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Introduction: Myocardial infarction (M) is a leading cause of death worldwide.
Immune cells play a significant role in the MI development. This study aims to
identify a marker related to neutrophil for the diagnosis and early progression of MI.
Methods: Key genes were screened using three machine learning algorithms to
establish a diagnostic model. A gene associated with the early progression of M|
was identified based on single cell RNA sequencing data. To further validate the
predictive value of the gene, the mouse models of M| were constructed.
Immunofluorescence (IF) analysis demonstrated the co-expression of the gene
with neutrophils. Immunohistochemistry (IHC) was performed to validate the
role of the gene in the progression of MI.

Results: Neutrophils were identified and verified as the key infiltrating immune
cells (lICs) involved in the onset of MI. A diagnostic panel with superior
performance was developed using five key genes related to neutrophils in Ml
(AUC = 0.887). Among the panel, IL1IR2 was found to early phase of MI, which
was further corroborated by IHC in mouse models of MI.

Conclusions: This study suggests that IL1R2, which is specific to neutrophils, can
predict the diagnosis and early progression of MI, providing new insights into the
clinical management of M.

KEYWORDS

neutrophil, diagnosis, early progression, myocardial infarction, mouse model, single
cell RNA analysis

1 Introduction

A common consequence of coronary heart disease, myocardial infarction (MI), has
high morbidity and mortality rates, making it a detriment to global health (1). MI is
characterized by extensive myocardial damage and dysfunction caused by an abrupt
blockage of the bloodstream (2). There are several risk factors for MI including
smoking, alcohol intake, hypertension, dyslipidemia, and diabetes mellitus (3). In recent
years, with the development of serum biomarkers, -electrocardiography, and
interventional therapies, survival rates of MI have increased by 15% (4). Serum markers
of MI commonly used in clinical diagnosis include cardiac troponin T (cTnT) (5),
cardiac troponin I (cTnl), cardiac myoglobin, and creatine kinase-MB (CK-MB) (6, 7).
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However, increased blood concentrations of cTnT only indicates
myocardial damage induced by ischemia and hypoxia and not
abnormal perfusion. Meanwhile, the sensitivity and specificity of
known markers are limited because increased levels of the markers
are found in other diseases such as heart and renal failure (8).
Simultaneously, revascularization can cause reperfusion injury which
contributes to up to 50 percent of post-infarction sequelae (9).
Furthermore, although approximately 90 percent of patients have
experienced chest pain, this discomfort was not indicative of MI
(10). Some patients with MI may not display evident symptoms,
and noticeable electrocardiogram (ECG) alterations may not be
present. Furthermore, potential biomarkers related to specific
molecular function have been identified for MI diagnosis (11).
Therefore, the identification of novel biomarkers and improvement
of early-MI diagnostic model efficiency are urgently needed.

Several studies have shown that immune cells play a critical role in
ML Peripheral blood contains several types of immune cells including
neutrophils, lymphocytes, and macrophages. Many studies have
confirmed that neutrophils play a significant role in inflammatory
reactions and heart repair (12). Single cell RNA sequencing
(scRNA-seq) has improved the method to study the relationship
between immune cells and progression of illness. SCRNA-seq can
classify sequencing data to reveal difference in cell subpopulations
and their proportions (13). In our study, the cell types related to
pathogenesis of myocardial infarction were identified by scRNA-seq
technology. With the aggravation of myocardial infarction, changes
in the ratio of each cell type were quantified using scRNA-seq.
Immunofluorescence and immunocytochemistry were conducted to
reveal the co-expression of hub gene with key infiltrating immune
cells (IICs) and the progression of ML Although gene tests can be
accomplished with 15 min as modern research advances, which can
reduce the time to diagnosis of MI, we have yet to identify a gene
with great specificity (14).

This study aims to identify a biomarker to predict the
clinical diagnosis and early progression of ML To explore the
relationship between neutrophils and MI risk, we downloaded two
microarray datasets (GSE66360 and GSE48060) and a scRNA-seq
dataset (GSE163465) from the Gene Expression Omnibus (GEO)
database. Through a comprehensive analysis of the immune
microenvironment in MI, we identified neutrophils as key immune
cells that play a central role in the onset of MI. Three machine
learning techniques were employed to identify key genes predictive
of MI for constructing a diagnostic panel. Subsequently, scRNA-seq
was used to unveil the changes of neutrophil ratio and expression
of ILIR2 in neutrophil and all cells in all MI periods. Followed by
construction mouse models, ILIR2 was validated as a neutrophil-
through Finally, the
progression of MI was displayed with immunocytochemistry.

specific marker immunofluorescence.
2 Materials and methods
2.1 Dataset collection

Three datasets were used to evaluate regulators of MI:
GSE66360, GSE48060 and GSE163465. The GSE66360 dataset
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was downloaded from the GEO database (http://www.nbi.nlm.
nih.gov/geo/) and included 49 MI and 50 healthy control
samples. The dataset was used to identify genes differentially
expressed in MI. The GSE48060, including 31 MI and 21 healthy
control samples, and GSE163465, a scRNA-seq dataset of mice,
were also obtained from the GEO database and used as
validation sets. The normalizeBetweenArrays function from the
“limma” package was used to normalize all raw expression data.
Gene expression values determined from datasets were
transformed into log2(X + 1) counts of reads. An overview of the

design of the study is presented in Figure I.

2.2 CIBERSORT

“CIBERSORT,” a comprehensive algorithm, was used to
of IIC
normalized gene expression data. IICs include T cells, B cells,
macrophages, dendritic cells (DCs), natural killer (NK) cells,
monocytes,
Subsequently, the “corrplot” package was used to build a

calculate relative proportions subtypes based on

mast cells, eosinophils, and neutrophils.
heatmap for visualizing correlations among IICs, while the
“vioplot” package was used to draw violin plots comparing
IIC-related differences between MI and healthy samples using
GSE66360 and GSE48060 data. IICs identified with a confidence

level of p <0.05 in both datasets were selected for further analysis.

2.3 ldentification of DEGs

Genes differentially expressed between MI and healthy samples
in the GSE66360 dataset were identified using the “limma” package
in R. Fold changes (FCs) of each gene expression level were
calculated. Genes with |logFC| > 0.5 and adjusted p <0.05 values
were considered differentially expressed genes (DEGs). The
“EnhancedVolcano” package was used to generate volcano plots.
The “pheatmap” package was used to obtain a heatmap based on
DEG data identified.

2.4 WGCNA analysis

The “WGCNA” package of R was used to construct a gene co-
expression network based on identified DEGs. First, any outliers
were assessed using “goodSamplesGenes” of the “WGCNA”
package. Outliers were removed after setting the cut height.
Secondly, the best soft thresholding power (8=6) was screened
using the R function, pickSoftThreshold, to build an unsigned
network. To ensure network nonscaling, the adjacency matrix
was transformed into a topological overlap matrix (TOM).
Subsequently, genes with similar expression patterns were
grouped into independent modules via hierarchical clustering
(minModuleSize =30,  deepSplit=2, mergeCutHeight=0.15).
A heatmap was drawn to describe the relationship between co-
expression modules and the infiltration fractions of key immune
cells. Furthermore, we analyzed the correlation between the key
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module and key IICs using gene significance (GS) and module
membership (MM). Resultant data were visualized using the
Cytoscape (version 3.7.1) network of module eigengenes. Genes
with GS>0.6 and MM >0.7 in the significant module were
identified as key genes. Then, the “NetworkAnalyzer” function in
Cytoscape was utilized to calculate node degree, with nodes >300
degrees in the WGCNA network selected for further analysis.
Finally, hub genes were identified by intersecting key genes with
selected nodes. A web tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/) was used to create a Venn diagram for

identifying intersecting genes.
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2.5 Functional enrichment analysis

To investigate the biological functions of the key modules, the
R package “clusterProfiler” was used to perform Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional enrichment analyses. GO analysis included three
aspects: biological processes (BP), cell composition (CC), and
molecular function (MF). The “treemap” package was used for
visualizing KEGG function analysis, and the “GOplot” package
was used to diagram GO-related data. GO term and KEGG

with adjusted p-values <0.05 were considered

pathways
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statistically significant. Metascape (http://metascape.org) is an
emerging algorithm used for investigating biological processes
underlying transcriptome data and related signaling pathways.
Protein-protein interaction (PPI) analysis was performed in the
key module using Metascape. Function and hub clusters of the
PPI network were visualized using Cytoscape (version 3.7.1).

2.6 ldentification of hub genes using
machine learning techniques

Key genes were identified using three machine learning
algorithms. To avoid the overfitting of intersecting genes, the
“glmnet” package was used to construct a least absolute
shrinkage and selection operator (LASSO) binomial logistic
regression. Then, support vector machine recursive feature
elimination (SVM-RFE) was performed to shrink the feature set
and minimize cross-validation error when identifying key genes

» o«

suing “e1071”, “kernlab” and “caret” packages. A random forest
algorithm was used to rank genes using the “randomForest”
package, with a threshold set to MeanDecreaseGini score >2
(ntree =600). Finally, a Venn diagram was used to visualize
intersections between genes identified via the three methods

(LASSO, SVM-RFE, and random forest).

2.7 Evaluation of hub genes

GSE48060, containing 31 MI and 21 healthy control peripheral
blood samples, was used to verify expression patterns of hub genes.
To compare expression levels of key genes expressed in MI and
healthy control samples, box plots were drawn using the
“ggpubr” package. Then, the predictive accuracy of hub genes
was evaluated via receiver operating characteristic (ROC) curves
using the R package “pROC”. In addition, decision curve analysis
(DCA) was conducted to evaluate net benefit of each gene for
predicting MI at

every probability threshold using the

“rmda” package.

2.8 Construction and validation of a
predictive nomogram

A nomogram integrating several diagnostic determinants was
constructed to improve the diagnosis of MI. The “rms” package
was used to build a nomogram based on genes identified via
machine learning algorithms to evaluate the risk of suffering from
MI. Harrell’s concordance index (C-index) and area under the
curve (AUC) assessments were applied to reveal the predictive
ability of the nomogram, with a C-index >0.9 considered highly
accurate. Meanwhile, a calibration plot comparing differences
between predictions and actual observations was drawn to evaluate
the performance of the diagnostic model using the “rms” package.
Furthermore, we used GSE48060 to validate the accuracy of the
nomogram model.
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2.9 Establishing the risk model

The regression coefficient was calculated via logistic regression
using the “rms” package, with the risk score determined, as follows:

Risk score = Z?: | Coef; x Exp;,

where Coef represents the regression coefficient of each hub gene
and Exp represents the expression level of every gene.

2.10 Correlation between hub genes
and 1ICs

Spearman’s correlation analysis was used to reveal the relationship
between key genes and IICs. Then, a scatter plot was generated using
“ggpubr” and “ggExtra” packages in RStudio to visualize results.

2.11 Gene set enrichment analysis (GSEA)

GSEA  (http://software.broadinstitute.org/gsea/index.jsp) was
used to identify significantly related signaling pathways that were
enriched in both MI and healthy control groups. The annotated
gene set list was selected from c2.cp.kegg.v7.2.symbols.gmt as the
reference gene set. After performing 1,000 permutations, cut-off
criteria of enriched gene sets were set to a false discovery rate
(FDR) g-value <0.25 and nominal p-value < 0.05. GSEA (version
4.3.1) was used to screen for signaling pathways associated with
high-risk patients with MI. Then, the “clusterProfiler” package of
R was used to assess signaling pathways enriched in low-risk
patients with MI.

2.12 Identification of MiRNAs and
construction of a CeRNA network

MiRNAs potentially binding to key genes were predicted
using four databases: miRcode (http://www.mircode.org/),
miRWalk (http://mirwalk.umm.uni-heidelberg.de/), MicroT-CDs
(http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=
MicroT_CDS/index), v7.0
innovation.gr/DianaTools/index.php?r=tarbase/index).

TarBase (http://diana.imis.athena-
A Venn
diagram is used to display the overlap between the prediction
results. The miRNAs that appeared in more than one database
were identified as key miRNAs. Finally, the key miRNAs and
genes were used to construct a ceRNA network using Cytoscape

(version 3.7.1).

2.13 Consensus clustering analysis
Based on expression levels of key genes in samples of patients

with MI, consensus clustering was applied to stratify patients into
discrete subgroups. The number of subtypes ranged from two to
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nine. The unsupervised clustering “km” method based on Euclidean
distance was repeated 50 times to guarantee the stability and
accuracy of subtypes using the “ConsensusClusterPlus” package of
R. The sample distribution of each cluster was revealed using
principal (PCA) t-SNE  method.
Subsequently, subtype-specific expression levels of hub genes were

component analysis and
visualized using boxplots and heatmaps created with “ggplot2”,
“ggpubr”, “pheatmap” packages. Finally, the “PupillometryR”
package was utilized to calculate neutrophil infiltration fractions,
immune scores, stromal scores, and estimate scores of the

subtypes, with the data displayed using violin plots.

2.14 Gene set variation analysis (GSVA)

GSVA was applied to estimate the enrichment of key signaling
pathways via a non-parametric and unsupervised method. In this
study, we divided patients with MI into two groups based on
genes related to neutrophils. The GSVA package in R was used
to comprehensively score all gene sets and analyze the differences
in biological functions between two subtypes.

2.15 scRNA-Seq analysis

The “Seurat” package was used to perform steps including
filtering samples, identifying normalized highly variable genes,
The
expressing more than 200 genes, fewer than 2,500 genes, and

reducing dimensionality and clustering cells. cells

genes expressed in more than 3 cells were selected to remove
low-quality cells and possible doublets. Then, the highly

variable genes were identified with FindVariableFeature
function after normalizing data. Uniform  manifold
approximation and projection (UMAP) and t-Distributed

stochastic neighbor embedding (t-SNE) were used to scale down
the dimension of all genes. Subsequently, the FindNeighbors
and FindClusters functions were conducted to determine the
subgroups of cells followed by annotating manually. The
expression of hub genes in each cell subgroup was calculated
using R package “scCustomize”.

2.16 Mice and myocardial infarction model

According to previous research, the progression of ischemic
cardiomyopathy is slowed down by estrogen, wild-type male
C57BL/6 mice which were eight weeks old were used in our
study (15, 16).
Laboratory Animal Co., Ltd were divided into four groups at

The mice provided by Shanghai JieSiJie

random: sham group, 1d post-MI group, 3d post-MI group, 14d
post-MI group. With the approval of the Animal Care
Committee of Ruijin hospital, all animal experimental procedures
were conducted.

Permanent left anterior descending artery ligation was
conducted to construct MI models. Briefly, the mice anesthetized
with 1.5% isoflurane were intubated with 22-gauge tubes and
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placed on a heating pad to maintain the body temperature at
37°C. Then a horizontal incision between 3rd and 4th intercostal
spaces was made on the chest to expose the heart after
disinfection. An 8-0 silk suture was used to ligate the left
anterior descending (LAD) artery and 5-0 and 3-0 silk sutures
were utilized to close the chest and skin. Sham-operated mice
involved the same procedures except coronary artery ligation.

2.17 Western blotting (WB)

Total proteins were extracted from mouse heart tissue and the
protein concentration was determined using a BCA (Bicinchoninic
Acid) assay. Equal amounts of protein were separated by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE,
7.5%-12%  gels).
polyvinylidene fluoride (PVDF) membranes. The membrane was
incubated overnight with the an anti-Illr2 antibody (1:3000,
AF06912, AiFang, Shanghai, China) after blocking the membrane
with 5% bovine serum albumin (BSA). Following washing, the

Then the proteins were transferred to

membrane was incubated with a goat anti-rabbit secondary
antibody at room temperature for 1h. Protein bands were
visualized using a Luminescent Image Analyzer detection system
(Fujifilm, LAS-4000). The level of Gapdh expression (1:20000,
HRP-6004, Proteintech) was used as an internal control.

2.18 Quantitative polymerase chain
reaction (qPCR)

Total RNA was extracted from heart tissue of myocardial
infarction (MI) mice using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). Then, c¢DNA synthesis was performed using
PrimeScriptTM RT reagent kit (Cat# 4368813, Thermo Fisher
Scientific). (qQPCR)
analysis run in the Opticon Real-time PCR Detection System

Quantitative polymerase chain reaction
(Bio-Rad) using SYBR Green master mix (Toyobo, Japan). We
used Primer software to design IL1R2, GAPDH primer. IL1R2:
Forward: 5-TCAGGAAGTTGGTGCGGACAATG-3 and reverse:
5-TGTCGGAGTGAGGTGCCAAGG-3’. GAPDH:
5-CAG-GGC-TGC-TTT-TAA-CTC-TGG-TAA-3* and reverse:
5- GGGTGG-AAT-CAT-ATT-GGA-ACA-TGT-3". The relative
mRNA expression was normalized to GAPDH expression and
quantified using the comparative Ct (44Ct) method.

Forward:

2.19 Immunofluorescence

The paraffin sections of the mouse heart were used for
immunofluorescence to probe the expression of IL1IR2. The 4%
paraformaldehyde (PFA) was conducted to fix the indicated
hearts at 4°C for 2 h after euthanizing the mice before MI, on
the first, third and fourteenth day after MI. The hearts were
buffered with 30% sucrose for 4 h after cryoprotection with 20%
sucrose. Then, through deparaffinization, hydration, antigen
retrieval with pH8.0 Tris-EDTA, the sections were blocked with
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3% hydrogen peroxide for 15min at room temperature and
incubated with anti-Il1r2 (1:3000, AF06912, AiFang, Shanghai,
China) and anti-MPO (1:3000, Ab208670, Abcam, Shanghai,
China) antibodies at 4°C overnight. The phosphate-buffered
saline was utilized to wash the sections followed by staining with
CD31HRP-Polymer anti-rabbit IgG for
temperature. Finally, the nuclei of mouse heart section was
stained with DAPI for 10 min.

30 min at room

2.20 Immunohistochemistry

The heart cells were seeded in the culture plates. After washing
the cells three times with PBS at room temperature for 30 min, the
cells were permeabilized using 0.1% T riton X-100 (Beyotime
China) for 37°C.
Subsequently, antibodies mentioned earlier were used to incubate

Biotechnology, Shanghai, 15min at
the cells as immunofluorescence. Finally, the QuPath software

(v0.5.0) was conducted to calculate the percentage of positive cells.

2.21 Statistical analysis

R software (version 4.2.1, https://www.rstudio.com/) was used
to perform data analyses and visualization and Prism 7.0 was
used to visualize data comparing models of four articles. PCA
was performed to reduce the dimensionality and identify a
pattern based on GSE66360 data using the “scatterplot3d”
package. The Student’s t-test was used to compare paired data;
for example, those of MI and healthy control datasets. For all
analyses, values of p < 0.05 were considered statistically significant.

3 Results
3.1 Screening for Key IICs

The landscape of 22 IICs in MI and healthy control tissues was
shown using the CIBERSORT algorithm. Proportions of IICs in
each sample were determined based on GSE66360 and GSE48060
S1A,B,
respectively. Proportions of IICs in all samples ranked by

data and are shown in Supplementary Figures
infiltration level are shown in Figure 2A; Supplementary
Figure S1C. The top four IICs in GSE66360 were CD4 memory
resting T cells, gamma delta T cells, memory B cells, and
neutrophils, while the top four IICs in the GSE48060 dataset
were neutrophils, gamma delta T cells, CD4 naive T cells, and
CD4 memory resting T cells. A correlation heatmap of 22 types
of IICs identified in the GSE66360 dataset revealed that
neutrophils were negatively correlated with T cells and CD4
memory resting cells, and positively correlated with activated
mast cells. GSE66360 dataset analysis revealed that gamma delta
T cells were negatively correlated with T cells and CD4 memory
resting cells, and positively correlated with activated mast cells
(Figure 2B). Correlations between 19 types of IICs were

determined using GSE48060 data and were shown in
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Supplementary Figure S1D, three IICs that had not infiltrated
were excluded. Neutrophils were significantly positively correlated
with m0 macrophages and negatively correlated with gamma
delta T cells. Gamma delta T cells were positively correlated with
T cells and CD4 memory activated cells, and negatively
correlated with neutrophils. Differences in immune cell
infiltration levels between MI and healthy control samples in the
GSE66360 dataset are shown in Figure 2C. Infiltration levels of
CD4 memory resting T cells (p <0.001) and gamma delta T cells
(p<0.001) were reduced, while those of mast cells (p<0.001)
and neutrophils (p <0.001) were increased vs. healthy control
samples. We explored whether expression levels of these genes
were associated with the 22 types of IICs found to be
overrepresented in MI. A heatmap revealed that expression levels
of genes upregulated in MI were positively correlated with IICs,
including neutrophils and activated mast cells. In contrast, these
genes were negatively correlated with CD4 memory resting and
gamma delta T cells (Figure 2D). Differences between IIC levels
within MI and healthy control tissues that were revealed using
GSE48060 data are shown in Figure 2E. A violin plot shows that
in MI samples, neutrophils (p=0.003) exhibited increased levels
of infiltration, while gamma delta T cells (p=0.003) and resting
NK cells (p=0.010) infiltrated less vs. healthy control samples.
Finally, a heatmap created using GSE48060 data revealed that
expression levels of identified genes were associated with IICs
(Figure 2F). CD4 memory-activated T and gamma delta cells
were negatively correlated with gene expression levels, while
neutrophils were positively correlated.

3.2 ldentification of DEGs

GSE66360 and GSE48060 datasets were downloaded from the
GEO database, both of which used the same platform. In total,
22,881 DEGs were identified when 49 MI and 50 healthy control
samples were compared using GSE66360 dataset. Thereafter,
1,047 1,396
downregulated genes were identified. A volcano plot was

significantly — upregulated and significantly

constructed to  visualize gene expression distributions
(Supplementary Figure S2A). Expression levels of the 50 most
highly upregulated and downregulated genes were revealed using
a heat map (Supplementary Figure S2B). Genes in which
[logEC| > 0.5 and p < 0.05 were considered statistically significant
DEGs. PCA was used to compare differences in gene expression
patterns of MI and control groups using GSE66360 data
(Supplementary Figure S2C). The results revealed that genes
from MI and healthy control samples were distributed in distinct
clusters, suggesting that gene expression patterns in MI samples

differed from those of healthy control samples.

3.3 WGCNA-based identification of key
module genes

Identified DEGs were screened to find key modules and genes
associated with MI. First, hierarchical clustering analysis was
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conducted to remove outliers (Supplementary Figure S3A). The
pickSoftThreshold function was used during WGCNA to assess
the topology of the network. A soft threshold parameter was set
at six, and a scale-free R2 of 0.85 was used to construct a scale-
free network (Figure 3A) with high-average connectivity
(Figure 3B). Relationships between identified modules were
mapped. The TOM of all DEGs was displayed using a heatmap
(Supplementary Figure S3B). Light colors indicate a low degree
of overlap and red represents a high degree of overlap. DEGs
with similar expression patterns were placed in an independent
module using average linkage hierarchical clustering. As shown
in a clustered dendrogram, seven modules were identified after
merging dynamic modules and setting minModuleSize to 30,

deepSplit to 2, and mergeCutHeight 0.15 (Supplementary
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Figure S3C). The gray module included non-expressed DEGs,
which were excluded from further analyses. The heatmap and
clustered tree indicated that expression levels of genes in each
module were relatively independent of those in the other
modules. We then clustered genes that could provide information
about between-module relationships to analyze connectivity. The
dendrogram and heatmap revealed that seven modules could be
divided into two clusters (Figure 3C, Supplementary Table SI).
Relatively high degree connectivity was observed between two
sets of modules: brown with red modules and green with red
modules. Subsequently, Spearman’s correlation coefficients of the
seven modules and clinical characteristics were calculated to
identify the most significant associations (Figure 3D). As shown
in the heatmap, brown module genes were significantly
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Cytoscape

correlated with neutrophils (R =0.79, p = 2e—22) and MI (R=0.72,
p=6e—17). Two scatterplots of module membership vs. gene
significance also showed that correlation coefficients between
genes in the brown module and neutrophils (Figure 3E,
cor=0.86, p=13e—99) and MI (Figure 3F; cor=0.78, p=
5.6e—70) were high. The network of genes in the brown module
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is shown in Figure 3G. Sixty genes with GS>0.6 and MM > 0.7
were identified for further analysis. Finally, we conducted the
“NetworkAnalyzer” function in Cytoscape to calculate the degree
of nodes in the network. A total of 112 nodes with degree >300
were selected based on their intersection with 60 genes, as is
depicted in the Venn plot shown in Figure 3H.
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3.4 Functional enrichment analysis and
construction of PPl network

Functional enrichment analysis was performed to explore
potential biological functions and pathways of identified genes.
KEGG pathway enrichment analysis indicated that identified
DEGs were mainly involved in cytokine-cytokine receptor
interactions, neutrophil extracellular trap formation, lipid and
atherosclerosis, and the IL-17 signaling pathway, as shown in
Figure 4A. GO enrichment analysis was performed from the
(BP), cell

following three perspectives: biological process
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composition (CC), and molecular function (MF). The top 15
GO terms associated with DEGs were shown in Figures 4B-D.
Identified GO terms included pattern recognition receptor
IgG binding,
receptor activity, cytokine activity, carbohydrate binding, and

activity, immunoglobulin binding, immune
protease binding (Supplementary Table S2). The Metascape
algorithm was used to investigate immune-related pathways,
vessel-related pathways, and their interactions, including
neutrophil extracellular trap formation, neutrophil migration,
cytokine-mediated signaling pathways, and platelet-mediated

interactions with vascular and circulating cells, lipids, and
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atherosclerosis (Figure 4E). Finally, an underlying regulatory
network was revealed via PPI analysis (Figure 4F), with hub
genes extracted from the PPI network using the MCODE
plug-in of Cytoscape (Figure 4G).

3.5 Selection of hub genes via machine
learning

After the intersection of the 112 nodes and 60 key genes, a total
of 59 genes were identified. Three machine algorithms were used to
identify hub genes, as follows: LASSO regression analysis, SVM-
RFE, and a random forest algorithm. Twenty-three genes were
selected from 59 genes using LASSO regression analysis
(Figures 5A,B), eight genes were identified by SVM-REF analysis
(Figure 5C), and six genes were selected using a random forest
algorithm (Figures 5D,E; Supplementary Table S3). Five genes
were identified by combining results of all three methods
(Figure 5F): interleukin 1 receptor type II (IL1R2), C-type lectin
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domain family 4, member D (CLEC4D), cytidine deaminase
(CDA), thrombomodulin  (THBD),
phosphoribosyltransferase (NAMPT).

and  nicotinamide

3.6 Validation of hub genes

Using GSE66360 and GSE48060 data, we evaluated whether
the five hub genes were expressed differently in samples derived
from MI tissues vs. healthy controls. As shown in Figures 5G-K,
GSE66360 data revealed that expression levels of each of the five
genes from MI tissues were significantly higher than those from
healthy controls (p<0.05). However, GSE48060 data revealed
that four of the five genes were more highly expressed in MI
samples than in healthy controls, while THBD was upregulated
in MI samples, though not significantly (p > 0.05; Supplementary
Figures S4A-E).
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3.7 Diagnostic accuracy of key genes

ROC curves were drawn to estimate the predictive accuracy of
the identified genes using the GSE66360 dataset. The area under
the ROC curve (AUC) values for CDA, CLEC4D, ILIR2,
NAMPT, and THBD were 0.893, 0.882, 0.887, 0.885, and 0.921,
respectively (Figures 6A-E). These values demonstrating that
each of the five genes had good predictive ability. To improve
the convenience of diagnosing MI, we constructed a nomogram
using the five genes, as shown in Figure 6F. C-index was used to
test the predictive ability of the diagnostic model, revealing a
C-index value of 0.953, a value indicating high accuracy.
Subsequently, strong consistency between predicted and observed
outcomes was demonstrated via the calibration curve of the
predictive nomogram used to determine risk associated with MI
(Figure 6G). ROC curves of all five genes and the nomogram are
shown in Figure 6H. DCA curves of key genes and the
nomogram were drawn to determine whether the key genes
could improve clinical decision-making regarding the diagnosis
of MI (Figure 6I). Furthermore, to verify the results, we used the
five key genes to build a nomogram to predict a risk score for
MI based on GSE48060 data (Supplementary Figure S5A) and a
calibration curve was constructed to assess the accuracy of the
predictive model (Supplementary Figure S5B). The diagnostic
accuracy of the nomogram model was better than that of
conventional methods. The AUC of the nomogram model was
0.953, indicating an excellent predictive ability for MI. A ROC
curve drawn using calculated AUC values of key genes identified
in four other articles revealed that the AUC of our model was
higher than those of other studies (Figure 6]). Finally, C-index
values of the key genes identified in the studies were calculated
and were shown in Figure 6K. We discovered that the C-index
value of our model was higher than those of other studies.

3.8 GSEA

GSEA based on GSE66360 data was used to identify molecular
mechanisms potentially involved in MI. Results revealed that in
patients at high risk of MI, pathways related to the chemokine
signaling pathway, B cell receptor signaling pathway, cytokine
receptor interaction, FC gamma R-mediated phagocytosis, leukocyte
killer
(Supplementary  Figures

cell-mediated
S6A-F).
Supplementary Figure S6G showed pathways enriched in patients

transendothelial migration, and natural

cytotoxicity were enriched
with low-risk MI. These pathways included nucleotide excision

repair, oxidative phosphorylation, proteasomes, ribosomes,

spliceosomes, and ubiquitin-mediated proteolysis.

3.9 Comparison of hub gene and IIC risk
scores

The regression coefficients of each gene were calculated using

logistic ~ regression. ~ Spearman  correlation  analysis-based
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relationships between key genes and IICs were displayed in
Figures 7A-E. CDA was significantly and positively correlated
with neutrophils, activated mast cells, activated monocytes,
activated NK cells, and activated DCs (p<0.05; Figure 7A).
CLEC4D expression was significantly and positively correlated
with activated neutrophils, mast cells, monocytes, and DCs
(Figure 7B). ILIR2 expression was positively correlated with
neutrophils, activated mast cells, and monocytes (Figure 7C).
NAMPT expression showed a significant, positive correlation
with neutrophils, activated mast cells, monocytes, and DCs
(Figure 7D). THBD expression was positively correlated with
and DCs
(Figure 7E). Expression of the five identified genes was negatively

activated neutrophils, mast cells, monocytes,
correlated with gamma delta T cells and CD4+ memory resting
T cells. Nomogram risk scores revealed a significant, positive
relationship with neutrophils, activated mast cells, monocytes,
activated DCs, and activated NK cells, and a significant, negative
correlation with gamma delta T cells and CD4 memory resting T
cells (Figure 7F, Supplementary Table S4). As shown in
Figures 7G-L, CDA, CLEC4D, IL1R2, NAMPT, THBD, and the
nomogram were significantly positively  correlated  with
neutrophils (p <0.05 for all, R=0.77, 0.75, 0.62, 0.71, 0.64, and

0.76, respectively).

3.10 Consensus clustering analysis and
gene set variation analysis

Unsupervised clustering analysis was performed using data
from 49 MI tissues samples in the GSE66360 dataset to classify
patients into different clusters. A k value of two was selected
after estimating a consensus heatmap (Figure 8B), with relative
changes ranked according to the cumulative distribution function
(CDF). The CDF reached an approximate maximum of k=2,
and the cluster analysis was more reliable (Figure 8A). We
identified two distinct MI patterns and thereby divided patients
into two corresponding clusters, as follows: 24 cases in
MI-related
(Supplementary Table S5). PCA and t-SNE analyses were used to

cluster 1 and 25 cases in MlI-related cluster 2
validate the independent distribution of MlI-related subtypes
(Figures 8C,D). The boxplot and heatmap revealed that the
expression levels of the five hub genes were higher in cluster one
than those in cluster two (Figures 8E,F). A violin plot showed
that the infiltration fraction of neutrophils was higher in cluster
one than that in cluster two (Figure 8G). Subsequently, the
“PupillometryR” package was applied to calculate immune,
stromal, and estimate scores of subtypes. As violin plots showed,
immune (Figure 8H), stromal (Figure 8I), and estimated
(Figure 8]) scores of cluster one were high and those of cluster
two were low. Finally, we used the GSVA to evaluate the
differences of biological functions in two clusters. The heatmap
revealed that pathways related to immune and inflammations,
such as leukocyte transendothelial migration, B cell receptor
signaling pathway, T cell receptor signaling pathway were
enriched in cluster 1, while metabolism pathways were enriched
in cluster 2 (Figure 8K). Furthermore, to access the stability of

frontiersin.org


https://doi.org/10.3389/fcvm.2025.1516043
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

Tang et al. 10.3389/fcvm.2025.1516043

CLEC4D c IL1R2 NAMPT
o o o o ]
© ] © ] o | o ]
3 3 3 3
EER EXh z 81 z 81
3 AUC: 0.893 3 AUC: 0.882 3 AUC: 0.887 3 AUC: 0.885
3« 95% CI- 0.823-0.953 3 < 95% CI: 0.811-0.047 3 < | 95% Cl- 0.811-0.950 3 < 95% CI: 0.812-0.043
3 P 3 3
o o o o
S S 3 S
o | o | o | o
° T T T T T T ° T T T T T T ° T T T T T T ° T T T T T T
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1 - Specificity 1 - Specificity 1 - Specificity 1 - Specificity
THBD 1o B
o g s
- $ 2
]
o g .
3 s 24 g
E z E 31
8 H 3
© o H
£ 7] g <1 gox g
2 H .
2 AuC: 0.921 5 23
&< 95% CI: 0.862-0.966 g . @
3 g
5
g 0z o]
3 ]
s 7 S S
g
31 0.00} L
° K T T T T T 3% T T T T T
) o ) o7 w . |
00 02 04 06 08 10 o0 02 o4 o8 o8 1o 1- spaciicly ! ~ ~ Thveshodpovapity .
1 - Specifiity Nomogram-predicted probability of MI - ™ FY ™ 2,
0 10 20 30 40 50 60 70 80 90 100
Points . A A A | ) A ) ! A "
CDA r T T T T T T T T T T T T r
45 5 55 6 65 7 75 8 85 9 95 10 105 11 115
NAMPT
4 5 6 7 8 910 12
THBD r T T T T T T T 1
4 5 6 7 8 9 10 1 12
CLEC4D ————— —
3 4 5 6 7 8 9 10 11
IL1R2 r T T T T T T T T T ]
4 5 6 7 8 9 10 11 12 13 14
Total Points r T T T T T T T T T T ]
0 20 40 60 80 100 120 140 160 180 200 220
Risk of MI r T T — T T T T !
0.01 005 01 02 0304050607 08 09 095 0.99 0.999
2 4 C-index
«© _]
IS
&
©
=
Eoc -
= 05
=
=
2
B Y
c o
@
1]
g - , 7 ®Zhao etal. AUC: 0.941 (0.891-0.991) 0.0-
+” mWu & Jiang et al. AUC: 0.924 (0.876-0.973)
e mSong et al. AUC: 0.673 (0.566-0.78) &‘ 'b'\‘ 0\‘ fb,\ <&
4 Wu & Cai et al. AUC: 0.853 (0.776-0.93) X X X X, &
S | mnomogram AUC: 0.95 (0.909-0.991) (2 2 2 .\0 OQ
T T T T T T & . @“ 0(\ (¢
% 3 ) Y &®
0.0 0.2 0.4 0.6 0.8 1.0 & $\)
1-Specificity (FPR) {\0
FIGURE 6

Evaluation of hub genes, construction and validation of a predictive nomogram for Ml and comparison of AUC and C-index values of this model vs.
those of other articles. ROC curves of CDA (A), CLEC4D (B), IL1R2 (C), NAMPT (D), and THBD (E) are shown. (F) Hub genes integration to establish a
diagnostic nomogram to predict risk of Ml is shown. (G) A calibration curve comparing predicted and actual observations, (H) the predictive efficiency
of the nomogram and other hub genes evaluated via ROC, and (I) DCA curves of the nomogram and other hub genes are shown. The ‘none plot’
represents no patients were diagnosed and the ‘all plot’ represents all patients were diagnosed. (J) ROC curves of models from four prior studies
and our study and (K) C-index values from models of four prior articles vs. that of our model are shown. ROC, receiver operating characteristic;
DCA, decision curve analysis; AUC, area under the ROC curve.

subtypes, the GSE48060 dataset was used for validation. The result ~ genes and neutrophils were significantly distributed between the
displayed that the clusters were independent of each other two subtypes, demonstrating a high level of immune
(Supplementary Figures S7A-C). Meanwhile, we found the key  heterogeneity (Supplementary Figures S7D-F).
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Correlation between 22 1ICs and expression levels of hub genes using GSE66360 data. Lollipop plots indicating the relationship between [ICs and CDA
(A), CLEC4D (B), IL1IR2 (C), NAMPT (D), THBD (E), and risk score for MI (F) are shown. Scatter plots revealing the correlation coefficient between
neutrophils and expression levels of CDA (G), CLEC4D (H), IL1R2 (1), NAMPT (J), THBD (K), risk score of Ml (L). Values of p <0.05 were considered
statistically significant. IIC, infiltrating immune cell; MI, myocardial infarction.

3.11 Identification of MiRNAs and
construction of CeRNA network in Ml

To identify miRNAs that may bind to the five key genes, miRNAs
appearing in more than one database were considered (Supplementary
Figures S8A-E). Results showed that 230 miRNAs bind hub genes.
A ceRNA network was constructed to display potential interactions
between miRNAs and key genes (Supplementary Figure S8F).
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3.12 Single-cell RNA sequencing analysis

Cluster analysis divided scRNA-seq cells into 14 clusters
(Supplementary Figure S9B). The 14 clusters were categorized
into 9 types of cells by markers (Figure 9A; Supplementary
Figure S9A). The Figure 9B revealed the expression of markers in
each cell. Then, the ratio and the absolute number of cells in
samples were displayed in Figure 9C. The stack plot showed the
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ratio of neutrophils was higher on the 7th day after MI. Interestingly,
on the 14th day after MI, the ratio of neutrophils decreased. As the
UMAP plot displayed, the expression of genes of each cell was
calculated in sham, day3, day7 and dayl4 post-MI groups
(Figure 9D). We found the genes of neutrophil increased on the
seventh day, and decreased on the fourteenth day after MI
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Subsequently, as the Supplementary Figure S9C revealed, the
expression of ILIR2 was higher in neutrophil than in other cells
and more concentrated in neutrophil compared to other hub genes.
The expression of IL1R2 increased on the 3rd day and decreased on
the 7th day after MI (Figure 9E). Finally, the ratio of IL1R2 in each
group was calculated, Sham: 0.087, D3: 0.228, D7: 0.111, D14: 0.195.
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Single-cell RNA sequence analysis. (A) UMAP visualization of 9 cell types in control and infarcted heart tissue from mice. (B) Dot plot shown the
expression of markers of each cell type. The percentage that every cell cluster expressed the marker genes was represented with dot size and the
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3.13 Immunofluorescence and compared to sham group, the positive rate of I11r2 was higher on
immunohistochemistry the first day (p<0.05) and third day after MI (p<0.001),
demonstrating the diagnosis value of Il11r2. Moreover, the rate of

We examined the distribution of I11r2 in sham-operated group I11r2 was also higher on the third day after myocardial infarction

and different stages of myocardial infarction, 1 day, 3 days, 14 days ~ than the first day, which revealed the potential of M1r2 in

after MI, and found IlIr2 was co-expressed with MPO, as the Predicting the progression of ML Interestingly, two weeks after

fluorescent microscopy analysis displayed (Figure 10A). PCR ML the I11r2 expression level was lower than those on the first

analysis revealed that the expression of ILIR2 was significantly day and third day after MI (Figures 10D,E).

higher in MI tissues compared to normal tissues. IL1R2

expression peaked on the first day following MI and

subsequently decreased over time (Figure 10B). WB results 4 Discussion

showed that, compared to the sham group, the expression of

II1r2 was higher on both the first and third days after MI. Although the development of therapies has led to

Additionally, the expression of Illr2 on the third day post-MI  breakthroughs in MI treatment, the disease remains a leading

was higher than on the first day. Two weeks after MI, the cause of death worldwide (17, 18). Currently, methods used to

expression of Illr2 was lower than on both the first and third diagnose MI are primarily based on serum biomarkers of

days post-MI (Figure 10C). Then, as the IHC staining showed,  myocardial damage. However, these biomarkers cannot provide
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sufficient warning of myocardial perfusion abnormalities in the
early stages of MI (19). Further, myocardial injury due to other
cardiomyopathies and Takotsubo
cardiomyopathies can interfere with the diagnosis of MI (20, 21).

such as hypertrophic
In recent years, numerous biomarkers related to immune have
been identified for MI diagnosis and risk assessment, such as
S100 protein and Galectin-3 (Gal-3) (22). Moreover, point-of-
care (POC) testing of platelet was proved to improve the
diagnosis of AMI (23). Although some studies have confirmed
that IICs are involved in the development of many diseases
including Alzheimer’s and pediatric acute myocarditis (24, 25),
the role of IICs in MI remains unclear. Since we found that

Frontiers in Cardiovascular Medicine

neutrophils play a key role in the occurrence of MI, we were
able to build a diagnostic model for MI using machine
learning algorithms. Through scRNA-seq analysis, we can
identify a gene with more specificity of neutrophil than other
genes of the model. Traditional types of MI including non-
ST-elevation MI (NSTEMI) and ST-elevation MI (STEMI) fail
to sufficiently classify patient risk associated with disease, and
the main diagnostic approach involving percutaneous coronary
intervention is invasive (17). Therefore, we defined two novel
subtypes of MI with independent immune heterogeneity that
may facilitate early intervention and the individualized treatment
of ML
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Here, we describe a noninvasive MI screening approach that
uses machine learning algorithms to detect changes in neutrophils
of blood samples. To investigate the immune microenvironment of
MI, CIBERSORT and scRNA-seq analysis were used to reveal
infiltrating fractions of IICs in MI and non-diseased samples. We
found that neutrophils were significantly up-regulated in MI
samples in both training and validation sets, indicating that
neutrophils may play a significant role in the onset of MIL
Neutrophils, myeloid leukocyte cells accounting for 50%-70% of
all circulating leukocytes in humans, are a dominant arm of the
innate immune system that defends against pathogens. In chronic
obstructive pulmonary disease, neutrophilic inflammation is a
notable characteristic (26). In cardiovascular diseases (CVD),
neutrophils can induce macrophage transformation to another
phenotype, promoting angiogenesis. The process can facilitate the
generation of new blood vessels in the ischemic heart to repair
damage (12). This pathophysiological process is centered around
neutrophil-driven repair mechanisms. Neutrophils contribute to
the inflammatory response in CVDs through mechanisms such as
degranulation and the release of neutrophil extracellular traps
(NETs). NETs interact with endothelial cells and platelets,
promoting immune thrombosis, and are implicated in the
progression of various CVDs. NETs represent a promising
therapeutic target for anti-inflammatory strategies in CVD (27).
Neutrophils and platelets can be simultaneously activated in
various cardiovascular diseases, and their interaction may serve as
a potential target for novel therapeutic strategies in cardiovascular
diseases (28). A recent study found that inflammatory reactions
and microcirculatory disturbances associated with neutrophils that
protect the heart from ischemia-reperfusion injury are mediated
by PDE4B (29). Interestingly, scRNA-seq analysis revealed that the
neutrophil ratio in all cells initially increased and then decreased,
as shown by Jin. This is an important cellular mechanism to
alleviate the inflammation in ischemic heart tissue. Meanwhile, the
mechanism can activate the programs of anti-inflammation to
promote the transition from ischemia to reparative stage (30). In
acute coronary syndrome (ACS) patients, neutrophil count is
regarded as an independent predictor of disease progression on
admission (31). The number of neutrophils which is in circulation
is associated with infarct size (32). The identification of changes in
neutrophils in the peripheral blood is a potentially useful
therapeutic strategy.

Therefore, a module sensitive to neutrophils was screened via
WGCNA to explore the regulatory molecules that mediate MI.
GO and KEGG pathway enrichment analyses indicated that
neutrophil- and MI-related pathways such as neutrophil
migration, neutrophil extracellular trap, lipid and atherosclerosis
and NF-kappa B signaling were enriched in the brown module.
Atherosclerosis is a disease of the arteries that can lead to MI
(33). Neutrophil activation and degranulation can lead to plaque
erosion, contributing to MI (34). The NF-kappa B family plays a
crucial role in the process of inflammation by promoting the
expression of pro-inflammatory factors (35). NF-kappa B is also
considered a destabilizer of plaques (36). Machine learning
methods can be applied using general learning algorithms to
predict complex, large, and hard-to-tackle health problems (37).
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The application of machine learning algorithms can improve the
accuracy of disease susceptibility and outcome prediction
methods, both of which have improved significantly in recent
years (38). Key genes related to MI were identified using three
machine learning algorithms (LASSO regression analysis, SVM-
RFE, and the random forest method) and integrated into a
nomogram model to calculate and visualize risk associated with
MI occurrence via a relatively simple output. The diagnostic
accuracy of the nomogram model was demonstrated to be better
than that of conventional methods (39). Subsequently, DCA and
the calibration curve validated the stability of our nomogram
model. More importantly, the AUC and C-index of the
nomogram model were higher than those of the other four
articles (40-43), indicating an excellent predictive ability for MI.

Cluster analysis was used to divide the patients with MI into
two clusters. Subtype heterogeneity was observed when either the
infiltrating fraction of neutrophils or the expression levels of five
identified hub genes were considered. Notably, expression levels
of the five identified MI-related genes and neutrophil infiltration
percentage were elevated in cluster one vs. cluster two. In
addition, both immune and stromal scores of cluster one were
higher than those of cluster two. Also, the stability of the
immune subtypes was validated in a dataset. The identified
subtypes may allow for individualized MI therapy. Nonetheless,
molecular mechanisms underlying neutrophil-related changes
and risk models require further investigation.

As a high-throughput technology, scRNA-seq analysis can
quantify gene expression profile of particular cell group at the
level of single cell by RNA sequencing (44, 45). The analysis can
describe the specific gene expression pattern of the single cell
from tissues to reveal the cellular heterogeneity of the tissue (46).
Through scRNA-seq analysis, we found IL1R2 exhibited greater
specificity of neutrophil than other genes in the model. ILIR2 is
a member of the IL-1 receptor family and is associated with
immunity and inflammation (47). Some studies have shown that
ILIR2 plays a role in the progression, metastasis, and poor
(48, 49).
atherosclerosis, the injury/inflammatory damage was prevented
by IL1IR2 which mediated by miR-383-3p to inhibit the
inflammasome signaling pathway to active in endothelial cells of

prognosis of tumors In patient with coronary

coronary artery (50). In patients with STEMI, ILIR2 is associated
with left ventricular remodeling (51). IL1R2 may be involved in
the immune and inflammatory responses associated with
(CAD). it
overexpressed in peripheral blood mononuclear cells of patients

coronary artery disease Because significantly
with CAD and its expression is positively correlated with the
SYNTAX score and oxidized low-density lipoprotein (52). In the
study, ILIR2 has been shown to inhibit cardiomyocyte apoptosis
during myocardial ischemia-reperfusion injury, suggesting its
potential as a therapeutic target for the prevention and treatment
of myocardial infarction (53).

Mouse model of MI was constructed to best investigate the
pathophysiology of ischemia heart disease. The paraffin sections
of MI tissue in different periods were selected to perform
following experiments. The protein targets were detected and

visualized with IF on each slide of section (54). IHC was an
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important auxiliary tool for direct diagnosis and identification of
the cell linage (55). Here, as the IF shown, Illr2 was co-
expressed with MPO. The WB analysis showed that, compared to
the sham group, the expression of Il1r2 was higher on both the
first and third days after MI. Additionally, the expression of Il1r2
on the third day post-MI was higher than on the first day. Two
weeks after MI, the expression of Il1r2 was lower than on both
the first and third days post-MI. The progression of MI was
revealed by THC. With the early progression of MI, more and
more myocardial cells were injured and the rate of IL1R2
increased. The results validated that ILIR2 is specific to
neutrophils and might predict early progression of MI, which
could serve as a potential therapeutic target. The PCR analysis
revealed a reduction in the level of ILIR2 mRNA on the third
day post-MI. A decrease in mRNA levels does not necessarily
result in a corresponding reduction in protein expression. This
may be attributed to the cell compensating for the reduction in
mRNA by modulating translation efficiency, thereby maintaining
or even enhancing protein synthesis. However, there are some
limitations in the study. Firstly, our datasets and samples are
limited, which can cause deviation in the accuracy of biomarkers.
Secondly, our experiments are based on animals, not humans,
which only tentatively explain IL1R2 has potential value of
diagnosis and prediction of early progression of MI. The results
in this study should be verified by in vitro experiments in
future studies.

5 Conclusions

In conclusion, we found and verified that neutrophils
are key IICs that play a crucial role in the onset of MI.
The of IL1R2 related
facilitates the diagnosis of MI and prediction of the early

identification to neutrophils
progression of MI. Furthermore, two distinct subtypes with
immune heterogeneity were identified. Immune infiltration
subtype classification could facilitate the development of

individualized MI therapies.
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