI. CaMKII exerts

proarrhythmic signaling through a large number of ion channels

and SR-related proteins. CaMKII is known to activate L-type

calcium channels, various K+ channels, Nav1.5 and Nav1.8 (45,

46). Stimulation of these channels results in early and delayed

depolarization and spatially dispersed increases in repolarization,

which promote arrhythmias, such as atrial fibrillation,

ventricular tachycardia, and VF. CaMKII can also phosphorylate

RyR2 and promote Ca2+ release from the SR into the cytoplasm

(47). This SR Ca2+ leakage can activate proarrhythmic Ca2

+-sensitive conductance. Overexpression of CaMKII has also

been shown to induce structural and electrical remodeling of the

heart, leading to impaired contractility and an increased risk of

SCD. Conversely, inhibition of CaMKII helps maintain

intracellular Ca2+ homeostasis after pressure overload and

ischemic stress to prevent adverse electrical remodeling after MI

(48, 49). Previous studies have demonstrated that CaMKII co-

immunoprecipitates with Nav1.5, and experiments have shown a

stable physical interaction between phosphorylated CaMKIIδC

and L1 of Nav1.5. Phosphorylation of CaMKII enhances the

inhibition of the late depolarization current of Nav1.5, leading to

the prolongation of the action potential, further disrupting Ca2+

homeostasis, and providing additional substrates for arrhythmia

formation (50).

2.2 Inflammation

Inflammation is thought to trigger arrhythmia following MI. In

an analysis of 478,524 individuals from the UK Biobank cohort,

C-reactive protein (CRP) levels were found to be significantly

and positively associated with the risk of developing atrial

fibrillation. The heart rate for atrial fibrillation events increased

significantly with increasing neutrophil count, monocyte count,

and neutrophil-to-lymphocyte ratio (NLR), whereas the levels of

systemic infection markers had an even stronger relationship

with VA risk than the levels of systemic infection markers with

atrial fibrillation risk. Restricted cubic spline analysis of the fully

adjusted model showed that the risk of developing VA increased

monotonically with increasing CRP levels and neutrophil counts;

a similar association was observed between monocyte count,

NLR, and VA occurrence (51). It adds precipitants and substrates

to the VA in both the early acute injury phase and the

subsequent chronic repair phase.

Repair of the infarcted heart depends on the timely suppression

of the inflammatory response and the resolution of inflammatory

infiltration after infarction. Damage-associated molecular pattern

proteins released by necrotic cells after early MI trigger local

and systemic inflammatory responses. Various inflammatory

factors directly induce arrhythmias and recruit large numbers of

neutrophils and monocytes. Under the action of inflammatory

factors, recruited white blood cells change the function of

ion channels and cause membrane potential changes (52).

Simultaneously, many white blood cells infiltrate and exchange

ions, nucleotides, metabolites, and electrical signals with the

cardiomyocytes via connexins. The quantitative change and

redistribution of connexins leads to gap junction remodeling,

which is an important factor in inducing arrhythmia (53).

Macrophages couple with cardiomyocytes through gap junctions

containing connexin 43(Cx43), undergo synchronous depolarization,

and participate in normal and abnormal cardiac conduction.

Moreover, computer simulations have shown that an increased
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number of such junctions reduces the action potential upshoot

and overshoot, leading to earlier repolarization and a shorter

refractory period (54).

In addition, fever, increased heart rate, and increased oxygen

consumption caused by a systemic inflammatory response can

further promote arrhythmia and expansion of the lesion area.

Subsequently, white blood cells remove dead cells and matrix

debris through phagocytosis, thereby providing an environment

for subsequent repair of the infarct area. An appropriate early

inflammatory response can reduce the infarct area, promote

scar formation, maintain the stability of the environment in the

peri-infarct area, and contribute to recovery of the ischemic

myocardium. Excessive and prolonged inflammatory responses

can lead to apoptosis of myocardial cells, hypertrophy, and

fibrosis of myocardial tissue in the non-infarcted area, leading

to adverse remodeling of ischemia-related tissues and myocardial

electrophysiological dysfunction. Monocyte and macrophage

subsets secrete cytokines and growth factors that coordinate the

repair, recruitment, and activation of mesenchymal cells, such as

cardiac fibroblasts and vascular endothelial cells (55). Activated

mesenchymal cells secrete a large number of extracellular matrix

proteins (56), promote the formation of myocardial fibrosis scars,

and thus provide a matrix for reentry, which is closely related to

arrhythmia (57).

2.3 Increased fibrosis

The heart adaptively responds to pathological injury,

leading to cardiac remodeling characterized by cardiomyocyte

hypertrophy and fibrosis. This remodeling includes chronic

remodeling under volume/pressure load and acute repair under

ischemia-hypoxia injury. During MI, phagocytosis of necrotic

cells and tissues activates anti-inflammatory pathways

that inhibit cytokine and chemokine signaling (58). Activation

of the renin-angiotensin-aldosterone system and release of

transforming growth factor-β induce the transformation of

fibroblasts into myofibroblasts, causing ventricular fibrosis,

similar to the macrophages mentioned above. When the

number of myofibrocytes is considerable, nonmyocardial cells

in the heart become obstacles to the propagation of action

potentials. The differentiation state of fibroblasts has been

previously shown to be associated with a change in the

expression profile of ion channels, and the transition from

fibroblasts to myofibroblasts can increase Nav1.5; furthermore,

they display rapid inward voltage-gated sodium currents that

exhibit biophysical properties similar to the sodium currents

found in cardiomyocytes (59). in vitro-cultured fibroblasts

can electrically couple with cardiomyocytes to participate in

excitation conduction through Cx43, and these intercellular

connections allow myofibroblasts to influence the electrical

activity of cardiomyocytes (60). Previous studies have generated

mice that specifically express the optogenetic cation channel

ChR2(H134R) in cardiac fibroblasts. After MI, fibroblasts are

highly expressed in the injured area and close to cardiomyocytes

in scar tissue, and light stimulation of the scar tissue can cause

excitation of the whole heart and induce arrhythmia. Cx43 and

other gap junction proteins, which are thought to mediate the

coupling between cardiomyocytes and fibroblasts, are not

required. Gap junctions and ephaptic coupling mediate the

coupling between cardiomyocytes and fibroblasts in a

cooperative but functionally redundant manner; however, this

fibroblast-muscle coupling is not as strong as myofibroblast-

myocyte coupling (61). These results suggest that electrical

coupling between myofibroblasts and cardiomyocytes can

destroy the original electrophysiological activity of the

myocardium, induce electrophysiological abnormalities such as

ectopic automaticity, posterior depolarization, and reentry, and

promote the occurrence and development of arrhythmia.

In addition to directly affecting the electrical activity by

coupling with cardiomyocytes, fibroblasts, which are the main

cells producing extracellular matrix, are activated in large

numbers after MI, promoting the deposition of extracellular

matrix proteins (62). Various extracellular matrix proteins bind

to cytokines, growth factors, and cell surface receptors to regulate

the cell phenotype, thereby indirectly affecting arrhythmia.

Structural remodeling of atrial fibrillation has been reported

to involve the accumulation of cross-linked collagen in atrial

fibroblasts. In a previous report, calcitonin receptor-knockout

mice exhibited atrial fibrosis and increased susceptibility to

atrial fibrillation due to collagen accumulation (63). A large

amount of collagen and extracellular matrix can mechanically

separate cardiomyocytes, destroy the continuity of myocardial

bundles, interfere with the gap junction of cardiomyocytes,

destroy the electrical coupling between cardiomyocytes, and

cause discontinuous or “zigzag” conduction, leading to slow

CV, unidirectional conduction block, and prolongation of

the conduction path between cardiomyocytes, thus inducing

arrhythmia. Myocardial fibrosis is an essential substrate for

arrhythmias (64).

After MI, three distinct structural regions emerge in the left

ventricle: the infarct, transition boundary, and remote zones (65).

Magnetic resonance imaging shows that a large peri-infarct

transition border zone is the single factor in the inducibility of

monomorphic VT, providing mechanistic support for the

association between peri-infarct size and mortality. Tissue

inhomogeneity in the infarct border may provide a substrate for

underlying reentrant arrhythmias, leading to SCD (66). In a

study of 686 patients with apparent idiopathic nonsustained VA,

left ventricular scars with annular patterns were associated with

malignant arrhythmic events on cardiac magnetic resonance

imaging. All patients with annular scars showed VA with a right

bundle branch block, and multifocal VA was observed in 46% of

patients. The prevalence of multifocal VA is much higher in

patients with annular scars than in those with non-annular scars,

suggesting that the influence of a specific infarct shape on VA

should not be ignored (67). In addition, other studies have

shown that the effect of fibrotic areas <20% and >80% on

arrhythmia is relatively benign and that the arrhythmogenic

effect is usually maximal at 30%–50% of the fibrotic area (64).

Thus, inhibiting the progression of fibrosis without affecting MI

healing may reduce the risk of arrhythmias.
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2.4 Crosstalk among Na+/Ca2+

homeostasis, inflammation, and fibrosis

In most pathological conditions, arrhythmia is often

accompanied by inflammation and structural and electrical

remodeling, with crosstalk. Upon initial ischemic injury,

monocytes and macrophages are recruited and polarized to a

proinflammatory phenotype, secreting inflammatory factors

(such as IL-6, IL-1, and TNF-α), triggering a cytokine cascade.

Inflammation rapidly induces the effect of cytokines on the

expression of ion channels, which directly prolongs the QTc

interval, and changes in these ion channels are negatively

correlated with changes in CRP and IL-1 in patients. Although

these changes are transient, they may significantly increase the

risk of developing life-threatening VA in these patients (68).

In addition, cardiac fibroblasts respond to IL-1 by acquiring a

proinflammatory and matrix-degrading phenotype, delaying

myofibroblast transformation and preventing premature

acquisition of a matrix-synthetic phenotype until the infarct

clears dead cells and matrix debris (69). In addition, some

members of the chemokine family may also affect non-

hematopoietic cells, such as cardiomyocytes, fibroblasts, and

vascular cells, which mediate the transformation of fibroblasts

into myofibroblasts or the recruitment of monocytes and

neutrophils with fibroblast characteristics to promote the

development of fibrosis (70, 71), which increases the axial

resistance of the sarcoplasm. This enhances the coupling

between fibroblasts and cardiomyocytes, both of which reduce

the CV and increase the CV dispersion. As the activation

of pro-inflammatory signals leads to cardiomyocyte death,

mitochondrial membrane permeability transition pores open,

perturb the intracellular Ca2+ balance, and increase ROS,

triggering arrhythmic events. When intracellular Ca2+ increases

in cardiomyocytes, CaMKII phosphorylation increases and

activates IκB kinase, nuclear factor kappa B (NF-κB) is

deinhibited, macrophage infiltration in the ischemic area

increases, fibrosis scars become larger, and cardiac function is

weakened (72). In the absence of endogenous CaMKII inhibitor

1 (CaMK2n1), the increased activation of CaMKIIδ-p38/

JNK-NLRP3 inflammasome pathway leads to aggravated

cardiomyocyte inflammation, aggravated ventricular remodeling

and malignant VA (73). Single-cell sequencing of the infarcted

and non-infarcted regions of ischemic cardiomyopathy revealed

a large amount of leukocyte infiltration in the fibrotic

myocardium, especially of proinflammatory CD4+ T cells (74).

The presence of these inflammatory cells suggests that

myofibroblast apoptosis occurs during the transition from the

proliferative to mature phase of healing in the infarcted area,

which may be regulated by inflammation (75). The increase in

fibrosis can cause partial uncoupling of muscle fibers, a zigzag

path of wave conduction, and slow or blocked conduction,

which eventually leads to the occurrence of arrhythmia (76).

Therefore, ischemic arrhythmia results from the crosstalk

between the ion channel-fibrosis-inflammatory response and

other factors.

3 The role of mitochondrial function as
a central cross-linking point in
ischemic arrhythmia

Mitochondria are widely distributed in cardiomyocytes,

accounting for 30% of the total volume of adult cardiomyocytes

(77). They produce ATP and regulate metabolism, oxidative

stress, and inflammatory responses, which are common

pathological changes in ischemic arrhythmia (9). Mitochondria

also sense intracellular Ca2+ signals, mediate energy production

and cell death (78), and play important roles in Ca2+

homeostasis in cardiomyocytes (79). Under normal conditions,

fatty acids are the preferred energy substrates for ATP

production in the myocardium. Fatty acids undergo β-oxidation

in the mitochondria to produce acetyl-CoA, which enters the

tricarboxylic acid cycle to produce ATP for energy (80).

3.1 Reduced mitochondrial function can
cause mitochondrial Ca2+ overload in
ischemic state

When the body undergoes hypoxia-ischemia, the mitochondrial

metabolism changes from oxidative phosphorylation to glycolysis,

which reduces oxygen consumption and ensures ATP output (81).

This metabolic transition leads to an increase in lactic acid, a

decrease in intracellular pH, and an increase in the concentration

of H+ in both the intercellular space and within the cell (82). H+ is

exchanged with Na+ through the Na+/H+ exchanger, resulting in

an increase in intracellular Na+ concentration. Simultaneously,

owing to the decrease in Na+/ K + -ATPase activity, the

extracellular transport of Na+ is reduced, leading to its

accumulation in cells. In addition, the influx of Na+ ions into cells

through nonselective cation channels activated by membrane

stretching also leads to an increase in intracellular Na+

concentration. This increase in Na+ further activates the sodium-

calcium exchanger (NCX) to operate in a “reverse mode,”

eventually leading to intracellular Ca2+ overload (83) and causing

early afterdepolarization or delayed afterdepolarization. When

multiple depolarization events reach the threshold for sodium

channel activation, a series of tachyarrhythmias can be induced. If

this is extremely insufficient to induce an action potential, it may

exacerbate regional differences in repolarization, leading to

alternating or unidirectional conduction blocks and reentry (84).

When Ca2+ overload occurs, a large amount of Ca2+ enters

mitochondria through the mitochondrial Ca2+ uniporter (MCU)

complex (85). Ultimately, this results in mitochondrial Ca2+ overload.

3.2 Crosstalk between mitochondrial ROS
and Na+/Ca2+ homeostasis

When mitochondrial calcium levels increase, the activity of the

electron transport chain is stimulated, leading to a higher ROS

release. Overproduction of mitochondrial-derived ROS may lead
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to the oxidation of RyR2 and further leakage of endoplasmic

reticulum Ca2+, forming a vicious cycle (86). ROS also increases

CaMKII phosphorylation. In ischemic heart disease, ROS

production is increased in the infarct border region, which

overactivates CaMKII phosphorylation and reduces INa density,

thereby slowing the recovery rate after Nav1.5 inactivation. In

addition, the delay in repolarization and prolongation of the

effective refractory period lead to a decrease in cardiac CV and

even a conduction block (87). Mitochondria are the central hub

for immune system activation, and their dysfunction leads to

many inflammatory diseases. On the one hand, it relies on ROS

to trigger an inflammatory response. Impaired mitochondrial

function leads to activation of the tricarboxylic acid cycle and an

increase in nitric oxide synthase, which eventually causes an

increase in ROS. However, this does not depend on ROS for

triggering inflammatory responses.

3.3 Crosstalk among mitochondrial
permeability transition pore and Na+/Ca2+

homeostasis and mROS

Mitochondrial Ca2+ binds to oxidized cardiolipin and triggers

the release of the membrane gap protein cytochrome c into the

cytoplasm. At the same time, the increase in Ca2+ and ROS

levels can further open the mitochondrial permeability transition

pore, leading to the immediate collapse of the mitochondrial

membrane potential, release of cytochrome c, and activation of

caspase protease, resulting in cardiomyocyte apoptosis (88). In

the process, myocardial cells produce inflammatory factors such

as TNF-α, IL-1β, and IL-6, leading to inflammatory response or

dysfunction when myocardial injury occurs (89).

In recent years, studies have shown that, apart from the above

effects through metabolism, inflammation, and oxidative stress,

mitochondria are directly related to cell membrane Nav1.5 in

structure and function, and this association is different in various

mitochondrial subsets. Subsarcolemmal mitochondria are more

closely related to Nav1.5 than to interfibrillar mitochondria

and perinuclear subdomain mitochondria. This link may be

established through the NCX, and its functional crosstalk

includes sodium currents, Ca2+ dynamics, transcriptomics, and

oxidative stress. Interestingly, the transcriptomics results showed

that the negative correlation between SCN5A and SCL8B1 may

be a compensatory result, indicating that the functions of

the mitochondria and sodium channels are complementary.

However, the mechanism by which Na+ channel expression or

activity affects mitochondrial function or integrity requires

further studied (90).

4 Limitations

Mitochondrial research currently faces several challenges and

limitations in the study of arrhythmias. In different regions of

the heart and even within individual myocardial cells, there is

significant functional heterogeneity in mitochondria. Traditional

batch detection methods (such as western blotting and PCR)

mask this heterogeneity. Single-cell sequencing and spatial

transcriptomics have partially addressed this issue; however, they

have limitations in mitochondria-specific analysis. Most existing

studies focus on the overall mitochondrial function changes in

the entire myocardial cell but neglect the precise spatial

localization of mitochondria within the cells and the interactions

between organelles. Bidirectional communication between the

mitochondria and the T tubules, SR, and endoplasmic reticulum

is accomplished through mitochondria-associated endoplasmic

reticulum membranes, forming a complex structure. Disruption

of this specific spatial relationship not only leads to calcium

regulation imbalance but also causes dysregulation of

multicellular organelles, becoming a triggering factor for

arrhythmia. Nevertheless, the details of this spatially specific

regulatory mechanism have not yet been fully elucidated (91, 92).

In addition, there is real-time coupling between the

cardiomyocyte energy status and ion channel function, and this

metabolic-electrical coupling occurs rapidly and precisely (93).

However, owing to the lack of dynamic detection technology,

there is a lack of research on the simultaneous monitoring of

metabolic changes and electrical activity at the millisecond level.

This has led to a fundamental gap in our understanding of how

metabolic alterations translate into electrical instability, with most

conclusions remaining at the correlation level.

5 Future directions

Despite these difficulties, the potential use of mitochondria in

the treatment of arrhythmias remains promising. The therapeutic

implications of targeting mitochondria are anticipated. For

example, the coenzyme Q10(antioxidants protect mitochondria

and transfer electrons to facilitate energy metabolism) that is

currently widely used in clinical practice has demonstrated the

potential for anti-arrhythmic effects. Studies have shown that it

can reduce the incidence of atrial fibrillation. Supplementation of

mitochondria-targeted antioxidants such as mitoquinone can

reduce mitochondrial membrane damage, maintain Na+/K+-

ATPase activity, and reduce NCX-mediated Ca²+ influx. It is

particularly applicable to arrhythmias related to mitochondrial

oxidative stress (such as ischemia-reperfusion injury and

metabolic cardiomyopathy), and has achieved good clinical

evidence. Targeted MCU inhibitors, such as Ru360, reduce

mitochondrial calcium overload, whereas the activation of

NCX promoted Ca²+ efflux and restores intracellular calcium

homeostasis in cardiomyocytes. The activation of the TLR4/NF-

κB pathway can be suppressed by improving mitochondrial

membrane permeability, such as using cyclosporine A to inhibit

the opening of the mitochondrial permeability transition pore

and reducing the release of mitochondrial DNA and ROS,

thereby alleviating the inflammatory response. Peptide inhibitors

have been used to selectively block the pathological

mitochondrial fission protein Drp1 to prevent excessive

mitochondrial fission in the early stages of mitochondrial injury

and to reduce cardiomyocyte apoptosis (94).
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For arrhythmias caused by specific mitochondrial DNA

mutations or nuclear DNA mutations, gene therapy is at the

forefront of exploration. Normal genes are introduced into the

lesion model by using adeno-associated virus for gene

replacement therapy. Another strategy is heterologous expression,

where mitochondrial genes are re-encoded and then introduced

into the cell nucleus, allowing them to be synthesized in the

cytoplasm and targeted into mitochondria to compensate for the

function of the mutated genes. Although gene therapy is not yet

mature, it represents an important direction for the future.

In addition, Recent research has indicated that injecting

healthy donor mitochondria into the induced pluripotent

stem cells of patients with Barth syndrome can promote

mitochondrial autophagy and biogenesis, improve mitochondrial

respiratory function, and reduce the APD and frequency of

arrhythmia (95). Although the existence of mitochondrial

transplantation is relatively short-lived, this exciting discovery

provides new directions for future research. In the future, we

can differentiate high-purity cardiomyocytes from the induced

pluripotent stem cells of patients themselves or immunologically

matched donors, extract healthy mitochondria, and achieve

efficient delivery through microinjection, nanotube-mediated

delivery, or mitochondrial-targeting vectors (such as MITO-

Porter). Thus, we can overcome the limitations of traditional

drug thinking and develop mitochondrial replacement therapies.

Although there are many studies on the role of mitochondria in

arrhythmias, those that are actually used in clinical practice are

relatively few. How to achieve clinical transformation in the

future is also a major issue, and more clinical trials are needed

for exploration.

6 Conclusion

In summary, the mitochondria, as a central site that regulates

various cellular functions, are an important factor contributing to

ischemic arrhythmia, which is a key point in the crosstalk among

inflammation, Na+/Ca2+ homeostasis, and mitochondria and is

also a potential therapeutic target. The specific mechanism is

illustrated in Figure 1. Targeting the mitochondria to improve or

restore function has been a popular topic in the treatment of

ischemic and metabolic cardiomyopathies (96). However, because

different etiologies of the disease produce different responses

(97), preclinical data and clinical studies on such therapies

remain insufficient. Herein, we reviewed and analyzed the role of

mitochondria in the development of arrhythmia. If the

mechanism between mitochondria and arrhythmia can be further

clarified in the future, it may provide a new direction different

from that of traditional arrhythmia treatment.
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