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Background: Acute myocardial infarction (AMI) is a major cause of morbidity and

mortality. Disulfidptosis, a novel form of programmed cell death, has been

largely unexplored in AMI. This study aims to identify disulfidptosis-related

genes in AMI and assess their diagnostic potential using bioinformatics and

machine learning.

Methods: The microarray datasets GSE60993 and GSE61144, associated with

Acute Myocardial Infarction (AMI), were obtained from the Gene Expression

Omnibus (GEO) database. Differential disulfidptosis-associated genes were

identified via differential expression analysis. The disulfidptosis related genes

were collected from FerrDb V2 and the differentially expressed disulfidptosis

related genes were utilized to construct a Protein-Protein Interaction (PPI)

network. Key genes were identified utilizing a Protein-Protein Interaction (PPI)

network and plugins available in Cytoscape. The key genes were used to

detect potential biomarkers by receiver operating characteristic (ROC)

analysis.Next, GO and KEGG analyses, as well as correlation analysis were

performed on the key genes, and potential drug molecules targeting these

genes were also analyzed. At the same time, key genes further screened by

Support Vector Machine (SVM), Lasso regression, as well as random forest. By

intersecting the results of the three, we ended up with hub genes for AMI.

The expression of these key genes was verified using external dataset GSE61144.

Results: A total of 16 differentially expressed disulfidptosis related genes were

identified and these genes were mainly enriched in the pathways of

“regulation of actin cytoskeleton organization”, “regulation of actin filament-

based process”, “regulation of actin filament organization”, “cell cortex”, “cell

leading edge”, “cadherin binding”, “actin filament bindin, and “D-glucose

transmembrane transporter activity”. The top 10 hub genes ACTB, RAC1,

IQGAP1, FLNB, MYL6, ABI2, DBN1, PRDX1, SLC2A1 and SLC2A3 were identified

from the PPI network. Further screening using Support Vector Machine (SVM),

Lasso regression and random forest, and intersecting the results of these

analyses, led to the identification of DBN1, RAC1, and SLC2A3 as final hub

genes in AMI. While the final key genes DBN1 and SLC2A3 were significantly

differentially expressed in external dataset GSE61144 with AUC≥ 0.7.
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Conclusion: In this study, we identified differentially expressed

disulfidptosis related genes in blood samples from AMI patients using existing

datasets. The research delved into the expression patterns and molecular

mechanisms of differentially expressed disulfidptosis related genes in AMI,

offering a foundation for precise AMI diagnosis and the identification of novel

therapeutic targets.

KEYWORDS

acute myocardial infarction, disulfidptosis, bioinformatics analysis, biomarker, ROC

analysis

1 Introduction

Cardiovascular diseases remained a major cause of premature

mortality and increased healthcare costs (1, 2). According to the

2019 Global Burden of Cardiovascular Diseases and Risk Factors

Study, cardiovascular diseases exhibited a rising trend globally.

The total number of cases nearly doubling from 271 million in

1990 to 523 million in 2019, and the number of deaths

increasing from 12.1 million in 1990 to 18.6 million in 2019.

Cardiovascular diseases continued to be a leading cause of global

disease burden. Among these, ischemic heart disease was the

most prominent, with 9.74 million deaths attributed to it in 2019

(2). Acute myocardial infarction, a subtype of ischemic heart

disease, which was characterized by a rapid onset, high incidence,

and mortality rates (3), with a poor prognosis. It was identified

as one of the leading causes of mortality and disability among

middle-aged and elderly individuals worldwide (4).

Acute myocardial infarction was typically caused by the

rupture or erosion of coronary atherosclerotic plaques, platelet

activation, and subsequent coronary thrombotic occlusion, which

led to myocardial ischemia, injury, and necrosis. Following

myocardial infarction, various cellular signaling pathways were

activated. Oxidative stress and tissue death, particularly apoptosis

and necrosis of myocardial cells, triggered an inflammatory

response. Immune cells infiltrated the infarcted myocardial

region and released inflammatory factors. The inflammatory

response, combined with pathological myocardial hypertrophy

and reactive fibrosis, ultimately led to cardiac remodeling and

heart failure (5). Persistent coronary occlusion or ischemia-

reperfusion injury stimulated extensive myocardial cell death in

the ischemic region (6, 7), with myocardial cells undergoing

apoptosis (8, 9), necrosis (9–12), and autophagy (13–15),

resulting in significant irreversible loss of myocardial cells.

Therefore, myocardial cell death played a critical role in the

pathogenesis and progression of myocardial infarction.

Due to the limited regenerative and repair potential of

myocardial cells, dead cells could not be replaced by viable

myocardial cells (16). It was reported that increased myocardial

cell survival and reduced apoptosis could enhance myocardial

functional recovery and promote left ventricular functional

restoration by decreasing programmed myocardial cell death

(17). Thus, timely intervention in myocardial cell death was of

significant importance for improving the prognosis of myocardial

infarction.Immediate restoration of coronary blood flow early

and effective reperfusion therapy was identified as the primary

treatment goals for acute myocardial infarction (18). Reperfusion

therapy included thrombolysis and direct percutaneous coronary

intervention (PCI). Studies indicated that PCI was the most

effective reperfusion therapy for improving clinical outcomes in

patients with ST-segment elevation myocardial infarction (19).

Currently, chest pain characteristics, electrocardiogram results,

and high-sensitivity cardiac troponin are commonly used

diagnostic criteria for acute myocardial infarction. However,

high-sensitivity cardiac troponin still has limitations in

differentiating early myocardial infarction, mild myocardial

injury, aortic dissection, pulmonary embolism, or chronic

coronary syndrome (20). Identifying novel biomarkers and

elucidating cell death mechanisms are crucial for early diagnosis

and treatment.

Cell death is a fundamental feature of life and death (21). It

plays a crucial role in normal biological processes such as

embryonic development and postnatal homeostasis. When cell

death is excessive, reduced, or misplaced, it can play a major role

in human diseases, including cardiovascular diseases, diabetes,

and cancer (22). During acute myocardial infarction, extensive

myocardial cell death occurs in the infarcted region, with

apoptosis being one of the main forms of myocardial cell death

during myocardial infarction (23). Research has shown that pro-

apoptotic proteins such as Bax are overexpressed in ischemic

myocardial tissue, and inhibiting Bax activation can reduce

apoptosis, thereby mitigating ischemia-reperfusion injury in

myocardial infarction (24). Overexpression of the cardiac-specific

anti-apoptotic protein Bcl-2 significantly alleviated myocardial

cell apoptosis and infarct size following ischemia-reperfusion

injury (25). Current research indicates that autophagy plays

distinct roles at different stages of acute myocardial infarction.

During the acute ischemic phase of acute myocardial infarction,

insufficient ATP production in myocardial cells can induce

autophagy. Autophagic degradation can release energy substrates

such as free fatty acids and amino acids, alleviating the energy

crisis and promoting myocardial cell survival (26).

Simultaneously, autophagy can facilitate mitochondrial renewal

by clearing dysfunctional mitochondria and preventing the

release of cysteine-containing aspartic protease (caspase-3), thus

reducing apoptosis and protecting the myocardium (27).

Conversely, during the ischemia-reperfusion phase of acute

myocardial infarction, excessive activation of autophagy can lead

to autophagic cell death, exacerbating myocardial cell damage.
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Studies have reported that inhibiting autophagy by reducing

Beclin1 expression through RNA interference (RNAi) or uric

acid treatment can protect myocardial cells during ischemia-

reperfusion (28). Ferroptosis, a form of iron-dependent cell death

characterized by oxidative damage to the cell membrane, has

been confirmed to occur in both myocardial and non-myocardial

cells during myocardial ischemia-reperfusion (29). Ferroptosis

inhibitors, such as ferrostatin-1, have been shown to prevent

myocardial cell death and reduce infarct size in both cardiac

transplantation and traditional coronary ligation ischemia-

reperfusion models (30). During myocardial ischemia-reperfusion

or non-reperfusion myocardial infarction, the expression of

inflammasome components and activation of caspase-1 are

upregulated. Activated caspase-1 promotes the maturation of

inflammatory cytokines and induces pyroptosis (31). Conversely,

the absence of adapter protein (ASC) and caspase-1 in the

inflammasome reduces inflammation and mitigates myocardial

infarction progression (32). The activation of the NLRP3/ASC/

caspase-1 pathway and high levels of interleukin-1β (IL-1β) can

induce pyroptosis (33). Studies have shown that silencing

caspase-1 can inhibit the activation of the NLRP3/ASC/caspase-1

axis, reducing myocardial functional impairment caused by

ischemia-reperfusion injury (34). Thus, pyroptosis plays a role in

the myocardial infarction process.

Given that various forms of myocardial cell death are involved in

acute myocardial infarction, studying the molecular mechanisms of

myocardial cell death and exploring new biomarkers hold significant

importance for the diagnosis and treatment of myocardial infarction.

Disulfidptosis,a novel form of programmed cell death reported for

the first time in March 2023, occurs under glucose-deprived

conditions. High expression of cystine transporter solute carrier

family 7 member 11 (SLC7A11) leads to rapid depletion of

intracellular NADPH, resulting in significant accumulation of

disulfides and rapid cell death. This form of cell death cannot be

prevented by various cell death inhibitors, including ferroptosis

inhibitors, apoptosis inhibitors, and necroptosis inhibitors, but can

be completely inhibited by disulfide bond reducing agents such as

dithiothreitol (DTT) and β-mercaptoethanol.Elevated intracellular

cystine levels induce cytoskeletal disorganization through NADPH-

dependent redox imbalance, triggering pathological disulfide

crosslinking in actin-associated proteins. This redox perturbation

leads to rapid collapse of branched actin networks, characterized

by dissolution of lamellipodial structures and subsequent cell

contraction, through mechanisms independent of reactive oxygen

species. Functional genomic analyses identified the WAVE

regulatory complex (WRC), particularly its core components

NCKAP1 and RAC1, as essential mediators connecting actin

polymerization dynamics to disulfide stress-induced cell death

(35). Although no direct studies have explored the relationship

between disulfidptosis and acute myocardial infarction (AMI),

substantial evidence indicates that oxidative stress plays a pivotal

role in AMI pathogenesis. As mentioned before, various cell death

mechanisms are involved in myocardial infarction, and thus,

disulfide cell death may also be associated with acute myocardial

infarction.During myocardial ischemia/reperfusion injury,

mitochondrial dysfunction and elevated oxidative stress contribute

to increased cystine accumulation and compromised glutathione

(GSH) synthesis—factors that may collectively create a cellular

environment permissive for disulfidptosis. Furthermore,

cardiomyocytes are characterized by an extensive actin-based

cytoskeletal network, which is particularly vulnerable to

disturbances in protein folding and aberrant disulfide bond

formation.Given this established link, we hypothesize that

disulfidptosis, as a form of programmed cell death involving

oxidative stress, could also contribute significantly to the

development and progression of AMI.Therefore, identifying and

analyzing disulfidptosis-related genes in acute myocardial

infarction through bioinformatics techniques, which hold promise

for providing new insights into the diagnosis and treatment of

acute myocardial infarction. The workflow for the specific analysis

is illustrated in Figure 1.

2 Materials and methods

2.1 Collect and sort data

The following raw datasets were retrieved from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) using the

“GEOquery” R package (36): GSE60993(mRNA), GSE61144

(mRNA). GSE61144 is derived from the GPL6106 platform

(Sentrix Human-6 v2 Expression BeadChip), while GSE60993

originates from the GPL6884 platform (Illumina HumanWG-6

v3.0 Expression BeadChip). These datasets include gene

expression data from both Acute myocardial infarction (AMI)

patients and control groups. Specifically, the GSE60993 dataset

comprised 17 AMI human peripheral blood samples and 7

control samples; the GSE61144 dataset included 14 AMI samples

and 10 control samples. Table 1 presents the details of the two

datasets sourced from the GEO database.

2.2 Identification of genes with differential
expression related to acute myocardial
infarction and disulfidptosis

Differential gene analysis was conducted utilizing the

R package “limma” (37). Genes were considered differentially

expressed (DEGs) if the |log2 fold change (FC)| was greater than

0 and the P-value was less than 0.05 (38, 39). The results of the

differential expression analysis were visualized using volcano

plots and heatmaps. A total of 91 regulatory factors, including

drivers, suppressors, and unclassfied, were retrieved from the

FerrDB V2 database (Supplementary File S1). Differentially

expressed genes (DEGs) from GSE60993 were intersected with

the genes obtained from FerrDB V2 to identify DEGs associated

with disulfidptosis. Additionally, Gene Ontology (GO)

enrichment analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis were carried out with the

“clusterProfiler” package (40) in R to further elucidate the

biological functions of the DEGs associated with

disulfidptosis (DRGs).
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2.3 Development of the protein-protein
interaction network and identification of
key genes

To elucidate the interaction mechanism between DEGs

associated with disulfidptosis(DRGs) in AMI, a protein-protein

interaction (PPI) network was constructed using the STRING

database (version 10.0)6. This network was visualized with

Cytoscape software (version 3.7.1). The CytoHubba plug-in

within Cytoscape was employed to identify the top 10 key genes

with the highest connectivity in the PPI network using the

Closeness Centrality algorithm.

2.4 Support vector machine, lasso
regression and the development of the
random forest model

Support Vector Machine (SVM), Lasso regression, and the

Random Forest model were employed to further screen the hub

FIGURE 1

Diagram showing the sequence of steps conducted in this research.

TABLE 1 The information of the 2 microarray datasets obtained from the GEO database.

Data source Organism Platform Year Sample source Sample size (AMI/CON) Detected RNA type

GSE60993 Homo Sapiens GPL6884 2015 Blood 17/7 mRNA

GSE61144 Homo Sapiens GPL6106 2015 Blood 14/10 mRNA
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genes among the top 10 key genes in AMI obtained above.

R version 4.2.3 was used to analyze all three machine learning

methods. SVM is a powerful algorithm that finds an optimal

hyperplane to separate different classes. Lasso regression imposes

a penalty on the model coefficients to perform variable selection

and regularization. The Random Forest model, which aggregates

multiple decision trees, was used to further refine gene selection.

The selection of these methods was driven by their distinct

advantages in genomic feature selection: LASSO regression

utilized L1 regularization to mitigate multicollinearity in high-

dimensional datasets, producing sparse solutions by setting the

coefficients of non-predictive variables to zero, with the optimal

regularization parameter (λ) identified through 10-fold cross-

validation using cv.glmnet, and significant features defined as

those retaining non-zero coefficients at λmin.The optimal

regularization parameter (λ.min = 0.0318) eliminated 50% of

coefficients through L1 regularization (α=1), retaining 40 genes

with non-zero coefficients.For the SVM approach, an RBF-kernel

SVM was integrated with RFE to manage non-linear

relationships in small-sample datasets, where feature subsets

ranging from 2 to 40 variables were evaluated via 10-fold cross-

validation, with the optimal subset size determined by

minimizing the root mean squared error (RMSE); the random

forest model adopted an ensemble strategy involving 500

decision trees, with mtry set to 2 (optimized via grid search), and

variable importance assessed based on the mean decrease in

node impurity across 10-fold cross-validation iterations. Among

candidate mtry values (2, 6, 10), the configuration with mtry = 2

achieved peak classification accuracy (86.7%). All analyses were

performed in R (version 4.2.3) with fixed random seeds [set.

seed(123)] to ensure reproducibility, utilizing the glmnet, caret,

and randomForest packages for model implementation. Genes

identified by these three methods were intersected to determine

the hub genes associated with AMI.

2.5 Construction of nomograms

R version 4.2.3 was used to analyze the regression line chart

prediction model. A nomogram is based on a multivariate

regression model. Each gene is assigned a score based on its

contribution to acute myocardial infarction, and these scores are

then summed to estimate the probability of developing the

disease. Nomograms are becoming increasingly popular in

clinical settings due to their ability to convert complex regression

equations into straightforward visual representations. The scales

on the nomogram enable clinicians to easily evaluate a patient’s

risk of acute myocardial infarction.

2.6 Additional validation of key genes was
performed using the external dataset
GSE61144

The results from Support Vector Machine (SVM), Lasso

regression, and the Random Forest model analyses were

compared to identify hub genes associated with acute myocardial

infarction. Integrating these hub genes into nomograms enhances

the clarity of predictions and improves the model’s

interpretability. The diagnostic utility of these top 10 key genes

was assessed using the dataset GSE61144. The GSE61144 dataset

included 14 AMI human peripheral blood samples and 10

control samples. ROC curves were generated for each key gene to

evaluate its diagnostic performance, and the differential

expression of key genes across the external dataset was analyzed.

2.7 Drug prediction (DSigDB)

To identify potential drugs targeting key genes associated with

acute myocardial infarction,predictive analysis was conducted

using the DSigDB database using Enrichr. And the top 5 scores

were selected as candidate drugs.

2.8 Single cell sequencing analysis

Single-cell RNA sequencing data were processed utilizing the

Seurat and SingleR computational frameworks. Initial quality

control involved exclusion of cells with gene counts below 300 or

exceeding 7,000, mitochondrial gene content surpassing 10%.

Gene expression profiles underwent normalization via the Seurat-

integrated normalization algorithm. Principal component analysis

(PCA) was conducted on 2,000 highly variable genes, with the

top 10 principal components retained for downstream analysis.

Cellular subpopulations were delineated through unsupervised

clustering (resolution = 0.4) by constructing neighbor graphs and

applying Uniform Manifold Approximation and Projection

(UMAP) for dimensionality reduction. Cluster-specific marker

genes were identified using threshold criteria of adjusted P < 0.05

and min.pct = 0.25. Cell type annotation was performed through

reference-based classification with SingleR. Principal component

significance was validated via JackStraw permutation testing,

retaining components demonstrating statistically significant

deviation from null distributions. Differential expression patterns

of ten key gengs across cell subsets were visualized through

violin plots.

3 Results

3.1 Identification of genes with differential
expression and variations in DRGs in acute
myocardial infarction

The AMI-related datasets GSE60993 was retrieved from the

Gene Expression Omnibus (GEO) database. Using

the aforementioned screening criteria (P-value < 0.05 and

| logFC| > 0), differentially expressed genes (DEGs) were

identified in the dataset. Specifically, GSE60993 yielded 3,791

DEGs, with 1,648 upregulated and 2,143 downregulated genes.

Detailed results of the differential expression analysis are
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provided in Supplementary File S2. Table 2 lists the top 5

upregulated and top 5 downregulated DEGs for the dataset. The

volcano plots illustrating these DEGs for GSE60993 is presented

in Figure 2A. To identify DEGs and differentially expressed

disulfidptosis-related genes (DRGs), an online Venn tool was

employed, as shown in Figure 2B. This analysis identified 16

differentially expressed DRGs in GSE60993, as detailed in

Supplementary File S3. Heatmaps of the differentially expressed

genes for GSE60993 is displayed in Figures 2C.

3.2 Enrichment analysis of genes associated
with disulfidptosis that show differential
expression

Gene ontology (GO) enrichment analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

were also performed using the “clusterProfiler” package in R to

further investigate the biological roles of differentially expressed

DRGs. The 16 differentially expressed DRGs in GSE60993 were

analyzed using using the “clusterProfiler” package in R for GO

annotation and KEGG pathway enrichment. Figures 3A–E

display the top 10 enriched GO terms and KEGG pathways. For

GO biological process (BP) analysis, the differentially expressed

DRGs were primarily associated with terms such as “regulation

of actin cytoskeleton organization,” “regulation of actin

filamentbased process,”“ postsynaptic actin cytoskeleton

organization,”“ retina homeostasis” and“postsynaptic

cytoskeleton organization” (Figure 3A). In the GO cellular

component (CC) analysis, the top 5 enriched terms were “cell

cortex,” “cell leading edge,”“cortical cytoskeleton,”“actin

filament,”and“lamellipodium”(Figure 3B). For GO molecular

function (MF) analysis, the most significantly enriched terms

included“cadherin binding,” “actin filament binding,”“D-glucose

transmembrane transporter activity,” “glucose transmembrane

transporter activity,”“hexose transmembrane transporter

activity”and“monosaccharide transmembrane transporter activity”

(Figure 3C). The results of this three-part GO enrichment

analysis are presented in the graph (Figure 3D), showing the

significance of each enrichment entry. Additionally, the KEGG

analysis highlighted significant pathways such as “Diabetic

cardiomyopathy,” “Regulation of actin cytoskeleton,”“Adherens

junction,” “Non-alcoholic fatty liver disease,” and “Amyotrophic

lateral sclerosis”(Figure 3E).

3.3 Development of a protein-protein
interaction network and identification of
key genes in acute myocardial infarction

The 16 differentially expressed DRGs were analyzed using the

String database to construct a protein-protein interaction (PPI)

network. Applying the default parameters of the String

database, a PPI network comprising 16 nodes and 20 edges was

generated (Figure 4A). Subsequently, the top 10 key genes

(ACTB, RAC1, IQGAP1, FLNB, MYL6, ABI2, DBN1, PRDX1,

SLC2A1, and SLC2A3) were identified using the Closeness

algorithm via the Cytohubba plugin in Cytoscape (Figure 4B).

Further pathway enrichment analysis was conducted using the

KOBAS (version 3.0) online tool. This analysis revealed that

IQGAP1, FLNB, and ACTB are involved in the “Proteoglycans

in cancer” pathway, IQGAP1, ABI2, and ACTB are associated

with the “Regulation of actin cytoskelet”, IQGAP1 and ACTB

are linked to the “Adherens junction”. The 10 key genes

exhibited strong correlations, with DBN1 showing a notable

positive association with ACTB (coefficient = 0.80), whereas

DBN1 had a negative relationship with SLC2A1

(coefficient = −0.58) (Figure 4C). The expression of 10 key

genes was further validated using the external dataset GSE61144

(Figure 4D). Among these genes, RAC1, IQGAP1, MYL6,

DBN1, SLC2A1 and SLC2A3 were significantly upregulated in

AMI patients compared to healthy controls. Conversely, ACTB,

FLNB, ABI2 and PRDX1 were found to be downregulated in

AMI patients. Using the raw expression data from GSE61144,

ROC analysis was conducted on 10 key genes (ACTB, RAC1,

IQGAP1, FLNB, MYL6, ABI2, DBN1, PRDX1, SLC2A1, and

SLC2A3). The AUC values for these genes were calculated, and

all were found to exceed 0.6. Specifically, 6 of these key genes

demonstrated AUC values greater than 0.7, identifying them as

potential biomarkers for AMI: FLNB(AUC = 0.807), MYL6

(AUC = 0.950), ABI2(AUC = 0.750), DBN1 (AUC = 0.843),

PRDX1 (AUC = 0.793), SLC2A3 (AUC = 0.743). Figures 5A–F

TABLE 2 The top 5 upregulated DEGs and the top 5 downregulated DEGs in GSE60993.

Dataset Type DEG Expression Log2 FC 1. P. Value

GSE60993 mRNA MMP9 up 2.3355267 1.405589e-03

GSE60993 mRNA FCGR3B up 2.0845665 1.405589e-03

GSE60993 mRNA ORM1 up 2.0438146 4.444007e-03

GSE60993 mRNA MCEMP1 up 1.8375565 2.078802e-03

GSE60993 mRNA ARG1 up 1.7866877 6.930997e-04

GSE60993 mRNA GZMK down −1.5337640 2.639576e-04

GSE60993 mRNA CLC down −1.2937880 7.744503e-03

GSE60993 mRNA HLA-DQA1 down −1.2629242 1.023522e-03

GSE60993 mRNA KLRB1 down −1.2526464 1.139646e-03

GSE60993 mRNA KLRG1 down −1.1782455 3.288638e-03

Note: log2 FC > 0 indicates upregulation, while log2 FC < 0 denotes downregulation.
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illustrate the ROC analysis results for the top 6 key genes with the

highest AUC values. The ROC results for the remaining 4 key

genes are provided in Supplementary Figure S1. Additionally,

we used the DSigDB database to predict drugs that

interact with 10 key genes and identified top 10 drugs targeting

them (Table 3).

3.4 Machine learning-based identification
of a disulfidptosis signature

Using 10 key genes, we applied Support Vector Machine (SVM),

Lasso regression, and the development of the Random Forest

algorithms to identify potential genes and develop a disulfidptosis-

FIGURE 2

Identifying differentially expressed genes in dataset GSE60993 and differentially expressed DRGs. (A) The volcano plot of GSE60993. (B) Ven diagram

of DEGs in GSE60993 and disulfidptosis-related genes. (C) The heatmap plot of GSE60993.
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FIGURE 3

Enrichment analysis of 16 differentially expressed disulfidptosis-related genes(DRGs). (A) Circle plot showing the top 10 biological process pathway

enrichments. (B) Circle plot displaying the top 10 cellular component pathway enrichments. (C) -Circle plot displaying the top 10 molecular

function pathway enrichments.(E) Bar plot showing the top 10 KEGG pathway enrichments.
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related signature (Figures 6A–E). This analysis led to the identification

of 2 disulfidptosis-associated feature genes as hub genes: DBN1 and

SLC2A3. To assess the diagnostic potential of each feature gene for

Acute myocardial infarction (AMI), a nomogram model was created

as a diagnostic tool for AMI (Figures 6F,G). The AUC values of the

ROC curves for the diagnostic performance of this nomogram in the

GSE60993 and GSE61144 datasets were 0.916 and 0.864,

respectively. (Figures 6H,I).

3.5 Additional validation of hub genes using
the external dataset GSE61144

The expression levels of 2 hub genes were further examined in

the external dataset GSE61144 (Figures 5A,F). Compared to

healthy controls, DBN1 were significantly upregulated in AMI

patients. Conversely, FLNB was found to be downregulated in

AMI patients. The ROC curve analysis yielded AUC values of

0.743 for SLC2A3, 0.84 for DBN1,0.60 for RAC1 in GSE61144.

The area under the ROC curve in the external validation dataset

exceeded 0.6, demonstrating the effective diagnostic performance

of the hub genes associated with AMI. As a result, only 2 genes

(SLC2A3 and DBN1) are identified as the final hub genes.

3.6 Single-cell analysis reveals key genes-
SMCs-Ec interactions and immune crosstalk
in AMI

Following stringent quality control (Figure 7A), low-quality

cells were excluded based on pre-defined thresholds. A strong

positive correlation was observed between total RNA counts

(nCount) and detected genes (nFeature) (Pearson’s r = 0.95,

P < 0.001; Figure 7B). Subsequent identification of 2,000 highly

variable genes enabled downstream analyses (Figure 7D).

Dimensionality reduction via principal component analysis

FIGURE 4

Primary screening and analysis of genes linked to disulfidptosis. (A) Network of protein-protein interactions. (B) The top 10 key genes as predicted by

the Closeness algorithm. (C) In correlation analysis of 10 key genes, positive correlations are indicated by the color red, while negative correlations are

denoted by the color blue. (D) Expression patterns of key genes in external dataset GSE61144, *P < 0.05; **P < 0.01; ***P < 0.001.
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(PCA) resolved 16 transcriptionally distinct clusters (Figures 8B),

with cluster-specific top 2 marker genes visualized in a heatmap

(Figure 8A). Reference-based annotation using the SingleR

package classified seven major cell types: smooth muscle cells

(SMC),fibroblasts, neutrophils, macrophages, endothelial cell(EC),

monocytes, fibroblasts activated, T/NK cell, B cell and Lymphatic

Endothelial cell, each color-coded for clarity (Figure 8C). Spatial

distribution analysis of 10 key genes revealed ubiquitous

expression across multiple lineages (Figure 8D). Spatiotemporal

mapping of the 10 key genes across heterogeneous cell

populations revealed lineage-specific expression hierarchies

(Figure 9). Eight genes exhibited predominant enrichment in

smooth muscle cells (SMCs) and endothelial cells (ECs), while

Slc2a3 and Slc2a1 diverged from this pattern. The genes Actb,

Myl6, Iqgap1, and Rac1 are associated with the expression

profiles of neutrophils, macrophages, T/NK cells, and B cells.

Additionally, Dbn1 shows a moderate level of expression in

fibroblasts, endothelial cells, and smooth muscle cells. Notably,

Slc2a3 exhibits some level of expression in neutrophils and

smooth muscle cells.

4 Discussion

Acute Myocardial Infarction (AMI) is a major public health

issue globally, including in China. As an acute coronary

FIGURE 5

Analysis of the top 6 key genes AUC values in external dataset GSE61144 using receiver operating characteristic curves. (A) FLNB, (B) MYL6, (C) ABI2,

(D) DBN1, (E) PRDX1, and (F) SLC2A3.

TABLE 3 The top 5 drugs prediction targeting key genes.

Term 1. P. Value Odds ratio Combined score Genes

pentobarbital CTD 00006484 2.69E-05 356.71 3,753.85 SLC2A1; RAC1

CYTOCHALASIN CTD 00005746 1.11E-04 166.33 1,515.06 SLC2A1; SLC2A3

Benzethonium chloride HL60 DOWN 1.40E-04 146.73 1,301.61 SLC2A1; SLC2A3

quercetin CTD 00006679 1.87E-04 12.469 107.02 PRDX1;SLC2A1;FLNB;SLC2A3;IQGAP1;ACTB;DBN1

Uranium acetate CTD 00000229 2.00E-04 35.26 300.45 SLC2A3; RAC1; ACTB
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syndrome influenced by genetic and environmental factors, AMI is

a severe cardiovascular event. Although diagnostic and treatment

technologies have advanced, the limited regenerative capacity of

cardiomyocytes makes it difficult to repair damaged heart tissue.

Post-AMI, extensive cardiomyocyte death leads to cardiac

dysfunction and accelerates the progression to heart failure (5).

Maintaining a balance between cardiomyocyte survival and death

is crucial for preventing AMI and protecting cardiac function.

Disulfidptosis is a novel form of cell death. While there are no

related studies on its role during acute myocardial infarction,

given the various forms of cardiomyocyte death involved in AMI,

Disulfidptosis may play a role in the pathogenesis of acute

myocardial infarction.

This study identified ten key genes (ACTB, RAC1, IQGAP1,

FLNB, MYL6, ABI2, DBN1, PRDX1, SLC2A1, and SLC2A3)

implicated in acute myocardial infarction through various

bioinformatics approaches. Their diagnostic value was

corroborated across the external dataset GSE61144. Elevated

expression levels of RAC1, IQGAP1, MYL6, DBN1, SLC2A1 and

SLC2A3 were observed in acute myocardial infarction patients

compared to healthy controls, suggesting a strong association

with disease progression and indicating their potential as novel

therapeutic targets.

Our protein-protein interaction (PPI) network analysis

revealed that the hub genes DBN1 and SLC2A3 lack direct

connectivity but are indirectly linked through ACTB, which

serves as a critical mediator (Figures 4A,B). The ACTB gene

encodes β-actin, a highly abundant and conserved cytoskeletal

structural protein. β-actin facilitates cell migration, division,

growth, signaling, and cytoskeletal organization, underscoring its

essential role in maintaining cellular morphology (41, 42).

Notably, emerging evidence associates ACTB-encoded β-actin

with vascular remodeling—a recognized risk factor for

cardiovascular diseases (43). A prior study further implicated

FIGURE 6

Identification of hub genes associated with AMI (A) plot of coefficient distribution for LASSO regression (B) cross-test maps of penalty terms. (C) SVM

performance graph. (D) Random Forest feature importance plot. (E) The Venn diagram illustrates the overlap of candidate genes identified by three

algorithms: LASSO, SVM and RF. (F-I) Assessment of ROC curves for the diagnostic performance of the 2-hub gene construct and nomogram in

two datasets.
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FIGURE 7

Sample quality control and cell annotation. (A) Violin plots depict quality metrics: gene counts per cell (nCandidate_RNA), UMIs per cell (nCount_RNA),

and mitochondrial gene percentage (percent.mt). (B,C) Scatterplots illustrates various quality control modes. (D) Variance plot highlights 1,500 highly

variable genes (red dots).
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FIGURE 8

(A) Dimheatmap visualizes feature expression patterns. (B) Umap-clustering results are presented. (C) Ten cell types were annotated. (D) The umap

plot illustrates the expression of 10 key genes.
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FIGURE 9

The UMAP plot illustrates the expression of 10 key genes (Actb, Dbn1, Flnb, Abi2, Myl6, Prdx1, Iqgap1, Rac1, Slc2a1, Slc2a3), complemented by violin

plots (A) and bubble plots (B) showing the expression distribution of these genes across different cell types.

Chen et al. 10.3389/fcvm.2025.1513342

Frontiers in Cardiovascular Medicine 14 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1513342
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


ACTB in acute myocardial infarction (AMI) susceptibility, though

the precise mechanistic basis remains undefined (44). Collectively,

these findings suggest that ACTB may orchestrate synergistic

effects of DBN1 and SLC2A3 in AMI pathogenesis, potentially

through complex cytoskeletal regulatory cascades warranting

further investigation.

Building upon these insights, we performed drug-target

prediction analyses (Table 3), identifying quercetin (CTD ID:

00006679) as a multi-target agent capable of modulating seven

disulfidptosis-related genes, including PRDX1, SLC2A1, FLNB,

SLC2A3, IQGAP1, ACTB, and DBN1. This polypharmacological

profile suggests quercetin’s therapeutic potential in AMI, likely

through multi-target modulation of cytoskeletal and redox

homeostasis pathways.Quercetin is a well-documented

antioxidant that acts through multiple mechanisms, including the

inhibition of xanthine oxidase, NADPH oxidase, and the Fenton

reaction, all of which reduce reactive oxygen species (ROS)

production. Studies have shown that quercetin can alleviate

myocardial inflammation and apoptosis both in vitro and in vivo.

In a left coronary artery ligation-induced I/R injury model, oral

administration of quercetin at 2, 10, or 20 mg/kg for five

consecutive days significantly reduced serum and myocardial

levels of TNF-α, IL-6, and IL-1β. Decreased levels of CK and

LDH were also observed, along with a notable reduction in

myocardial infarct size.Evidence suggests that these protective

effects may involve the HMGB1 signaling pathway, which plays a

central role in early inflammatory responses. In murine I/R

models, quercetin treatment downregulated the expression of

pro-inflammatory cytokines compared to untreated controls. The

anti-inflammatory and anti-apoptotic effects of quercetin appear

to be mediated, at least in part, through regulation of the

HMGB1/TLR4/NF-κB signaling pathway (45). Furthermore, we

developed a diagnostic nomogram integrating the two hub genes

(DBN1 and SLC2A3) (Figure 6). The model demonstrates that

elevated expression levels of both genes correlate with increased

AMI probability, supporting their utility as a combinatorial

biomarker panel. In the future, toward a Multi-Omics Diagnostic

Framework, advocating the integration of DBN1 (structural

regulation), RAC1 (oxidative signaling), and SLC2A3 (metabolic

stress) into a machine learning-driven diagnostic panel.

DBN1 and SLC2A3 are the final hub genes identified in our

analysis, and they show potential as candidate biomarkers for the

early diagnosis of acute myocardial infarction. DBN1 encodes the

actin-binding protein drebrin1 (46). Takanori et al. isolated

cardiac fibroblasts from a mouse model of myocardial infarction

three days after the event. They found that DBN1 gene knockout

was associated with altered protein levels of α-SMA and SMA22α

in these fibroblasts. Further studies on the impact of drebrin on

actin cytoskeleton formation indicated that DBN1 gene knockout

significantly inhibits the formation of the F-actin cytoskeleton,

demonstrating that drebrin appears to facilitate actin cytoskeleton

formation in cardiac fibroblasts. Additionally, drebrin was

correlated with enhanced actin–MRTF–SRF signaling pathway

activity, which coincides with cardiac fibroblast differentiation

and increases the expression of the fibrinogen gene Ctrc1,

thereby contributing to cardiac fibrosis (47). Furthermore,

research in mouse models has shown that the F-actin-binding

protein drebrin expression shows an inverse association with

atherosclerotic progression. This effect is possibly due to the

downregulation of KLF4, Nox1, and ROS levels in smooth

muscle cells, which reduces their transdifferentiation into foam

cells. Drebrin may also decrease the incidence of macrophages

producing smooth muscle cells in atherosclerosis, thereby

mitigating the condition (48). Therefore, DBN1 expression

patterns suggest potential involvement in AMI pathophysiology

through associations with vascular atherosclerosis and

cardiac fibrosis.

SLC2A3 encodes GLUT3, facilitating glucose transport for cellular

energy metabolism, and is expressed in human heart cells (49).

Hypoxia boosts HIF-1, upregulating SLC2A3 and glucose use (50).

In acute myocardial infarction, involving hypoxia and energy

disruption, SLC2A3 expression correlates with metabolic changes

during AMI. Though no direct links prove SLC2A3’s role in AMI

prognosis, GLUT overexpression has been observed alongside

improved outcomes in murine ischemia models (51). Bioinformatics

and machine learning associate SLC2A3 with potential biomarker

characteristics for AMI detection (52, 53), regulated by the MAPK

pathway. Our findings demonstrate SLC2A3 upregulation concurrent

with AMI presentation, indicating its importance.

Our study identifies 10 genes potentially linked to

disulfidptosis, yet their functional significance in acute

myocardial infarction (AMI) requires further investigation. While

no direct evidence currently connects disulfidptosis with other

regulated cell death pathways in AMI, we hypothesize plausible

interactions through shared pathological mechanisms. Oxidative

stress may serve as a potential convergence point, where

glutathione depletion coupled with SLC7A11 impairment could

simultaneously promote disulfidptosis (via cytoskeletal disulfide

accumulation) and ferroptosis (through iron-mediated lipid

peroxidation) during ischemia-reperfusion injury (35, 54).

Inflammatory crosstalk might further interconnect these

pathways: cytoskeletal disruption from disulfidptosis could release

damage-associated molecular patterns (DAMPs), potentially

enhancing RIPK1/RIPK3-MLKL-dependent necroptosis, while

inflammatory mediators from necroptosis may indirectly

aggravate disulfidptosis by compromising thioredoxin-mediated

disulfide resolution (55). Spatial heterogeneity in metabolic status

may also influence pathway dominance, with apoptosis

potentially prevailing in ATP-sufficient peri-infarct zones and

disulfidptosis becoming prominent in ATP-depleted ischemic

cores (56). Planned single-cell investigations aim to delineate the

spatiotemporal expression patterns of these genes during AMI

progression. This theoretical framework, anchored by shared

regulatory nodes like SLC7A11 and redox-sensitive mechanisms,

suggests opportunities for exploring multitarget therapeutic

approaches. By proposing these speculative interactions, our

study highlights the complexity of cell death regulation in

ischemic injury and underscores the necessity for systematic

experimental validation to clarify pathway interplay in distinct

myocardial microenvironments.

Single-cell sequencing analysis identified 10 key genes

exhibiting predominant expression in endothelial cells and
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smooth muscle cells (SMCs), suggesting their potential regulatory

roles in AMI pathogenesis through cellular-specific mechanisms.

Emerging evidence highlights the critical involvement of

endothelial cells in post-infarction cardiac repair. Following

myocardial injury, endothelial cells facilitate tissue repair through

proliferative activity and angiogenic sprouting to establish

neovascular networks. Notably, activation of the canonical Wnt

signaling pathway triggers endothelial-to-mesenchymal transition,

generating myofibroblast-like cells that may contribute to fibrotic

remodeling (57). Lehanna et al. demonstrated that Grem2

attenuates inflammatory responses and enhances cardiac

functional recovery through inhibition of canonical BMP

signaling, which modulates inflammatory cell infiltration in post-

MI myocardium. Mechanistically, BMP pathway activation in

endothelial cells promotes monocyte adhesion, positioning these

cells as primary mediators of Grem2’s anti-inflammatory effects

during cardiac repair (58). These collective findings underscore

endothelial cells as promising therapeutic targets for post-

infarction myocardial regeneration.

Regarding vascular smooth muscle cells, accumulating evidence

establishes their pivotal role in arterial remodeling following vascular

injury and potential utility in post-AMI functional recovery.

Experimental studies reveal NF-κB’s essential role in SMC activation

and proliferation in vitro, as well as atherosclerotic plaque formation

in vivo. The zinc finger protein A20, a potent negative regulator of

NF-κB signaling, effectively suppresses pro-inflammatory responses

and atherogenic processes in SMCs by inhibiting NF-κB activation,

thereby attenuating neointimal hyperplasia (59). These findings not

only elucidate the anti-inflammatory capacity of A20 in vascular

SMCs but also highlight their therapeutic potential for mitigating

pathological vascular remodeling. Consequently, SMCs emerge as

another viable cellular target for developing novel therapeutic

strategies against AMI progression.

This research relies on transcriptome data from publicly

accessible databases, which introduces some limitations.Limitations

include small cohorts.Despite cross-validation and bootstrap

mitigations, larger validation cohorts are required to confirm the

two-gene signature’s generalizability.To confirm the diagnostic

significance of these biomarkers, it is crucial to gather blood

samples from diverse populations for testing. Additionally, creating

cell and animal models is essential for a more in-depth exploration

of the mechanisms underlying ferroptosis in acute myocardial

infarction (AMI). It should be noted that this study did not stratify

gene expression profiles by sex. Sex-based differences in clinical

presentation, pathophysiology, and outcomes of acute myocardial

infarction are well recognized. Future studies with larger cohorts are

warranted to explore sex-specific biomarkers and regulatory

mechanisms through stratified analyses.Our study identifies critical

limitations requiring experimental validation:myocardial expression

patterns of disulfidptosis-associated genes (DBN1/SLC2A3) under

ischemia need verification through qPCR, immunoblotting, and

spatial transcriptomics in cardiac tissues.Functional roles in redox-

mediated cytoskeletal remodeling require testing using hypoxia/

reoxygenation models with primary cardiomyocytes or engineered

heart tissues. Future investigations should integrate multi-omics

profiling and CRISPR-based functional analyses to validate these

computational predictions mechanistically. The study utilized

public gene datasets lacking detailed clinical metadata, potentially

introducing confounders. Despite normalization efforts, future

research in well-annotated cohorts is needed to validate findings

and address these limitations.

5 Conclusion

Through bioinformatics analysis, we identified two hub genes

associated with disulfidptosis (SLC2A3 and DBN1) that exhibit

significant diagnostic potential. These genes appear to be closely

linked to the mechanism of acute myocardial infarction.Targeting

disulfidptosis could offer a novel therapeutic approach for

managing acute myocardial infarction.
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