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Synthetic fibrosis distributions for
data augmentation in predicting
atrial fibrillation ablation
outcomes: an in silico study
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Omnia Alwazzan2,3, Gregory Slabaugh2,3 and Caroline H. Roney1,2

1School of Engineering and Materials Science, Queen Mary University of London, London, United
Kingdom, 2Queen Mary’s Digital Environment Research Institute (DERI), London, United Kingdom,
3School of Electronic Engineering and Computer Science, Queen Mary University of London, London,
United Kingdom

Introduction: Cardiac fibrosis influences atrial fibrillation (AF) progression and
ablation outcomes, with late gadolinium enhancement (LGE) MRI providing a
non-invasive tool to measure fibrosis distributions. While deep learning (DL)
has shown promise in predicting ablation success, training such pipelines is
limited by the availability of real patient data.
Methods: In this study, we generated synthetic fibrosis distributions using a
denoising diffusion probabilistic model trained on a collection of 100 real
LGE-MRI distributions. We incorporated them into 1,000 bi-atrial meshes
derived from a statistical shape model and simulated AF episodes on them
before and after various ablation strategies to expand the training dataset for
DL-based outcome prediction. Our approach aims to improve the predictive
performance of the DL pipeline by enhancing dataset diversity and better-
capturing patient variability.
Results: We showed that the fibrosis distributions generated by the diffusion
model closely resemble real LGE-MRI distributions, based on metrics such as
mean intensities (1.1+ 0.2 vs. 1.1+ 0.3) and average Shannon entropy
(0.77+ 0.06 and 0.81+ 0.03). AF biophysical simulations can be effectively
conducted on bi-atrial meshes incorporating these synthetic distributions.
Training the deep learning pipeline on these simulations produces
performance metrics comparable to those achieved with real LGE-MRI
distributions (ROC-AUC = 0.952 vs. 0.943).
Conclusion: We have shown the ability of synthetic fibrosis distributions to be a
data augmentation tool for deep learning classification of outcomes of various
ablation strategies, which may enable rapid and precise assessment of atrial
fibrillation treatment strategies.

KEYWORDS

atrial fibrillation, ablation, diffusion models, multi-modal fusion, computer vision,
biophysical simulations

1 Introduction

Cardiac fibrosis distributions vary uniquely between patients, influencing patterns of

electrical activity (1, 2). Late gadolinium enhancement (LGE) MRI offers a non-invasive

method for quantitatively assessing fibrosis. Gadolinium accumulates in fibrotic tissue

more than in healthy tissue or the blood pool, leading to higher intensity in scarred

areas of LGE-MRI images. The image intensity ratio (IIR), which is the ratio of MRI
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intensity to that of the blood pool, allows for standardized

quantification of atrial fibrosis across patients and MRI systems

(3). Fibrosis distributions are then used to adjust the ionic and

conductivity properties of fibrotic regions, simulating

atrial remodeling.

Diffusion models are successful in the generation of artificial

images in various computer vision and augmented reality

applications (4, 5). In cardiac basic science, Baranwal et al. (6)

utilized a denoising diffusion probabilistic model (DDPM) to

generate the electrical wave patterns in 2D isotropic medium and

3D bulk in time. The generation of synthetic full spatial cine

cardiac magnetic resonance images via latent denoising diffusion

implicit models has been shown to produce relevant results in

terms of image fidelity and realism of cardiac volumes (7).

Among other generative techniques, variational autoencoders

(VAEs) have recently been proposed for generating realistic atrial

representations that can capture patient variability in atrial

anatomy. Beetz et al. (8) used VAEs to artificially generate 3D

surface meshes of the ventricles as a virtual patient cohort, and

Dou et al. (9) used the same type of model with dependent and

independent generators to combine anatomical structures into

one mesh. Finally, models proposed by Kong et al. (10) and Qiao

et al. (11) can capture variability in cardiac shape for highly

varied hearts with congenital diseases or construct artificial

cardiac shapes with given clinical conditions.

In addition, there are several examples of successful

implementation of different statistical and deep learning

techniques for generating fibrosis distributions. Clayton (12) used

a Gaussian random field with different length scales and showed

the dependence between these lengths and the vulnerability of

re-entrant activity. To address the lack of histological images

with fibrosis, Lawson et al. (13) implemented a Perlin noise

generator for the creation of synthetic distributions and

demonstrated the effective capturing of fibrosis textures. Finally,

our recent proof-of-concept abstract Zolotarev and Roney (14)

used above mentioned DDPM to create realistic representations

of LGE-MRI fibrosis distributions.

Fibrosis distributions influence the electrical activity through

cardiac tissue. They can form conduction abnormalities for re-

entry loops in atrial fibrillation (AF) (15), which remains the most

common heart rhythm disorder and is associated with an

increased risk of stroke (16). The surgical treatment of AF is

ablation, which aims to isolate the pathological sources of AF

signals. The recommended baseline strategy, as outlined in clinical

guidelines, is pulmonary vein isolation (PVI). This involves using

radiofrequency catheter ablation to electrically isolate the

pulmonary veins (PVs) from the heart, preventing AF triggers

from the PVs from propagating to the left atrial body (17).

However, PVI alone is often insufficient, and the long-term

success rate for persistent AF ablation therapy is generally between

50% and 60% (16, 18). It is challenging to personalize therapy to a

patient because of the large variability between patients.

One possible solution for this challenge is to use cardiac

digital twins and AF biophysical simulations to develop and

test the efficacy of personalized ablation treatment approaches.

Personalized biophysical models are based on differential
Frontiers in Cardiovascular Medicine 02
equations for signal wavefront propagation coupled to a

human atrial cell model and solved on patient-specific atrial

anatomies (meshes constructed from imaging data). AF

biophysical simulations can be run before and after possible

ablation strategies to test whether AF terminates after different

ablation approaches.

However, running biophysical simulations is a time-consuming

process, and these cannot be performed on clinical timescales. This

limitation can be overcome by using deep learning (DL)

algorithms. The DL pipeline learns the patterns for successful

prediction of ablation outcome during the training stage of

pipeline development and then predicts the outcome for a new

patient based on the learnt knowledge and the patient-specific

feature maps. The ground truth (GT) ablation outcomes for DL

training are obtained from AF biophysical simulations after

simulating ablation approaches. The pipeline predicts the

probability of AF termination based on feature maps of

anatomical (for example, fibrosis distribution) and physiological

(frequency and phase maps) modalities and on the ablation mask

itself. However, it is challenging to collect enough data to train

deep learning pipelines using clinical data alone. With this

motivation, we aim to evaluate whether adding artificially

generated cases improves the performance of the pipeline.

In the current study, we aimed to generate synthetic atrial

fibrosis distributions via diffusion models to increase our training

dataset size by imitating independent personalized AF episodes.

Specifically, a DDPM (19) was trained on real LGE-MRI

distributions to generate synthetic ones using a 2D representation

of the atrium [universal atrial coordinates (UACs) (20)]. AF

episodes before and after PVI and other ablation strategies were

simulated on bi-atrial 3D surface atrial meshes incorporating

these fibrosis maps.

We analyzed the generated distributions by applying a DL

multi-class classifier to predict the outcomes for various ablation

strategies. Fibrosis and other feature maps extracted from pre-

ablation AF simulations were used as inputs to predict the

ablation outcome. Overall, we hypothesize that synthetic fibrosis

distributions correspond well with the real LGE-MRI ones

and can be used for dataset expansion to improve the

predictive metrics.
2 Methods

We have separated the Methods section into two main parts:

the first will describe the process and analysis of artificially

generated fibrosis distributions, and the second will cover the

dataset, biophysical simulations, and deep learning pipeline.
2.1 Artificially generated fibrosis
distributions

2.1.1 Diffusion models
The core mechanism of diffusion models is the generation of

synthetic images by restoring them from noise distributions.
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Gaussian noise is gradually added to the training images, and the

model learns to reverse this process (19). Specifically, DDPMs

are generative models that incrementally add noise to data in a

controlled manner and then learn to reverse this process to

generate new samples. The training of DDPMs involves two

main steps: the forward (noising) and the reverse (denoising)

processes. In the forward process, Gaussian noise is gradually

added to a data sample over T time steps (Equation 1). For a

data sample bf x0, the forward process generates noisy samples

x1, x2, . . ., xT , where each noisy sample xt is generated by adding

noise to the previous sample xt�1:

q(xt jxt�1) ¼ N (xt ;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bt

p
xt�1, bt I), (1)

where bt is the variance scheduler that controls the amount of

noise added at each step. Over multiple steps, the sample

becomes entirely random noise.

The reverse process aims to recover the data by sequential

denoising from xT to x0 Equation 2. This is achieved by

parameterizing a neural network to approximate the reverse

conditional probabilities:

pu(xt�1jxt) ¼ N (xt�1; mu(xt , t), s
2
t I), (2)

where mu is the predicted mean of the denoised sample and s2
t is

the variance. By learning this reverse process, DDPMs can

efficiently generate realistic data samples from random noise.

For the generation of synthetic fibrosis distributions, we used

the DDPM implementation from MONAI Generative Models

software (21). The training was carried out on the NVIDIA

GeForce RTX 3080 video card for 500 epochs using the mean

squared error loss and Adam optimizer with a learning rate of

2.5 × 10−5. As a back bone architecture, we used the default

model, i.e., the original DDPM scheduler containing 1,000

timesteps in its Markov chain, and a 2D U-Net with attention

mechanisms in the second and third levels, each with one

attention head.

The diffusion model was trained on 100 original LGE-MRI

distributions in 2D in the format of 96-by-96-pixel maps

(Figure 1A). They were obtained from the collection of 100

clinical LGE-MRI scans of 100 patients with AF (43 paroxysmal

and 57 persistent) undergoing first-time ablation (22). Cardiac

magnetic resonance imaging was performed on 1.5 T Ingenia

(Philips Healthcare, Best) and Aera Magnetom (Siemens,

Erlangen) scanners. LGE imaging was performed 20 min after

contrast administration using an ECG-triggered, respiratory

navigated gradient echo sequence (spatial resolution

1.3mm3 × 1.3mm3 × 4mm3 reconstructed to 1.3mm3 × 1.3 mm3 ×

2mm3). The left atrium was segmented from a contrast-enhanced

MRA and then registered with the corresponding LGE-MRI scan

using CEMRGApp (23).
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2.1.2 Noise fibrosis distributions
To compare the generated cases statistically with some baseline

cases with random distributions, we also generated a collection of

100 noise distributions sampled from one Gaussian distribution

by using the torch.randn_like command from PyTorch library

(24). The intensities were normalized between 0.25 and 1.75 IIR

to match the same range of intensities for synthetic distributions.

2.1.3 Statistical assessment
We used Shannon entropy (SE, Equations 3 and 4) to

statistically assess the image complexity and for comparison of

the synthetic cases with real LGE-MRI ones, as proposed in

Lawson et al. (13). This metric is translation invariant, allowing

images with similar patterns but in different areas to be assessed

accurately.

SE ¼ �1
log2 (NxNy)

XNx

i¼1

XNy

j¼1

Pij log2 Pij, (3)

Pij ¼ Sij
PNx

i¼1

PNy

j¼1 Sij
: (4)

SE is a measure of the amount of information stored in data (25).

From Equation 3, Nx , Ny are the number of pixels in the image and

are used as normalizing factors, bounding the SE values to [0, 1].

A low SE means there is little information or uncertainty in the

image and a high SE means there is a lot of information or

uncertainty present. We calculated the SE values after applying a

Gaussian filter with kernel 3 to the image. Image noise will be

uniform after it, with almost the same intensity for all pixels, and

without recognizable clusters, SE should be less for such an

image. In contrast, images with meaningful content will have

several clusters of different colors. In our case, we wanted the SE

of synthetic cases to match the SE values of real LGE-MRI cases.

To achieve this we excluded any synthetic case with an SE

� 0:66. The filtering helps remove low-quality cases. By ensuring

a close match in SE value across real and generated cases, we

can conclude our generated samples match the properties of

real samples. Shannon entropy and IIR values are presented as

mean± SD.
2.2 Atrial fibrillation predictions

2.2.1 Dataset
We used 1,000 bi-atrial meshes from Roney et al. (26), which

were obtained from a statistical shape model derived from

cardiac computed tomography (CT) scans of 19 healthy patients

(27). Anatomical structures such as the sinoatrial node, pectinate

muscles, and fiber fields were added to the bilayer meshes from a

bilayer atlas mesh using UACs (26).

We then assigned each mesh with two randomly selected

fibrosis distributions for the left and right atria (LA/RA,

Figure 1B). The virtual cohort was separated into four parts: a

baseline training set (mesh indexes [ [1, 400]), a comparison
frontiersin.org
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FIGURE 1

(A) A diffusion model was trained on real LGE-MRI distributions and generated synthetic fibrosis distributions from Gaussian noise. (B) These fibrosis
distributions were incorporated into bi-atrial meshes derived from a statistical shape model. LA/RA, left/right atrium.
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training set (mesh indexes [ [401, 800]), a validation set (indexes

[ [801, 900]), and a testing set (indexes [ [901, 1,000]). The first

training set, validation, and testing sets were covered with real

LGE-MRI distributions. The assignment of fibrotic remodeling

properties to atrial meshes was affected by the resolution of the

LGE-MRI data. Typically, model resolution is in the range 200–

900mm, while MRI resolution is 1.3 mm. This means one MRI

voxel corresponds to multiple mesh elements.
Frontiers in Cardiovascular Medicine 04
To avoid data leakage, we separated the 100 real LGE-

MRI fibrosis distributions into three parts, with 80 distributions

being assigned for tfhe first training set, 10 for the validation set,

and 10 for the testing set. The meshes from the comparison

training set were covered with synthetic or noise distributions

(described in Section 2.1), resulting in two versions of the

comparison training set. All of the aforementioned actions

resulted in the creation of an in silico dataset of 1,000 virtual
frontiersin.org
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FIGURE 2

Overview of deep learning pipeline for binary prediction of AF ablation outcome. (A) Atrial digital twin based on AF simulation before any ablation
provides the feature maps for prediction. (B) The proposed pipeline utilizes feature maps and the patient-specific ablation mask to predict the
probability of AF termination after ablation, which can be checked by analyzing the AF simulation after ablation. PVI, pulmonary vein isolation; LA,
left atrium; RA, right atrium; GT, ground truth label; IIR, image intensity ratio.
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patients, which can serve as an initial foundation for biophysical

simulations (Figure 2A).

2.2.2 Biophysical simulations of atrial fibrillation
episodes

The biophysical simulations were performed by solving the

monodomain equation using openCARP software (28) with the

Courtemanche ionic model for the cellular action potential (29) to

yield transmembrane voltage recordings on each mesh element.

Courtemanche et al.’s human atrial cell model was modified in the

following way: maximal INa conductance was multiplied by 2 to

ensure physiological action potential upstroke velocities and

maximal IK1 conductance was multiplied by 0.8 for a closer
Frontiers in Cardiovascular Medicine 05
agreement with clinical restitution data (30). To incorporate the

effects of electrical heterogeneity, ionic conductances were

modified in each atrial region following Bayer et al. (31). Finally,

AF electrical remodeling was incorporated in all atrial regions by

reducing the maximal ionic conductances of Ito, IKur , and ICaL by

50%, 50%, and 70%, respectively, following Courtemanche et al.

(32). Tissue conductivities in each atrial region followed the

previous studies in which the bilayer model conductivities were

chosen to match clinical activation time maps (31, 33).

Fibrotic remodeling was incorporated in the models as regions

of conduction slowing (structural remodeling) together with

electrophysiological changes (electrophysiological remodeling).

This fibrotic remodeling was included depending on the IIR
frontiersin.org
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values for both structural and electrophysiological remodeling. For

structural remodeling, tissue conductivities in the atrial body were

calibrated as follows: IIR<0.9: 0.4 S/m (CV: 0.81 m/s), 0.9<IIR<1.4:

0.31 S/m (CV: 0.74 m/s), 1.4<IIR<1.6: 0.28 S/m (CV: 0.71 m/s),

IIR>1.6: 0.19 S/m (CV: 0.58 m/s). For electrophysiological

remodeling, ionic properties were modified in fibrotic regions to

represent the effects of elevated TGF-ß1 by rescaling maximal

ionic conductances as follows: 50% of the regional ionic model

value of gK1, 60% of gNa and 50% of gCaL (34).

AF was simulated by initially adding four Archimedean spiral

waves on the atrial surface for a 15-s duration. The AF

simulation was defined as sustained if it had electrical activity for

at least 60% of the simulation duration. We modeled four types

of ablation strategies, including PVI and PVI together with LA,

RA, and bi-atrial fibrosis ablation (Figure 2A). Ablation lesions

were applied to the biophysical simulations by setting the

corresponding elements of the atrial mesh as non-conducting,

with more details in Zolotarev et al. (35). For example, PVI

ablations are simulated by adding two non-conducting rings

around the left and right pulmonary vein antra.

2.2.3 Feature extraction
The deep learning pipeline was trained based on different input

feature maps (Figure 2A). To construct 2D representations of 3D

feature maps and feed them into the pipeline, universal atrial

coordinates (20) were calculated for each mesh by solving a

Laplace equation with boundary conditions. Dominant frequency
FIGURE 3

(A) Flowchart of deep learning pipeline. LA, left atrium; RA, right atrium;
arithmetic attention (FOAA) block.
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(DF) and phase singularity density (PSD) maps have been

proposed to be relevant attributes to characterize atrial electrical

activity (36–38). We have also included the binary ablation

masks for each type of ablation. For the left atrium, there were

two types of ablation masks: PVI and PVI with left atrial fibrosis

ablation. For the right atrium, we included a mask with only

right atrial fibrosis ablation. The PVI mask for the right atrium

was simulated as an array with all zeros to keep the same

number of feature maps in both heads of the proposed DL

architecture (Figure 3A).

The DF values were calculated using the frequency of the

highest spectral peak of the signal, excluding peaks above 20 Hz.

The PSD maps were constructed by counting the number of PS

occurrences (31, 39) across the whole duration of the AF

simulation at each mesh element and smoothing the values

through the mesh. By assigning DF and PSD values from

selected mesh elements to corresponding 2D pixels for both LA

and RA, we generated four 2D feature maps: DF LA, DF RA,

PSD LA, and PSD RA. Finally, we created 2D ablation masks

and fibrosis maps (F LA and F RA) based on the same protocol

as for the DF and PSD maps (Figure 2A).

The binary outcomes of simulations after different ablation

strategies were used to train the DL pipeline and were assigned

GT labels, i.e., whether AF terminates or not. We counted the

AF episode as terminated if there is no electrical activity at the

end of the recording (specifically, the last peak of the action

potential is within the range 0%–60% of the whole duration of
FC, fully connected layer. (B) Detailed overview of the flattened outer
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the recording). To define the final GT, we calculated the last

peak’s values of the AF recordings on each mesh element for

both the left and right atria and averaged the value across all

elements (Figure 2B).
2.2.4 Deep learning pipeline for ablation outcome
prediction

We then checked the ability of synthetic fibrosis distributions

to imitate the real ones for use in biophysical simulations. We

utilized the previously proposed DL pipeline (35) based on

Siamese architecture (Figure 3A). Each head of the Siamese

architecture consists of a convolutional neural network

[DenseNet or ConvNeXt (40)] and utilizes five channel-wise

concatenated feature maps (two ablation masks: one for PVI

alone and one for PVI with fibrosis region ablation in a specific

atrium, PSD, DF, and fibrosis maps, all with the size 96 by 96

pixels) from the left and right atria separately. The outputs of

both heads (n ¼ 32 each) were fused in a specific manner. The

pipeline predicts the outcomes for all ablation strategies at once

as four values between 0 and 1 (binary classification for four

ablation strategies together rather than for each one separately).

The performance was evaluated by receiver operating

characteristic-area under the curve (ROC-AUC) scores on a

testing set of 100 virtual patients with fine-tuning of the

hyperparameters on the validation set. The training was

conducted on an NVIDIA GeForce RTX 3080 video card using

binary cross entropy loss and Adam optimizer with a learning

rate of 4×10−7.
2.2.5 Multi-modal fusion of feature maps
In this study, we explored the use of different multi-modal

fusion methods to improve outcome predictions. Previously, we

employed simple concatenation and a multi-modal arithmetic

block (MOAB) (41). The use of a MOAB allowed for the

combination of anatomical features by using outer arithmetic

operations. Here, we have introduced a new method: FOAA

block (42). Similarly to our previous paper, the FOAA block

employs the four outer arithmetic operations but now uses them

to replace the scaled-dot product for the calculation of the

attention scores (Figure 3B). The latent representations from the

two heads were used to derive keys K, queries Q and values V

vectors necessary to calculate an attention score as a measure of

the similarity between the keys and queries, which was then used

to weight the corresponding value vector. The FOAA block

also utilises cross-attention (43). This is done through the

fusion of the queries from one atria with the queries from the

other allowing for the interrelation and combination of every

learned feature from the two atria, and therefore improved

predictive capacity.

The calculated attention scores from the four outer arithmetic

operations were summed and integrated with the single modality

features via a skip connection. The output was flattened and then

passed through a 1D convolutional layer and two successive fully

connected layers (n ¼ 48 and 30, respectively). Layer

normalization was then performed on the output of the fully
Frontiers in Cardiovascular Medicine 07
connected layers before finally passing through a dropout layer

and an activation layer to produce a prediction.
3 Results

3.1 Artificially generated fibrosis
distributions and their statistics

We generated 100 synthetic fibrosis distributions based on a

diffusion model trained on 100 real LGE-MRI fibrosis

distributions, with examples shown in Figure 1A. The size of

both the real and generated images is the same, 96 by 96 pixels.

We transferred these distributions to the bi-atrial meshes, with

one distribution for the left atrium and one for the right atrium

by utilizing universal atrial coordinates (20).

Next, we statistically assessed the generated images. First, the

synthetic cases were compared with the real LGE-MRI and noise

distributions to find possible differences. The mean intensity of

the real LGE-MRI distributions was 1:1+ 0:2 IIR vs. 1:1+ 0:3

IIR for synthetic distributions and 1:0+ 0:2 IIR for noise

distributions. We next compared them by calculating mean SE

after applying a Gaussian filter as a measure of image

complexity. The mean SE for the real images was 0:77+ 0:06

and 0:81+ 0:03 for synthetic and 0:33+ 0:02 for the noise

images (Figure 4B). Therefore, we can conclude that entropy

measurement is an effective tool for separating meaningful

images from noise, and that the generated images have a close

distribution to the real LGE-MRI ones. However, the standard

deviation of entropy for the real LGE-MRI cases was much

higher than for the generated and noise fibrotic distributions,

which is shown in the histogram in Figure 4A.
3.2 Atrial fibrillation biophysical simulations

We then checked the applicability of the generated fibrotic

distributions for electrophysiological biophysical simulations on

cardiac digital twins. We used the dataset of 1,000 bi-atrial

meshes described in Section 2.2.1 to provide anatomical meshes

and incorporate the fibrosis distributions on these meshes. We

simulated electrophysiological wavefront propagation following

AF initialization and after four types of ablation strategies.

We assessed the percentage of sustained AF simulations for all

possible datasets and ablation strategies (Table 1). The

sustainability of AF was different for different datasets, with the

minimum for the testing set (65%) and maximum for the dataset

with noise (97%). Overall, the percentage of successful ablations

across all tested strategies (which lead to AF termination) varied

between 40% for the dataset with synthetic fibrosis and 65% for

the training dataset with real LGE-MRI distributions. Analyzing

this for the different ablation therapy approaches individually, we

found the same pattern for all datasets: the effectiveness of PVI

ablation was the lowest, PVI with RA fibrosis ablation was more

effective than PVI with LA fibrosis ablation, and PVI with bi-

atrial fibrosis ablation remained the most effective (Table 1).
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FIGURE 4

Shannon entropy values of real LGE-MRI, synthetic, and noise fibrosis distributions after applying a Gaussian filter: (A) as a histogram; (B) individually for
each distribution.

Zolotarev et al. 10.3389/fcvm.2025.1512356
When analyzing the effect of ablation predictions, it is

important to take into account that the mean of AF

sustainability before any ablation was different across different

datasets (Table 1, first column). Therefore, we also quantified the

relative mean of ablation outcome rather than the absolute value

of cases with AF termination. For this, we divided the percentage

of AF termination after ablation by the percentage of AF

sustainability before ablations. We found that the relative

percentages of AF sustainability after PVI and PVI with LA

fibrosis ablation strategies were very stable across all six datasets

(0:91+ 0:3 for PVI and 0:84+ 0:03 for PVI+LA, Table 2). The

effectiveness of PVI with ablation of fibrosis regions in both atria

varies highly, from almost zero for the noise dataset to 53.8% for
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the testing set. For the training set with noise images, it means

that AF terminated in all 400 cases except one case. This unusual

distribution can explain the bad performance of this training set

for the PVI+LA+RA prediction (Figure 6C).

Another important aspect is to investigate whether there is any

dependency between non-sustained cases and specific fibrosis

distributions on these meshes. In other words, whether there are

some fibrosis distributions that prevent the AF simulations from

being sustained and how they differ from others. We assessed

how many times different fibrosis distributions from the

collection of 100 LGE-MRI samples, on one side, and from the

generated 100 cases, on the other side, are used for the transfer

to the bi-atrial meshes. We then separated them into two classes
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TABLE 2 Relative effectiveness of AF ablation strategies: percentages of
AF sustainability after the specific type of ablation for each dataset and
mean percentage across all of them.

Dataset PVI PVI þ
LA

PVI þ
RA

PVI þ LA þ
RA

Training set (real LGE-
MRI)

0.921 0.851 0.763 0.512

Training set (synthetic) 0.855 0.790 0.511 0.344

Training set (noise) 0.943 0.858 0.640 0.003

Validation set 0.915 0.845 0.577 0.352

Testing set 0.908 0.831 0.708 0.538

Mean 0.91 0.84 0.64 0.35

SD 0.03 0.03 0.1 0.21

TABLE 1 Values of AF sustainability before and after different
ablation strategies.

Percentage of
sustained AF
recordings

AF PVI PVI þ
LA

PVI þ
RA

PVI þ LA
þ RA

Training set (real LGE-MRI) 0.86 0.79 0.73 0.65 0.44

Training set (synthetic) 0.66 0.56 0.52 0.34 0.23

Training set (noise) 0.97 0.91 0.83 0.62 0.0025

Validation set 0.71 0.65 0.6 0.41 0.25

Testing set 0.65 0.59 0.54 0.46 0.35
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based on whether the AF biophysical simulation with this fibrosis

distribution was terminated or sustained even before any ablation

(Figure 5). We found that most fibrosis distributions led to

sustained cases; however, there were 9 real LGE-MRI and 19

synthetic distributions where the number of terminated cases was

larger than the number of sustained ones (these distributions are

surrounded by red boxes in Figure 5). The average Shannon

entropy for these images was not significantly different from the

average SE for the whole set of 100 images (0.76 vs. 0.77 for the

real LGE-MRI distributions and 0.81 vs. 0.81 for the synthetic).
3.3 Ablation outcome predictions

We have also tested how the prediction of AF ablation

outcomes varies depending on the fibrosis distribution. The deep

learning pipeline presented in Section 2.2.4 was trained on three

different training sets (n ¼ 400 meshes) including real LGE-MRI,

synthetic, and noise fibrotic distributions. We then fine-tuned the

hyperparameters on the validation set of 100 meshes and

checked the model performance on the testing set of 100 meshes.

The architectures with the highest average ROC-AUC were

selected for each training set to show how the performance

changes depending on the different fibrosis distributions within

the training set. Training on the real LGE-MRI cases secured the

highest rank with a ROC-AUC of 0.952 on the testing set

(Table 3). The ROC-AUC for training on synthetic distributions

was slightly lower (0.943). We used the same DL pipeline based

on DenseNet121 and MOAB multi-modal fusion. The training

on the noise images achieved a much lower metric (0.682) with

the ConvNeXt network and MOAB multi-modal fusion inside.
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We present ROC curves and the AUCs for predicting different

ablation strategies separately. The curves represent the best-

performing models mentioned in the paragraph above. Typically,

the PVI outcomes were the easiest to predict, with an AUC of

0.97 for training on the real LGE-MRI distributions and 0.964

for training on the synthetic ones (Figures 6A,B). However,

training on noise images showed the best prediction performance

for PVI with left atrial fibrosis ablation, with an AUC ¼ 0.795

(Figure 6C). The AUCs for PVI with bi-atrial fibrosis ablations

are the lowest for all three scenarios.

We compared alternative configurations to determine the best

ROC-AUC for each training set (Table 3). We used two neural

network backbones (DenseNet121 and ConvNext) and three

approaches for feature fusion (simple concatenation, MOAB, and

FOAA). In most cases, DenseNet121 performed better than

ConvNext (six items out of nine comparisons, including the

highest ROC-AUC). Regarding the fusion technique, MOAB and

FOAA had close metrics, with MOAB performing the best when

training on real LGE-MRI and synthetic cases, and simple

concatenation providing significantly lower metrics.

We also repeated the ablation study for feature maps as in our

previous study (38). We utilized the best model (DenseNet121 with

MOAB fusion) and tested how changes in input feature maps affect

the predictive performance. We found that a full set of feature

maps is crucial to achieving the highest prediction performance

with the phase singularity density map being the most important

(ROC-AUC ¼ 0.732 when used alone, Table 4).

Finally, we tested how the metrics changed if we trained the

model on a mixture of two training sets: the first one consisted

of real LGE-MRI and synthetic distributions and the second one

consisted of real LGE-MRI and noise distributions. The results

for the testing set are shown in Table 5. The highest ROC-AUC

for training on the mixture of real LGE-MRI and synthetic cases

was 0.946, which was between the highest metrics for training on

only real data (0.952) and on only synthetic (0.943). It was

obtained using the DenseNet121 network with the simple

concatenation of feature maps. Interestingly, the same value was

achieved after training the model on a mixture of real LGE-MRI

and noise fibrosis distributions (DenseNet with MOAB multi-

modal fusion architecture).
4 Discussion

We investigated the potential of utilizing synthetic fibrosis

distributions to predict the outcomes of AF ablation procedures

via a deep learning pipeline trained on feature maps from

biophysical simulations of atrial fibrillation. We found that the

prediction performance of the deep learning pipeline trained on

synthetic fibrosis distributions is comparable to those achieved

with real LGE-MRI distributions. The statistical assessment of

synthetic and LGE-MRI fibrosis distributions highlights the

similarity of these clusters in terms of both mean intensities and

Shannon entropies.

We utilized a previously proposed generation architecture

(14) that was, to our knowledge, the first implementation of a
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FIGURE 5

Number of terminated and sustained AF simulations for each fibrosis distribution in two collections of 100 images-real LGE-MRI (A) and synthetic (B).
Red boxes surrounded the distributions where the number of terminated cases is larger than the number of sustained ones.

TABLE 3 ROC-AUC values for prediction of AF ablation outcomes on the testing set.

ROC-AUC Testing on real LGE-MRI Testing on synthetic Testing on noise
Fusion type Concat MOAB FOAA Concat MOAB FOAA Concat MOAB FOAA

DenseNet 0.911 0.952 0.946 0.7 0.943 0.928 0.427 0.597 0.666

ConvNeXt 0.932 0.949 0.879 0.52 0.926 0.926 0.51 0.682 0.427

On the testing set, the best metrics for each training set is shown in bold.
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diffusion model for fibrosis generation. However, the number of

cases in our previous study was limited to 100, we did not

perform Shannon entropy analysis and we aimed to predict

only PVI ablation outcomes by calculating only the dominant

frequency feature maps. More recently, we developed a deep
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learning pipeline with a multi-modal fusion of feature maps

from AF simulation before any ablation to predict the

outcomes of various types of ablation strategies (35). Our

current work combines the best approaches of these two works

with key improvements as follows:
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TABLE 4 The effect of input feature maps on the prediction performance.
DF, dominant frequency; PSD, phase singularity density.

Mask Fibrosis þ
mask

DF þ
mask

PSD þ
mask

Full

ROC-
AUC

0.711 0.55 0.668 0.732 0.946

On the testing set, the best metrics for each training set is shown in bold.

TABLE 5 ROC-AUC values for prediction of AF ablation outcomes on the
testing set while training the pipeline on the mixture of datasets:
combined real LGE with synthetic fibrosis distributions or real LGE with
noise fibrosis distributions.

ROC-AUC (test
results)

Real LGE-MRI
and synthetic

Real LGE-MRI
and noise

Fusion type Concat MOAB FOAA Concat MOAB FOAA

DenseNet 0.946 0.896 0.936 0.935 0.946 0.927

ConvNeXt 0.931 0.931 0.929 0.931 0.927 0.927

On the testing set, the best metrics for each training set is shown in bold.

FIGURE 6

ROC curves with AUCs for the predictions of each simulated ablation strategy (n ¼ 4) on the testing set: (A) for training on real LGE distributions, (B) for
training on synthetic distributions, and (C) for training on noise distributions.
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• We changed the deep learning pipeline to predict ablation

outcomes for all ablation strategies at once (binary

classification for four ablation strategies together rather than

for each one separately).

• We tested a new convolutional neural network (ConvNeXt) and

a new multi-modal fusion (FOAA) block.

• We separated 1,000 bi-atrial meshes and fibrosis distributions

into training, validation, and testing sets to avoid data leakage.
We selected the DDPM architecture because it is the simplest

diffusion model (U-Net is the standard backbone for diffusion

models and we added the attention block to enhance performance)

and showed good results in the generation of medical images.

However, there are other options to generate images, such as

generative adversarial networks (GANs) or VAEs, for example.

There are many examples of successful implementations of VAEs

for image generation (44). The main disadvantage of VAEs is that

the generated images are noisy without clear borders of objects,

but this should not be a problem for synthetic fibrotic distributions

(even real LGE-MRI distributions have unclear borders of high-
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intensity clusters, as shown in Figure 1). However, given that

diffusion methods have superseded GANs and VAEs in image

synthesis (45), we focused on diffusion methods in this article.

Future research is needed to compare different generative

technologies such as diffusion models, VAEs, and GANs in the

creation of artificial fibrosis distributions.

The number of real LGE distributions (n ¼ 100) was less than

the number of atrial anatomies (n ¼ 1, 000), therefore some

meshes were covered by the same LGE distribution. To avoid

data leakage, we separated the 100 fibrosis distributions into

three parts, with 80 distributions being assigned for the first

training set, 10 for the validation set, and 10 for the testing set.

This selection was not stratified and can introduce selection bias,

although the ROC-AUC metrics for the validation and testing

sets across all experiments were very close (Tables 3 and 7), and,

therefore, the effect of selection bias was not significant.

We checked that the generated distributions were statistically close

to the real ones by analyzing the mean values of the images and mean

Shannon entropies. Moreover, SE was used for the final selection of

synthetic cases: we only selected cases with SE . 0:66. We also

tested another statistical metric (Moran’s I) for the selection, as

proposed in Lawson et al. (13). Moran’s I (46) is a measure of spatial

auto-correlation, i.e., it informs us of how similar regions in the

image are to those around them. However, we observed that this

metric was not suitable for our task: the mean Moran’s I was

0:96+ 0:02, 0:97+ 0:01, and 0:978+ 0:001 for the real LGE-

MRI, synthetic, and noise fibrosis distributions, respectively.

We calculated how long the training and generating stages of

the diffusion model took. Training the DDPM model on 100

images for 500 epochs lasted approximately 3 min while

generating 100 synthetic cases took approximately 15 min (10 s

per case). To test the approximate times for larger datasets, we

generated 1,000 noisy distributions and used them as a training

set. The training for the same 500 epochs took 62 min, and

generating 1,000 synthetic images using the trained model lasted

150 min. Overall, we can report that training on a 10 times

bigger dataset was 20 times longer, while generating cases has the

same speed per case (around 10 s). The comparison was

conducted using an NVIDIA GeForce RTX 3080 video card.
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TABLE 6 ROC-AUC values for the prediction of AF ablation outcomes on fivefold cross-validation, showing the prediction consistency.

ROC-AUC Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean + SD
Validation 0.9034 0.8352 0.8783 0.8882 0.8785 0:88+ 0:03

Test 0.9518 0.9437 0.9426 0.9402 0.9431 0:94+ 0:04

The deep learning pipeline was trained on four folds and evaluated on the remaining fifth fold (top row) and the hold-out testing set (bottom row).

TABLE 7 ROC-AUC values for prediction of AF ablation outcomes on the
validation set while training the pipeline on a mixture of datasets.

ROC-AUC Validation on real
LGE-MRI and
synthetic

Validation on real
LGE-MRI and noise

Fusion type Concat MOAB FOAA Concat MOAB FOAA

DenseNet 0.909 0.891 0.909 0.894 0.898 0.889

ConvNeXt 0.883 0.883 0.867 0.863 0.863 0.851

On the testing set, the best metrics for each training set is shown in bold.
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When analyzing the comparison study on different

architectures for the deep learning pipeline, we found that the

multi-modal fusion of feature maps always outperformed the

simple concatenation. The results of MOAB and FOAA were

very close (Table 3). Both provided rich ways to intermingle LA

and RA features. However, FOAA’s attention-based strategy did

not improve over MOAB, likely because MOAB already captures

discriminative features, enabling the model to focus on key

information and enhance outcomes. Attention mechanisms, such

as those in FOAA, often require a more advanced setup,

including multi-headed or gated attention, however, this is left

for future work.

We also investigated how consistent the predictive ability of the

deep learning pipeline was across repetitive runs via fivefold cross-

validation. The training set with real LGE-MRI distributions,

which originally consisted of 400 meshes, was separated into four

non-overlapping folds of 100 meshes each. The initial validation

set consisted of 100 meshes and was counted as the fifth fold. The

model was consecutively trained on four folds and then tested on

the fifth one, resulting in five ROC-AUC metrics. To simplify the

test, we performed the calculation with the best configuration—

DenseNet with MOAB fusion. Table 6 presents the achieved

results, with a mean ROC-AUC of 0:88+ 0:03 on the validation

folds and 0:94+ 0:04 on the hold-out testing set. Therefore, the

proposed model was stable during the cross-validation experiments.

We have shown that training on synthetic cases leads to

significantly better performance rather than training on noise

images. However, the training on the mixture of real LGE-MRI

and synthetic cases did not provide better results in comparison

with training on the mixture of real LGE-MRI and noise fibrosis

distributions. In contrast, testing the best models on the

validation set showed the expected dynamics (Table 7).

Following our approach to predict all outcomes for different

ablation strategies at once, our future direction and next goal will

be to add more clinically relevant ablation strategies and to find

a way to select the optimal ablation strategy. Recently, Sakata

et al. (47) showed that not all AF sources should be ablated and

some AF drivers lost arrhythmogenic capabilities after other

drivers were destroyed. They suggest providing minimum

ablation lesions, preventing both AF recurrence and

iatrogenic tachycardia.

By following this approach and developing a clinical decision

support tool based on deep learning models and synthetic

datasets, significant advancements can be achieved in AF

treatment. These tools can enhance diagnostic accuracy and

personalize treatment plans, potentially leading to improved

patient outcomes. Synthetic datasets can help overcome data

scarcity and bias, enabling more robust model training and

validation. As a result, integrating deep learning-based decision
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support systems into clinical practice has the potential to

optimize AF management and prevent AF recurrence.
4.1 Limitations

Our study is not without limitations. First, all findings were

based on synthetic SSM anatomies, which may not capture all

possible shape variabilities, and further validation on clinical

shapes and clinical recordings is needed. Second, AF episodes

were initiated by four spiral waves; however, this is not the most

common and clinically relevant initiation protocol for AF. Thus,

further investigation is needed to compare the AF initiation

while performing AF biophysical simulations based on real

clinical data. All atrial meshes utilized the same fiber field. The

choice of atrial cell model and methodology used to capture

fibrotic remodeling will affect AF dynamics and ablation

outcome. Future studies are required to investigate these effects

across the spectrum of AF dynamics. In total, 1,000 meshes were

generated from a limited number of atrial anatomies, and

although it was previously shown that the anatomical volumes of

this virtual cohort were within the range of values from UK

BioBank cohort of over 5,000 individuals (48), the

generalizability issue should be tested more carefully on a larger

set of clinical meshes. The threshold for creating the ablation

mask from fibrosis distributions and the resolution of all feature

maps were set up to be 1.22 IIR and 96 pixels, respectively, and

changing the values of these hyperparameters may affect the

results. The area near the sinoatrial node was not excluded from

the RA ablation masks. We aim to predict the acute response

after AF ablation; however, AF can be recurrent and appear

again months after ablation. Further studies utilizing longitudinal

datasets and protocols to evaluate the likelihood of AF initiation

and maintenance over time are needed to predict AF recurrence

and estimate AF burden. Finally, the sustainability of AF

recordings before ablations was not 100%, which helps the deep

learning pipeline to predict the ablation outcomes for non-

sustained cases.
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5 Conclusion

To conclude, we explored the potential of using synthetic

fibrosis distributions for AF biophysical simulations and

predicting outcomes of AF ablation strategies. First, we

demonstrated that fibrosis distributions generated by our

diffusion model closely resembled actual LGE-MRI distributions,

based on metrics such as mean intensities and average Shannon

entropy. Second, we confirmed that AF biophysical simulations

can be effectively conducted on bi-atrial meshes incorporating

these synthetic distributions. Notably, training our deep learning

pipeline on these simulations produced performance metrics

comparable to those achieved with real LGE-MRI fibrosis

distributions. Synthetic fibrosis distributions can help overcome

the challenge of limited availability of clinical datasets and enable

precise and optimal selection of AF treatment strategy.
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