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Introduction: Clinical evidence highlighting the efficacy and safety of
transcatheter aortic valve replacement (TAVR) and the 2019 Food and Drug
Administration (FDA) approval for TAVR in low-risk (younger) patients has
created a demand for durable and long-lasting bioprosthetic heart valve (BHV)
leaflet materials. Over the life of an implanted BHV mechanical stress,
immunogenicity, calcification, and hemodynamic dysfunction lead to failure
via structural valve deterioration (SVD). Consequently, the durability of the
bioprosthetic materials selected for valve manufacture is of utmost importance.
Technology: The ADAPTTM tissue engineering process, an anti-calcification
preparation that transforms xenograft tissue (bovine pericardium) into a
durable valve bioscaffold, shows significant clinical benefits in mitigating the
interrelated mechanisms leading to SVD. The novel acellular, biostable and
non-calcifying biomaterial has recently been molded into a single-piece 3D
biomimetic valve (DurAVRTM) with excellent early clinical results and the
potential to meet the growing demand of durable BHVs for the treatment of
aortic stenosis.
Discussion: The unique design of the DurAVR biomimetic valve in combination
with the superior biostability of ADAPT tissue could advance the BHV space by
providing superior performance and durability to aortic stenosis patients in
need of TAVR.
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1 Introduction

Transcatheter aortic valve replacement (TAVR) was developed as a treatment option

for patients with aortic stenosis (AS) and a high-risk for open-heart surgery. In 2019, as

the annual number of TAVR cases began to exceed surgical cases (1), continued

improvements in procedural clinical efficacy and safety led to the approval of TAVR for

younger, lower-risk patients by the US Food and Drug Administration (FDA). The
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COVID-19 pandemic in 2020 caused a shift toward less invasive

treatment options intended to shorten in-hospital stays without

compromise of short-term outcomes (2). More recently, the

addition of positive 4- and 5-year data from randomized

controlled trials comparing TAVR to surgical implants in

patients with a low-risk for open-heart surgery (3, 4) suggests

that there will continue to be a dramatic increase in the yearly

caseload of TAVR procedures in the coming years (5).

As an alternative to mechanical heart valves, the use of

bioprosthetic heart valves (BHV) is gaining popularity with

several key advantages. However, the biomaterials used in current

BHV designs have yet to be optimized to attenuate structural

valve deterioration (SVD) and remain fully functional for the

patient’s expected lifespan. The market for novel biologics and

tissue engineering processes has expanded within the last 10

years, which in turn, has greatly enhanced valve leaflet integrity.

However, the need for the development of a valve that achieves

true for long term durability remains elusive and, the need for

repeat procedure such as valve in valve or redo-TAVR poses a

significant public health issue.

The ADAPTTM tissue engineering process is an anti-

calcification preparation that transforms xenograft tissue, such as

bovine serum albumin (BSA)-free bovine pericardium, into a

durable bioscaffold that has the potential to mitigate SVD. The

novel, acellular, biostable, and non-calcifying biomaterial has

recently been molded into a single-piece 3D tissue heart valve to

meet the growing demand of durable bioprosthetic for TAVR.

Moreover, clinical data at 1 year shows sustained hemodynamic

performance with no signs of SVD (6). This scientific review

focuses on the evolution of the ADAPT tissue engineering

process and explores its application to a novel 3D single-piece

biomimetic tissue heart valve (DurAVRTM).
2 Aortic valve disease, treatments, and
structural valve deterioration

2.1 Aortic valve structure and function

The aortic valve (AV) generally presents with three

cusps composed of collagen, elastin, glycosaminoglycans and

proteoglycans arranged in a complex layered configuration

(Figure 1A). This composite structure provides both flexibility

for dynamic opening and closing and tensile strength to resist

transvalvular pressure (7). Due to its role dividing a major

pressure differential, the AV is subject to significant physical

wear and tear. As such, when valve function is impaired via

stenosis and/or regurgitation, valve repair or replacement is

necessary to avoid heart failure.
2.2 Bioprosthetic heart valves

Cardiac surgeons and interventional cardiologists have

multiple options when choosing a bioprosthetic heart valve.

Reduced coagulation concerns and recent developments in tissue
Frontiers in Cardiovascular Medicine 02
engineering processes have increased BHV longevity making

them a favorable choice over their mechanical counterparts. The

differing tissue sources, preparation procedures and valve

geometries of commercially available BHV dramatically influence

the durability and biostability of the implanted valve. The innate

elastic properties and uniform suture retention of xenogeneic

pericardium derived from both bovine and porcine sources has

been incorporated in many BHV leaflet designs. However,

despite effective tissue processing techniques designed to mitigate

damage and host immune response to the prosthesis, commercial

valves and patches derived from xenogeneic tissue are still at risk

of failure due to calcification, infection, and thrombo-embolic

events (8).
2.3 Structural valve deterioration

Mechanisms underlying structural valve deterioration (SVD)

remain incompletely understood and additional research to fully

elucidate the degenerative process are needed. Durability is

measured as an outcome of resistance to SVD, irreversible

multifaceted process resulting in impaired structure and function

of the valve (Figure 1B). In addition to the alternating

mechanical stresses generated by the challenging hemodynamic

environment and the cyclic opening and closing demands on the

BHV, there are multiple biologic pathways that can initiate SVD.
2.4 Biologic mechanisms of structural valve
deterioration

The presence of xenogeneic antigens such as cells and cell

remnants, nucleic acids, and lipids in BHV leaflets trigger an

immune response resulting in excessive fibrosis and calcification

mediated SVD (9, 10) (Figure 1B). This is particularly true for

galactose-α-1,3-galactose (α-Gal) epitopes, which are carbohydrate

antigens expressed in animal derived tissues, as well as residual

DNA and RNA that trigger a cytokine storm and play a key role

in immune-mediated biological heart valve failure (11, 12).

Damage to the native tissue inflicted during the implantation

procedure can also exacerbate the foreign body reaction by

adhesion of serum proteins to the surface of the implant

triggering the contact activation system, fibrinolysis and

complementary cascades, resulting in adhesion of platelets and

activated leukocytes to the surface of the BHV (13). Platelet and

leukocyte adhesion in the peri-implant area causes inflammation

and thrombosis. This results in the emergence of immune

infiltrates and leads to fibrovascular outgrowths, also known as

pannus, in areas where recipient tissue and the implant make

contact (14).

Driven by factors related to host metabolism, implant tissue

structure, physical stress, and implant chemistry, calcification is

considered to be the primary cause of SVD in BHV (15)

(Figure 1B). Other known calcification agents include membrane-

associated complexed acidic phospholipids and xenogeneic cell

component biomaterials (i.e., extracellular matrix proteins, non-
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FIGURE 1

Aortic valve disease. (A) Age-related calcification and congenital heart defects can lead to severe aortic valve conditions including regurgitation and
stenosis. If left untreated, conditions can lead to heart failure with increased mortality rates. Patients with aortic valve disease typically have two
treatment options, surgical valve replacement or TAVR. (B) SVD occurs due to several interrelated mechanisms that increase inflammation,
calcification, and impair valve hemodynamics. Contextual factors such as a young host with a strong immune response can increase the risk of
developing SVD. The origin of the biomaterial can also carry added risk, with xenografts from bovine or porcine origin being recognized by the
host as a foreign tissue. In addition, commonly applied chemical glutaraldehyde treatment of the implanted material is ineffective at removing
cellular antigens and can exacerbate calcification. The ADAPTTM tissue engineering process aims to mitigate or abolish key risk factors leading to
SVD (identified in black boxes). TAVR, transcatheter aortic valve replacement; SVD, structural valve deterioration.

Neethling et al. 10.3389/fcvm.2025.1512961
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viable interstitial cells and cell remnants). The intrinsic chemical

properties of the leaflet are known to either promote or inhibit

calcification depending on the tissue engineering process (8).
2.5 Efficacy of common tissue fixation
processes in mitigating structural valve
disease

Glutaraldehyde treatment of bovine pericardium, proposed as

an effective way to remove α-Gal and maintain durability

through the cross-linkage of collagen molecules, has been shown

to reduce the antigenic response to BHV leaflets (16, 17).

However, glutaraldehyde is reported to increase the rigidity of

the BHV leaflet, which results in increased destruction of

collagen and elastin fibers during cyclic deformation (13). In

addition, glutaraldehyde-treated BHV leaflets are susceptible to

calcification, especially in younger patients (18). It is thought that

glutaraldehyde fixation exposes aldehyde groups that react with

circulating phospholipids and calcium ions (19). This fixation

approach also removes soluble proteins (i.e., glycoproteins) from

the tissue that are reported to block calcium-binding sites and

thereby inhibit the start of the calcification process (20).

Moreover, decellularization processes have also been proposed as

an effective way to remove all cell remnants from the

bioprosthetic material. However, this process leaves trace

amounts of nucleic acids, an extremely potent inducer of a

negative immune response to the implanted BHV (21).
2.6 Hemodynamic impact of structural
valve deterioration

Each mechanism of SVD outlined in Figure 1B impacts the

hemodynamic function of the implanted BHV. It has been well

documented that the disruption of blood flow through the BHV

leads to both high turbulence and fluid stagnation around the

leaflets. This in turn compromises the durability of the BHV and

results in an increased probability of thrombi formation or

calcification (22, 23). To improve the clinical diagnosis of SVD

and enhance the patient’s continuum of care, a standardized

assessment of BHV hemodynamics has been developed to

evaluate the impact of SVD across different BHV designs.

Multiple consortiums have established criteria intended to define

how changes in hemodynamic function correlate to bioprosthetic

valve failure irrespective of the failure mechanism (24).
3 The development of a novel tissue
processing technique

3.1 ADAPT tissue engineering process

The ADAPT tissue engineering process (Figure 2) transforms

xenograft tissue into durable bioscaffolds that can be used to

mimic human tissue for surgical repair in multiple settings. The
Frontiers in Cardiovascular Medicine 04
evolution of the current ADAPT process involved a series of

studies that identified and overcame limitations of existing

biomaterials and tissue engineering processes resulting in a novel,

acellular, biostable and non-calcifying biomaterial.

In 2006, Neethling et al., addressed the limitations

of glutaraldehyde-associated calcification by creating a novel

anti-calcification tissue engineering processes involving lipid

extraction, conformation of collagen structure, and neutralization

of residual glutaraldehyde (25). The development of a densely

arranged fibrosa with superior tensile and anti-calcification

properties reduced the presence of inter-collagen spaces,

known to promote the deposition of blood proteins leading

to calcification (26). The addition of crosslinking, verified

via shrinkage temperature tests and increased resistance to

enzymatic degradation (26), was achieved through a modified

glutaraldehyde and non-glutaraldehyde sterilization method. This

resulted in a significant reduction of calcification compared to

conventional glutaraldehyde tissue treatments (9, 27, 28).

However, decellularization alone failed to produce a biologically

inert matrix (29). In response, a synergized process combining

ultra-low glutaraldehyde with the ADAPT anti-calcification

process to completely remove all cell remnants was developed

and resulted in a significant reduction of residual α-Gal and zero

DNA/RNA (30). The advantage of glutaraldehyde-reduction and

non-glutaraldehyde storage of bioprosthetic valve tissue was also

confirmed in a rabbit model with the Edwards RESILIATM

tissue (31).

While healthy native vasculature tissue and cardiac valves are

metabolically active and capable of self-repair, the altered

structure in chemically treated biomaterials can prevent the host

cell repopulation required to initiate leaflet remodeling, growth,

and repair (32). The ADAPT tissue demonstrated successful

recellularization by host cells with an absence of a chronic

immune response confirmed in a subcutaneous rat model (27)

Thus, the attenuation of an immune response, capacity for host

cell infiltration with neocapillary formation, and mitigation of

calcification suggests that ADAPT processed tissue will perform

as well as a clinically implanted biomaterial.
4 In-vitro and in-vivo assessment of
ADAPT tissue performance

4.1 In-vitro testing

The biological properties of ADAPT tissue were compared

with several commonly used tissue-engineered bioscaffolds

such as bovine pericardial scaffolds, cross-linked with 0.6%

glutaraldehyde (XenoLogiXTM, PeriGuard®), dye-mediated

photo-oxidized (PhotoFixTM) and a non-crosslinked porcine

scaffold (CorMatrix®) (33). Collectively, ADAPT tissue

demonstrated signifficantly higher cross-link stability than non-

aldehyde crosslinked competitors, optimised tensile strength

without the downfall of stiffness compared to XenoLogiX

and PeriGuard and superior biocompatibility with minimal

mineralisation potential.
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FIGURE 2

ADAPTTM tissue engineering process. BSE-free bovine pericardium is decellularized to remove all cellular antigens known to initiate inflammation and
interrelated calcification mechanisms. The ADAPTTM cross linking treatment with a modified monomeric glutaraldehyde at a low concentration
enables maintenance and stabilization of strength and elasticity to improve mechanical resistance. The cytotoxicity is further reduced using
detoxification and sterilization processes, as well as a anti-calcification methodology to remove and bind aldehydes and enable safe storage in a
non-glutaraldehyde solution. Post-implantation, ADAPTTM tissue provides a scaffold for cell migration to create the optimal environment. Migrated
cells can stimulate site-specific remodeling, repair, and enable the formation of new blood vessels to improve hemodynamic function. The
ADAPTTM tissue engineering process minimizes risk factors known to cause structural valve deterioration and creates a durable biomaterial
optimized for a TAVR application. TAVR, transcatheter aortic valve replacement; SVD, structural valve deterioration.

Neethling et al. 10.3389/fcvm.2025.1512961
4.2 Pre-clinical testing

The replacement of the posterior leaflet of the mitral valve and

one of the leaflets the pulmonary valve in growing sheep was used
Frontiers in Cardiovascular Medicine 05
to assess the performance of ADAPT treated tissue in vivo (34).

Briefly, the mechanical properties of ADAPT tissue were preserved

at 7 months post procedure with evidence of a more controlled

and gentle healing process than autologous pericardium treated
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1512961
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Neethling et al. 10.3389/fcvm.2025.1512961
intraoperatively with glutaraldehyde. In addition, the prevention of

calcification in this challenging circulatory model suggests that

ADAPT treated tissue would be durable and more favorable in a

clinical setting. The ADAPT tissue was also extensively tested in a

sheep model of complete tri-leaflet aortic valve reconstruction

following the Ozaki technique. Aortic valves reconstructed with

this pericardial patch demonstrated adequate diastolic function

with minimal regurgitation and resistance to calcification.

Sustained mechanical integrity of the patch and no calcification

were noted, indicating the potential of this material for various

valve related pathologies (35).
TABLE 1 Incidence of SVD between ADAPT-treated and non-ADAPT
treated scaffolds.

Product SVD rate (%) Reference

ADAPT-treated
Xenogeneic scaffold 0.0 Neethling et al. (26–28)

Bell et al. (37)

Non-ADAPT treated

Surgical
Xenogeneic Scaffolds 18.2 Veličković et al. (40)

Autologous Scaffolds 12.5 Veličković et al. (40)

Synthetic Scaffolds 35.0 Veličković et al. (40)

CoreValve 26.6 Gleason et al. (41)

Mosaic, Epic, Trifecta, Perimount,
or Sorin Mitroflow

24 Søndergaard et al. (42)

Transcatheter
CoreValve, SAPIEN, Portico, or
Other

9.1 Blackman et al. (43)

First-generation CoreValve or
SAPIEN

14.9 Deutsch et al. (44)

SAPIEN, CoreValve, or Jena 11.2 Durand et al. (45)

CoreValve 4.6 Testa et al. (46)

PVT/Cribier-Edwards, SAPIEN,
or SAPIEN XT

3.2 Eltchaninoff et al. (47)

CoreValve 9.5 Gleason et al. (41)

First-generation CoreValve 4.8 Søndergaard et al. (42)

SVD, structural valve deterioration.
4.3 Clinical use in surgical repairs

The ADAPT-treated BSE-free bovine pericardium has been

successfully validated in a Phase II Clinical Trial in pediatric

patients with a range of congenital cardiac anomalies. At 6- and

12-months post-implant, no graft related morbidity was

reported and echocardiography exhibited intact anatomical and

hemodynamically stable repairs without any visible calcification.

Subsequent follow up visits at 18–36 months provided no evidence

of calcification, infection, thromboembolic events, or graft failure

(28). At medium to long term (up to 10 years) follow up, there

was no evidence of graft failure, calcification, thromboembolic

events, infections, or device-related reinterventions (36). Apart

from encouraging results, one of the limitations of this study was

the relatively small sample size with only 30 enrolled patients.

Larger scale studies were performed using ADAPT tissue grafts

in pediatric patients undergoing surgical repair of congenital heart

defects (n = 377) in Australia and the United Kingdom (37). In this

setting, ADAPT-treated tissue demonstrated excellent durability

with no evidence of endocarditis or calcification via echocardiogram

or magnetic resonance imaging over a median follow up period

of 24 months.

Similarly, in a recent case study of a young adult with symptomatic

right heart failure secondary to tricuspid valve regurgitation, ADAPT

tissue was reported to have excellent durability and function when

used in a complex reconstruction of the anterior tricuspid leaflet

(38). Moreover, at the 2 year follow up assessment, the repair

remained intact with an improvement in symptoms and complete

resolution of hepatic congestion and heart failure.

From a clinical perspective, ADAPT tissue has demonstrated

satisfactory durability and elasticity intraoperatively when used a

variety of cardiac surgical repairs and reconstructions, providing

optimal implantation to patient tissues (39). As expected, no

symptoms of pseudoaneurysm, patch thickening or calcification

were observed at the patch site at a short term follow up.

Additionally, ADAPT treated BSE-free bovine pericardium has

been predicted to reduce the incidence of re-operation, increase

in quality-adjusted life year after procedure, and reduce costs

over a 40-year time horizon relative to xenogeneic and synthetic

patches (40). Taken together, these studies and clinical trials

confirm that the cellularity, biostability, and non-calcifying

properties make the ADAPT tissue process a superior durable

biomaterial that can be easily used in surgery (Table 1).
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5 Development of a novel
transcatheter heart valve

In addition to using a tissue treatment with maximum

protection against extrinsic and intrinsic calcification,

optimization of the TAVR leaflet design is imperative to help

reduce stress within the BHV leaflet caused during typical valve

function. The established TAVR valve design consists of three

flexible leaflets attached to a stent via sutures to replciate the

semilunar form of the native valve. The attachment of multiple

leaflets sewn together can compromise the durability of the

TAVR as sutures create a hotspot for increased mechanical

tension thereby worsening SVD (20, 22, 32, 48).

Twenty years ago, the first demonstration that 3D leaflet

geometry positively influenced leaflet stress distribution and

coaptation when compared to a traditional two-dimensional

leaflet geometry was published (7). In 2017, building off this

experimental finding and inspired by the basic anatomical

features and geometry of the native human aortic valve as

described by Mercer in 1973 (49), a single piece of ADAPT

tissue was molded into a 3D aortic valve and attached securely to

a stent with a minimal number of sutures as illustrated

previously [Central illustration A (6)]. Within this design, the

basic curvature of the leaflet is hemiparaboloid with a parabolic

outline in radial cross section. Each leaflet consists of a belly

with two enlarged coaptation surfaces (lunulae) to ensure

optimal hemodynamics during the cardiac cycle (50). The belly

of the cusp is designed to allow for maximum washout of the

native sinuses, which lowers the risk associated with

thromboemboli formation (51). The coaptation surface areas are
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significantly increased compared to traditional flat sheet cusp

designs, reducing commissural stress and thereby benefitting

long-term durability. In addition, the leaftlet design leverages the

advantage of the inherent elasticity of ADAPT tissue to

withstand the mechanical stresses exerted on the valve

throughout the cardiac cycle (9). The thickness and elastic

modulus of the leaflet is optimized to avoid leaflet fluttering

associated with accelerated fatigue and premature failure of

flexible biomaterials (52). Durability is further enhanced through

the specific orientation of the pericardium during molding of the

valve, which ensures anisotropism to retain the variable elastic

modulus of the natural leaflet in the circumferential and radial

directions, respectively.
6 In vitro and in vivo assessment of the
DurAVR TAVR

Since its inception in 2017, the evolution of the DurAVR TAVR

system has progressed rapidly. Leaflet and frame durability has been

proven through standardized benchtop methods, such as accelerated

wear testing, and testing in chronic ovine models has shown

excellent resistance to calcification, fibrosis, and thrombosis. The

first human implants were completed in 2022, with encouraging

post-implant hemodynamics [Panel B of the Central Illustration in

reference (6)] and the presence of near-laminar systolic flow

characteristics with 2D cardiac magnetic resonance imaging at 6

months [Panel C of Central Illustration in reference (6)].

Subsequent 1 year follow up data demonstrated a sustained

hemodynamic performance indicating valve function was

maintained (6). Taken together, this early clinical data suggests that

ADAPT tissue combined with the biomimetic 3D single leaflet

design is a safe and effective future solution for complete valve

replacement, which could position DurAVR as one of the potential

preferred choices among the next generation of TAVR valves.
7 Discussion

The ADAPT tissue engineering process has greatly improved the

biostability and performance of bovine tissue grafts used for surgical

repair in the congenital pediatric population. To meet the rising need

for a durable TAVR, the ADAPT tissue scaffold has been used to

create a biomimetic 3D single piece valve with optimal

hemodynamic and durable properties. Early clinical data has

shown the restoration of near-laminar flow at 6 months and

excellent hemodynamic performance at 1 year. Thus, the

combination of the unique design of the DurAVR biomimetic

valve with the superior biostability of ADAPT tissue is poised to

revolutionize patient management in the treatment of aortic stenosis.
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