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Introduction: This paper aims to expose the link between occupational exposure
to respirable crystalline silica (SiO2) and cardiovascular diseases (CVDs).
Methods: A comprehensive review of the literature was conducted, focusing on
epidemiological studies that assessed the association between silicosis or
SiO2 exposure and CVDs. Specific cardiovascular diseases, such as acute
myocardial infarction, arrhythmias, pulmonary hypertension and pericarditis,
were also pointed. Biomarkers commonly used in both silicosis and
cardiovascular diseases were reviewed to underline the common
pathological pathways.
Results: Published epidemiological data revealed a higher risk of ischemic heart
disease, stroke, and hypertension in silica-exposed workers, even at low
exposure levels. SiO2 exposure was linked to an increased risk of myocardial
infarction, with potential mechanisms involving inflammation and platelet
activation. Elevated risk of arrhythmias, particularly atrial fibrillation, correlated
with occupational silica exposure. Consistent with the pathological
mechanisms supporting the SiO2 exposure—CVDs relationship, biomarkers
related to NLP3 inflammasome activation, reflecting oxidative stress, and
revealing fibrosis have been presented.
Conclusion: Actual data support the relationship between occupational SiO2
exposure and various CVDs promoting cardiovascular monitoring in silica-
exposed workers. Further studies are needed to identify specific/distinctive
biomarkers to improve early detection of CVDs in silica exposed workers.
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silica exposure, silicosis, cardiovascular diseases, cardiovascular monitoring,
biomarkers

1 Introduction

Although known for centuries, silica exposure continues to generate occupational

diseases all around the globe. In many historical workplaces with high exposure levels

(mines, foundries, etc), the incidence has gradually decreased because of better

protective measures, but in newly described occupations at risk, such as the stone

benchtop industry, the incidence reached as much as 39.6% of workers (1).

Respirable crystalline silica (SiO2) is a well characterized risk factor for the lung. In

addition to silicosis, SiO2 is carcinogenic for the lung (2). More recently, mutagenic
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effects on cultured cells have also been described for amorphous

forms (3). Connective tissue disease was reported in 11.4% of the

patients with silicosis (4). They are not necessarily related to the

previous century’s high levels of exposure, as sporadic cases of

association with autoimmune diseases, such as rheumatoid

arthritis and scleroderma have been reported in recent years (5,

6). In the Danish working population followed from 1997 to

2015, the risk of idiopathic interstitial pneumonias and

pulmonary sarcoidosis was also directly related to cumulative

exposure to SiO2 (7).

Apart from lung diseases, exposure to SiO2 is associated with a

40% higher risk of chronic kidney disease (8). A certain

impairment of renal function might be found in 33% of patients

with silicosis (9).

With increased awareness of the effects of inhaled

microparticles on the cardiovascular system, the correlation

between exposure to SiO2 and cardiovascular diseases has also

been highlighted in recent publications. This relationship goes

beyond the expected pulmonary heart disease secondary to lung

fibrosis and, at least in some analyses, is present even at low

exposure levels. Because cardiovascular disease is the number one

cause of mortality in many countries worldwide, and the low

level of exposure to SiO2 is not very rare, we have reviewed the

most frequently documented cardiovascular diseases reported in

the literature.
2 Methods

A comprehensive review of the literature was conducted,

focusing on epidemiological studies that assessed the association

between silicosis or SiO2 exposure and CVDs. The approach

involved three distinct steps. In the first step, we searched for

epidemiological data on the association between silicosis (or SiO2

exposure) and the incidence or mortality of cardiovascular

diseases, exploring existing database such as Web of Science and

Medline. The inclusion criteria were full-text, open-access articles

published in English, before 2024, containing in their titles/

abstract the keywords (“silicosis OR silica exposure”) AND

(“cardiac OR vascular disease”). The sole exclusion criteria was

duplication of articles across the searched databases. Based on

this initial overview, in the second step, We searched for a more

in-depth description of distinct cardiovascular diseases (acute

myocardial infarction, arrhythmias, diseases of the pericardium,

pulmonary hypertension, and cardiovascular impairment in

autoimmune diseases related to silicosis) to better comprehend

the impact of silica on the cardiovascular system. For each

disease the search terms were “silicosis OR silica exposure AND

the designated cardiovascular disease. Finally, we described

common serum biomarkers for silicosis and the cardiovascular

diseases to explain the epidemiological findings and extend the

understanding in this area. For this section of the review, we

searched in the Web of Science database (key words: “silicosis”

AND “biomarkers”) and excluded the articles looking for

biomarkers in the exhaled breath or broncho-alveolar lavage, for

the genetic or epigenetic markers, or silica-related cancer.
Frontiers in Cardiovascular Medicine 02
Searches that were confirmed in at least two independent studies

were verified for being considered in the early detection or

prognosis of the cardiovascular disease.

We aimed to select articles that explicitly intended to cover

both domains (SiO2 exposure/or silicosis and cardiovascular

diseases). We have prioritized studies with large number of

participants (at least tens of workers), multicentric or

representative at the national level, and whenever possible, those

combining clinical with the pathological point of view and

examining data from multiple perspectives.
3 Cardiovascular diseases associated
with exposure to respirable crystalline
silica

3.1 The overall association between silicosis
or SiO2 exposure and cardiovascular
diseases

While an association with pulmonary heart disease might be

anticipated, as silicosis is a chronic pulmonary fibrosis, a

surprisingly higher risk for ischemic heart disease was also found

in workers with exposure below or at the permissible exposure

limit [hazard ratio [HR] = 1.09, 95% [confidence interval] CI:

1.02–1.16] (10). Similar results were found in a cohort of 74,000

workers exposed to SiO2, in which mortality from ischemic heart

disease was increased only in those with low exposure to non-

combustion-sourced particles of crystalline silica (11). In a

Swedish cohort study, the standardized incidence rate (SIR) of

hospitalizations among male workers from iron foundries was

significantly higher for ischemic heart diseases (SIR = 1.17,

95% CI = 1.07–1.29) and cerebrovascular diseases (SIR = 1.23,

CI = 1.08–1.39) (12). Interestingly, as in the previous reports

mentioned above, only the lowest quartiles of cumulative

exposure had a statistically significant SIR with ischemic heart

disease. A particular finding in this cohort was a high

standardized mortality rate (SMR) from stroke (SMR = 1.61,

95% CI = 1.18–2.14) (13); particularly, data on smoking, and

other occupational hazards (e.g., shift work, noise, carbon

monoxide) were not included in the analysis.

If only non-smokers were considered, the association became

relevant for ischemic heart disease and hypertension. In a study

covering 16,918 non-smokers, the estimated SMR for ischemic

heart disease was 1.18 (95% CI = 1.01–1.37) and hypertension

2.23 (95% CI = 1.86–2.65), respectively. Furthermore, these figures

were even higher for workers with lower or medium levels of

exposure (14). In this investigation, the SMR for cerebrovascular

disease in non-smokers was lower than expected (SMR = 0.86,

95% CI = 0.79–0.93).

Finally, the meta-relative risk for ischemic heart disease

estimated in a systematic review of SiO2 exposure was marginally

significant (meta-relative risk = 1.07, 95% CI =1.00–1.16,

p = 0.058). Remarkably, the risk was nonlinear in relation to the

cumulative exposure, with most studies reporting the risk even at

low levels (15).
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FIGURE 1

The association between silicosis or SiO2 exposure and cardiovascular diseases.
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3.2 Association of silicosis with different
cardiovascular diseases

Silicosis and exposure to respirable crystalline silica (SiO2) are

associated with particular cardiovascular diseases like acute

myocardial infarction, arrhythmias, diseases of the pericardium,

and cardiovascular impairment in autoimmune diseases related

to silicosis (Figure 1).
3.2.1 Silicosis and acute myocardial infarction
In search of the explanation for the highest mortality from

cardiovascular diseases in silicosis, a comprehensive analysis of

all manual Swedish workers on the association between SiO2

exposure and acute myocardial infarction (AMI) was performed.

Data obtained from the national registries from 1992 to 2006

found an increased hazard risk, namely 1.66 (95% CI 1.27–2.18)

in women and 1.06 (95% CI 1.03–1.10) in men, respectively. The

risk of AMI was correlated with the cumulative exposure (16).

Similar results were obtained in a uranium miners study, in

which the incidence of AMI remained significantly higher, even

after adjustment for smoking and metabolic syndrome (17). This

case control study compared workers by quartile of exposure

with controls never exposed occupationally to SiO2. Miners who

had a long exposure time (31 years, on average), started their

employment at a younger age (19 years, on average), and had a
Frontiers in Cardiovascular Medicine 03
cumulative exposure either in the median or in high tertile had

significantly higher odds ratios of AMI. A possible explanation

for these results came from an experimental study, which showed

that, in contact with SiO2, the pulmonary macrophage–

neutrophil cross-talk releases neutrophil elastase into the blood

circulation, which triggers the activation of circulating platelets

(18). Concordant with this in vitro experiment, is the unusual

thrombophilic response during the standard transplant surgery

procedures described in a patient with silicosis. This patient

developed a massive hollow catheter thrombosis from the right

external iliac vein to the inferior vena cava (19), non-responsive

to heparin.

3.2.2 Silicosis and arrhythmias
Montén et al. investigated 5,508 men working in an occupation

with possible exposure to quartz in the last five years prior to the

diagnosis of atrial fibrillation (AF) diagnosis (20). The authors

highlighted an increased risk of developing atrial fibrillation in

male subjects aged between 20 and 55 years with an average

exposure to quartz dust above 0.05 mg/m3. When the analysis

was performed according to the number of years of exposure, the

only statistically significant relationship was with the those with

less than one year of exposure, which might be due to the

healthy worker effect. The authors claimed that the rapid onset

of arrhythmia by extrapolating data from environmental or

experimental studies on ultrafine particles. These studies
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demonstrated a direct cardiotoxic effect on cardiomyocytes,

deregulation of the autonomic control of the heart by reflexes

initiated from lung inflammation, or initiation of systemic

inflammation by the particles absorbed in the systemic

circulation (21–23). It has also been proven that silica

nanoparticles down-regulate genes involved in the calcium

signalling pathway of the cardiac muscle (24).

There are also arguments in a case report of a patient with

silicosis who developed monomorphic ventricular tachycardia

(25). The patient had normal echocardiogram and normal

coronary arteries confirmed by angiography. The cardiac MRI

showed normal ventricular function but suggested left ventricular

basal and mid-cavity wall striae of fibrosis, which was confirmed

by endomyocardial ventricular septum biopsy. The authors

suggested that SiO2 reduces sarcoplasmic reticulum Ca-ATPase

activity, inducing dysfunction of cytosolic calcium dynamics and

even apoptosis, as described in experiments with silica

nanoparticles (26). Their hypothesis was supported by the

observation that ventricular tachycardia did not respond to

amiodarone and overdrive pacing but showed a positive response

to phenytoin.

3.2.3 Silicosis and pulmonary hypertension
The relation between silica exposure/silicosis and pulmonary

hypertension (PH) is quite complex and not all silicosis patients

would fit in the same clinical classification of this disease, as

stated in the 7th World Symposium on Pulmonary

Hypertension (27).

SiO2 particles accumulated in the pulmonary interstitium

induce the local chronic inflammatory response with macrophage

pyroptosis, which progresses towards the formation of

granulomatous inflammation and pulmonary fibrosis (28, 29).

The alteration of pulmonary architecture generates small airway

dysfunction, leading to ventilation-perfusion mismatch and

hypoxia, generating a group 3 PH. This would correspond, in

general to patients with chronic simple silicosis. According to the

new definition of HP (pressure in the pulmonary artery

>20 mmHg), 59.6% of patients with chronic simple silicosis

would have HP, most frequent in former perforators with

probably higher exposure levels (30).

There are also pathological modifications supporting a group

one PH, the arterial pulmonary hypertension (PAH). From the

pathological point of view, the direct effect on the pulmonary

artery could be classified in: (a) direct vessel injury and (b) the

extrinsic, mechanical compression, although a combination of

these mechanisms might be present in the same patient.

The direct vessel injury is supported by experimental data on

animal models which showed that, in silica exposure of mice

unprotected by superoxide dismutase to oxidative stress, the

pulmonary vascular remodelling is present both in silicotic

nodules and in the unaffected lung. This large distribution of the

vascular damage leads to PAH and right ventricle failure (31).

Few clinical data (mainly from case reports) support this finding.

For example, a bluestone worker with simple chronic silicosis

who had normal diffusion capacity and no restrictive disease,

presented with PH, that responded to tadalafil and diuretics
Frontiers in Cardiovascular Medicine 04
treatment. Therefore, the considered diagnosis was PAH (32).

Silica exposure was also mentioned in a case of pulmonary

capillary hemangiomatosis (33), a rare disease included in the

PAH with features of venous/capillary (PVOD/PCH) involvement

category. The contribution of the occupational exposure remains

uncertain in this case, as the exposure to silica was short (2 years)

and there were no signs of acute or sub acute silicosis on CT or

biopsy features to prove the silica burden. Even more, if the

working conditions might have been the cause, the patient was

also exposed to organic solvents, a hazard which, in a case control

study, significantly increased the risk of PVOD (adjusted OR of

12.8, 95% CI 2.7–60.8) (34). Therefore, even than other possible

risk factors have been excluded by the authors, there are no

sufficient arguments for an occupational relation.

The extrinsic compression of the pulmonary arteries is better

documented. The prevalence of PH in progressive massive

fibrosis is quite high (22.8%–33.9%) mostly in the ones with

large (group C silicosis) and central location of the fibrosis

(35, 36). Case reports have described pulmonary artery stenosis

because of the calcified hilar lymph nodes which distorted the

normal tissue architecture (37) simultaneous fibrotic stenosis of

the large branches of the pulmonary artery and pulmonary vein

(38), or fibrosing mediastinitis (39). All these cases were treated

by vascular stenting with significant improvement of the

clinical status.

As to further complicate the clinical diagnosis, there is also the

possibility of a myocardial fibrosis associated with silicosis (which,

eventually lead to a PH group 2 (25).

As consequence, PH is a relatively frequent complication of

silicosis and should be evaluated no matter the stage of silicosis.

The only conclusion which can be raised from these sporadic

cases is that there not a single mechanism explaining the PH, but

that deciphering the pathogenic mechanism in a particular

patient is every important, as different treatments might

be indicated.

3.2.4 Silicosis and pericarditis
The inhalation of respirable crystalline silica is followed by the

deposition of SiO2 in lung tissues; however, the accumulation of

SiO2 in the serous membranes is also possible (40).

Pericardial damage associated with silicosis may be due to

SiO2-induced immune reactions or by the well-known

association with tuberculosis. To the best of our knowledge there

are no epidemiological studies on the prevalence of pericarditis

in silicotic patients or in workers exposed to silica. The search of

the main medical databases (Web of Science, PubMed, Science

Direct) revealed several interesting and well documented cases of

pericarditis in which a thorough examination excluded bacillary

etiology. Mohebbi et al. reported a clinical case of a worker who

died at the age of 19 years due to cardiogenic shock secondary to

the cardiopulmonary complications of accelerated silicosis that

developed over 18 months of work at a stone grinding factory.

Echocardiography showed bi-ventricular hypertrophy, and

autopsy confirmed cardiomegaly and described a pericardial

plaque and pericardial effusion of 450 ml (41). In another case of

silicosis in a former miner, the pericardial effusion was massive
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enough to require surgical treatment (pericardial fenestration),

in which case, the biopsy revealed white nodules on the

pericardial surface containing lymphocytic infiltrate and hyalinized

fibrosis (42). There is also a report of constrictive pericarditis

accompanying silicosis in a stone quarry worker, in which the

biopsy showed granular and fibrous tissue hyperplasia (43).

Although the translocation of inhaled respirable crystalline silica

through pulmonary and lymphatic capillaries was documented in a

case of pleural effusion (44), these cases do not provide arguments

for a possible translocation to the pericardium, as none of them

found silica in the pericardium biopsies.

A meta-analysis found that silicosis is among the

immunosuppressive conditions that increase more than 4 times

the risk of tuberculosis (45). Exposure to respirable crystalline

silica inhibits CD8T lymphocytes, impacts phagocytic activity,

and compromises the viability of macrophages and neutrophils,

leading to an increased vulnerability to mycobacterial infections

(46) and/or facilitating the activation of the latent infection.

The majority of cases are restricted to the lungs and pleura,

with at least one report of tuberculous pleuritis and pericarditis

in a patient with silicosis who had no contact with other

tuberculosis patients (47). This patient was a smoker (13 pack-

years) and worked in a sandpaper (abrasive paper) factory for

five years without using protective masks. The specificity of this

case was the apparently exclusive extrapulmonary localisation,

as all attempts to diagnose pulmonary tuberculosis (culture,

direct staining from broncho-alveolar lavage, culture and

GeneXpert MTB/RIF assay in sputum) failed to detect

Mycobacterium tuberculosis. The arguments for the origin of

tuberculosis were the high value of the Adenosine Deaminase

test in pleural and pericardial fluid and the clinical evolution

following the antituberculosis treatment.
3.2.5 Cardiovascular diseases in silicosis
associated with systemic autoimmune
rheumatic diseases

The literature provides sufficient evidence for the association

between silicosis, or even occupational exposure levels of SiO2

and systemic autoimmune rheumatic (SARD) diseases (48). This

seems to be directly related to cumulative exposure. The risk

depends on the immunological conditions. For example, the

incidence rate ratio of systemic sclerosis was 1.62 (1.08–2.44) in

the exposed group compared with to the non-exposed group

(49). For rheumatoid arthritis, the odds ratios were 1.94 (95% CI

1.46–2.58) in occupational exposure to SiO2 and this risk was

even higher in seropositive smokers (50).

The presence of SARD increases the global cardiovascular risk.

If one disease was present, the hazard ratio (HR) was 1.41 (95% CI

1.37–1.45). The risk almost doubles for two concomitant diseases

and becomes 3.79 (3.36–4.27) if three or more SARDs are

present (51). Premature atherosclerosis, endothelial dysfunction,

microvascular damage, thrombosis, antiphospholipid syndrome,

valvular heart disease, arterial stiffness, pericarditis, and

hypertension have been described at various frequencies

depending on the specific SARD (52–55).
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Immunological dysfunction is assumed to contribute significantly

to the high incidence of the cardiovascular diseases, and an indirect

estimation of this dysfunction is the presence of the autoantibodies

which characterize each distinct form of SARD. A meta-analysis

estimated an incidence of venous thromboembolism of 12.4% in

ANCA-associated vasculitis (56). Another meta-analysis calculated

the relative risk for ischemic heart disease of 1.60 (95% CI: 1.39,

1.84) and cerebrovascular accidents of 1.20 (95% CI: 0.98, 1.48)

(57). A 10-year longitudinal study of 2,803 participants, without

cardiovascular and immunological disease at baseline, measured the

antinuclear antibodies (ANA) at enrolment. Plasma ANA levels

were higher in participants who developed hypertension (p = 0.02).

The HR of mortality from cardiovascular disease adjusted for the

classical risk factors (hypertension, diabetes, smoking, body mass

index, estimated glomerular filtration rate, statin use, total

cholesterol, triglycerides, and high-density lipoprotein cholesterol)

was significantly higher: 1.37 (1.10–1.73). The HR was correlated

with the ANA values (58). People with positive rheumatoid factor

(RA), even without any joint symptoms, followed for at least 20

years, had a significantly higher mortality rate from cardiovascular

diseases, after adjustment for other risk factors (HR 1.60, 95% CI

1.08–2.37) (59).

More than a fifth of workers have an autoimmune disease (60)

in a multicountry study on patients with silicosis. A comparison

between 203 patients with simple silicosis, 286 patients with

complicated silicosis and 95 exposed workers without silicosis

provide more specific results on the types of registered

autoantibodies. In the total sample, ANA were found in 15.92%

of the participants, antibody to extractable nuclear antigen (anti-

ENA) in 9.24%, anti-neutrophil cytoplasmic antibodies (ANCA)

in 4.5%, anti-neutrophil cytoplasmic antibodies (anti-CCP) in

0.02%, and RA in 16.78%. No statistically significant differences

in positive autoimmune antibodies were found among the three

groups, except for the ANA, which were less frequent in the

exposed subjects (48).

Overall, the data suggest a triggering effect of SiO2 on the

formation of the autoantibodies, even before the classical silicosis

features are identifiable with our current diagnosis methods and

in the absence of a well-defined SARD.
4 Biomarkers and possible common
pathological pathways

Theoretically, silicosis is a preventable disease, but, like many

other occupational diseases, the practice challenges this

affirmation. Therefore, early detection plays a key role in the

discontinuation of exposure and treatment of comorbidities.

For decades, researchers have tried to identify biomarkers that

are easy to measure (in blood or urine), sensitive, and specific

enough to replace chest radiography and reduce radiation

exposure. For occupational diseases, early detection is as

important as disease progression, so, there is generally a

relationship between the duration and intensity of exposure and

the severity of the disease.
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1506846
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 2

Biomarkers considered in the early detection or prognosis of the cardiovascular diseases in silicosis. CRP, C-reactive protein; LDH, lactate
dehydrogenase; ferritin; ATT, alpha-1 antitrypsin; NLR, neutrophil-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; PLR, platelet-to-
lymphocyte ratio; SIRI, systemic inflammation response index; SII, systemic immune-inflammation index; AISI, aggregate index of systemic
inflammation; IL-1, interleukin-1; IL-18, interleukin-18; HO-1, heme oxygenase-1; ACE, angiotensin-converting enzyme.
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We synthesized the main common biomarkers to silicosis

and cardiovascular diseases in: biomarkers from routine blood

tests, biomarkers related to NLP3 inflammasome activation,

biomarkers reflecting oxidative stress and biomarkers of

fibrosis (Figure 2). The scope of this paper is not a

systematic review of biomarkers proposed in the different

stages of silicosis, but to illustrate the main pathological

mechanisms of silicosis with the most frequently explored

biomarkers that have also been considered in

cardiovascular diseases.
4.1 Biomarkers from routine blood tests

These biomarkers have in common some advantages, such as

the availability, the cost-/effectiveness and the standardization of

the methods. They also have a major disadvantage: they

lack specificity.

Lactate dehydrogenase (LDH), ferritin and α1anti-tripsin

are classical markers of acute inflammation. Several

indices, reflecting the proportion of different cells in the

circulation, such as the neutrophil-to-lymphocyte ratio (NLR),

lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte

ratio (PLR), systemic inflammation response index (SIRI),

systemic immune-inflammation index (SII), and aggregate

index of systemic inflammation (AISI), were reported to

differentiate between exposed and silicosis patients or between

stages of silicosis (61–64).

All of them have been proposed for quantifying the risk or for

monitoring patients with cardiovascular diseases, but none have

reached the consensus as the C-reactive protein. There are some

data also about the possible value of measuring C-reactive

protein in monitoring the workers exposed to SiO2 (64, 65), but

they are still not enough to draw a conclusion, although
Frontiers in Cardiovascular Medicine 06
the results of these two studies complement each other: while the

first showed a positive relationship with the duration of the

exposure, the second only found differences between silicosis and

exposed persons.
4.2 Biomarkers related to NLRP3 mediated
inflammation

Activation of the nod-like receptor pyrin domain-containing-3

(NLRP3) inflammasome in lung macrophages after SiO2

inhalation are key element in the pathogenesis of silicosis. Due to

NLRP3 activation, lung macrophages release active IL-1β and IL-

18 (66), maintaining an inflammatory milieu and enhancing the

transition of epithelial to mesenchymal cells, which promotes

fibrosis (67). However, either through the leakage of these

mediators or through the passage of very small nanomolecules of

SiO2 into the circulation, the NRPP3 inflammation pathway was

also activated in the peripheral monocytes collected at the end of

the shift from workers in modern foundries (68) with a level of

exposure lower than the permissible exposure limit in Europe. On

the other hand, the results from different studies remain

controversial, with higher (69) or no significant differences (65)

recorded between exposed/non-exposed or severity stages of silicosis.

IL-1β is also a cytokine of interest for cardiologists. A plethora

of experimental studies showed cardiac effects of IL-1β such as

impairment in contraction due to deficits in stimuli transmission

or (70) or the inhibition of the energy production (71). IL-1β is

up regulated in acute ischemia and plays a role in the dilatative

remodelling of the heart after acute myocardial infarction (72).

Regarding the vascular effects, the pro-inflammatory role of

IL-1β is up regulated in the earlier stages of the atherosclerotic

disease and is the key regulator of the inflammation in the

arterial tissue (73).
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Another consequence of the NLRP3 activation is an increase in

active IL-18, a marker of the TH1 cytokine profile. It was

significantly higher in patients with simple silicosis compared to

healthy controls, but also between simple and complicated

silicosis. The levels of IL-1 and IL-18, among other cytokines,

remained elevated after months of interruption of exposure to

artificial stone (74), although its clear role (pro- or anti-fibrotic)

remains to be confirmed (75). The significance of this biomarker

in cardiovascular diseases is controversial. Plasma IL-18 increases

vascular oxidative stress and the expression of matrix-

metalloproteinases (76) in the early stages of atherosclerosis (77).

Serum levels tend to increase in patients with metabolic

syndrome, hypertension (78) and acute coronary syndromes (79).

In a nested case-control study of 5,561 men followed up to 16

years, the highest tertile of IL-18 had, after adjustment for age,

smoking, blood pressure, total cholesterol, HDL-cholesterol, body

mass index, history of diabetes, chronic heart disease, social class

and physical activity an odds ratio of 1.48 (95% CI = 1.15, 1.90)

for coronary heart disease (80). However, further adjustment for

high-sensitivity protein C or pro-brain natriuretic peptide

attenuated the statistical significance (81).

Both IL-1β and IL-18 are good candidates for monitoring, but

the current data are not sufficient for a conclusion. Findings of high

levels after recent exposure should also be a trigger for

cardiovascular pathology. The interest of research in this area is

even higher, as therapeutic solutions for NLRP3 induced

inflammation are under evaluation (82).
4.3 Biomarkers of the oxidative stress

Experimental studies have shown that the oxidative

mechanisms promoted by SiO2 in the lungs might be extended

to other tissues. For example, the mitochondrial dysfunction and

the oxidative injury are also present in the myocardium (83).

Promising results about the oxidative status in silicosis were

obtained from measuring the serum levels of malonaldehyde (84)

or catalase (85), but for the time being, further, independent,

confirmation is needed. Concerning oxidative status, a high

number of publications have referred to neopterin and heme

oxygenase 1.

4.3.1 Neopterin
Exposed vs. controls had higher neopterin values (86, 87)

correlated with the silica levels in urine (88), which makes this

biomarker suitable for monitoring exposure. Other research

groups reported higher values of serum neopterin in silicotics

compared to non-exposed to SiO2 controls and between the

progressive stages of silicosis (89, 90). The explanation of these

findings is still missing because the experimentally induced

silicosis gave conflicting results on interferon gamma (IFNγ), the

best characterized activator of neopterin (91), with some studies

showing an increased level of IFNγ (92) and others finding only

the up regulation of IFNs type I with apparently no major

impact on the evolution of silicosis (93) or even a dysfunctional

signal of IFNγ in macrophages loaded with SiO2 (94). An
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interesting, but small of study in 27 exposed workers might

explain these conflicting results (95). In this study, the level of

IFNγ was higher in exposed vs. non-exposed groups and very

low in the four cases of silicosis, suggesting a variation of the

expression of this cytokine during the evolution of the disease.

Regarding cardiovascular diseases, neopterin was associated

with a worse prognosis in heart failure of non-ischemic causes

(96), heart failure (97) acute coronary events (98), and peripheral

artery disease (99, 100). In chronic coronary disease, the serum

levels of neopterin were higher than those in patients without

ischemic disease. In human endothelial cells, neopterin down

regulated the NF-κB and the oxidative status of the cells,

contributing to the reduction of the oxidative status, and

suppressed the proliferative effect of angiotensin II on the

muscular cells of the aorta. This, in vitro and in experimental

atherosclerosis, showed that neopterin had a protective effect in

the development of atherosclerosis either in exogenous

administration or endogenous up regulation (101).

Different factors influence the serum level of neopterin such as

recent diet (102), gender (103) and comorbidities. Most probably,

the evolution of the disease influences the serum levels, and

finding the proper significance of neopterin for screening,

diagnosis and prognosis still requires longitudinal studies to

measure the dynamics of this biomarker.
4.3.2 Heme oxygenase 1
In the lungs, SiO2 particles are taken up by the macrophages

via phagolysosomes. In the phagolysosomes, the NADPH-oxidase

2 and possibly other molecules generate reactive oxygen species

(ROS), which leak into the cytoplasm and promote apoptosis

(104). The ultrafine particles seem to be the most aggressive

(105). Heme oxygenase 1 (HO-1) was detected in and around

the silicotic nodules (106, 107).

HO-1 is constitutively expressed in a few cells but is highly up

regulated under oxidative stress in cells involved in the defence

mechanism. HO-1 catabolizes heme to biliverdin, bilirubin and

CO. The first two have direct antioxidative effects, while CO acts

through the inhibition of NADPH oxidase or other enzymes

related to the ROS production (108). Even more, HO-1 switches

the macrophages towards the M2-like phenotype (109),

modulating the inflammatory process, but promoting fibrosis.

One hypothesis is that, in the early stages of silicosis, HO-1 acts

as a compensatory mechanism, but as the disease advances and the

oxidative stress persists, a gradual depletion of HO-1 occurs. In

support of this hypothesis, higher levels of HO-1 were observed

in workers exposed to SiO2 in limestone crusher (110) and

stone-craving factories (111) and mines compared to unexposed

(112). In a longitudinal study, low serum HO- levels 1 predicted

the severity of the lung function decline (113). Another

argument for the protective effect of HO-1 was derived from a

surprising result in a group of artificial stone workers. In this

study, HO-1levels in never smokers were negatively correlated

with the number of years of exposure and were significantly lower

in those with extensive pulmonary fibrosis. The explanation

provided by the authors was that smoking induces the expression
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of HO-1, which limits the inflammation and the decline of the lung

function (114).

However, not all studies agree with this pattern of the HO-1

variation in silicosis. For example, in study conducted on

limestone workers already mentioned, the level of HO-1 was

correlated with the intensity of exposure but was higher in

those already diagnosed with silicosis (110). Another study

also found indirect signs of persistent up regulation of HO-1

in patients with silicosis long time after the cessation of the

exposure (115).

HO-1 also has a protective effect on the cardiovascular system

with regard to the components of metabolic syndrome. HO-1

reduces the oxidative stress generated by sustained

hyperglycemia, the accumulation of lipids in the adipocytes, the

formation of the foam cells, protects against the mitochondrial

damage and promotes mitochondria biogenesis in the

myocardium (116). HO-1 opposes to the formation of the foam

cells by reducing the levels of ROS, MCP-1 and interleukin 6

and by decreasing the internalization of lipids in the

macrophages from the blood vessel walls (117). In later stages

of the atherosclerotic plaques, HO-1 contributes to the plaque

stabilization (118). Polymorphisms in the HO-1 promoter

region which lower the expression of HO-1, are associated with

a higher risk of cardiovascular disease (119).

Some studies suggest the same compensatory mechanism as in

silicosis, with AMI, a high intracardiac HO-1 in AMI (120) and

low expression in chronic diseases (ischemic heart disease or

peripheral arterial disease) with a negative impact on mid-term

survival (121, 122).

To a certain extent, several medications extensively used in

cardiovascular diseases (such as statins or nicorandil) achieve

their beneficial effects by activating HO-1 (123, 124). These

drugs provided some encouraging results in experimental

silicosis. For example, nicorandil upregulated Nrf2 and HO-1,

showing promising results in experimental silicosis (125),

whether statins downregulate endothelial mesenchymal

transformation and oxidative stress (126).

Finally, the efficiency of the proposed treatment in

experimental silicosis was partially explained by the regulation of

HO-1 production (127). The same treatment was also found to

be efficient for cardiac protection (128).
4.4 Fibrotic mechanisms

4.4.1 Angiotensin converting enzyme
Angiotensin converting enzyme (ACE) was found sequent

higher in healthy controls, exposed workers, simple silicosis and

complicated silicosis in the largest and more recent studies on

this topic (61, 129, 130). In the lung, ACE is produced by

endothelial cells and macrophages and converts angiotensin I to

angiotensin II (Ang II), mostly known for its direct

cardiovascular effects mediated by the AT1 receptor: increase in

sympathetic tone, vasoconstriction, retention of sodium, release

of aldosterone and anti-diuretic hormone. Besides these effects,

activation of AT1 by Ang II has fibrogenic consequences through
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the induction of fibroblasts proliferation, promotion of

myofibroblasts differentiation and collagen deposition (131, 132).

This has been proven by the suppressive effect of angiotensin

convertase 2 or captopril on the ACE/angiotensin II/AT1 axis,

which reduced the epithelial-mesenchymal transition in

experimental silicosis (133, 134). In one of these experiments, the

expression of ACE and AT1 gradually increased as the disease

developed (134).

The experimental and clinical data are consistent about the role

of the ACE in cardiovascular disease. ACE is part of the complex

renin-angiotensin-aldosterone system and the balance between its

two main axes (the ACE/Ang II/AT1 and the ACE-2/Angiotensin

1–7/MasR) directs the pathological progress. If not balanced by the

ACE-2, ACE has been related to the development of fibrosis and

hypertrophy of the myocardium, and with a high local sympathetic

activity (135, 136). In the peripheral arteries, ACE-dependent

production of Ang II favors inflammation, promotes monocytes

adherence and ROS formation, contributing to atherosclerosis,

dysfunctional endothelia and hypertension (137, 138).

There are several common elements for all the studies on

biomarkers: in workers exposed to SiO2 or in silicosis, none of

the results were adjusted for the presence of the cardiovascular

disease, although cardiovascular diseases are frequent in any

population. This becomes a major obstacle in generalizing the

findings, and future research should clarify this possible bias.

Another significant barrier for the validation of any of these

biomarkers is the changing levels during the evolution of silicosis

or cardiovascular disease. If both diseases are present, each of

them might be in at a different stage and therefore contribute

differently to what is measured in the blood. Further research

should consider these issues to clarify if there is a biomarker for

the impact of SiO2 on the cardiovascular system.
5 Conclusion

There is evidence of a relationship between SiO2 exposure and

various cardiovascular diseases. This pleads for cardiovascular

monitoring of exposed workers and even for the characterization

of a new work-related disease due to SiO2.

The search for biomarkers, either for early detection or for

progression of silicosis should not ignore the influence of

possible co-existing cardiovascular disease. By clarifying the

association between SiO2 exposure/silicosis and cardiovascular

risk/disease, future studies should serve to a better monitoring of

workers in many industries in which this exposure continues to

be present.
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