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Introduction: Electrographic flow (EGF) mapping is an FDA 510(k)-cleared

method for visualizing atrial activation wavefronts in atrial fibrillation (AF). Its

clinical efficacy was demonstrated in the FLOW-AF randomized controlled

trial, and its fundamental principles have been previously described. However,

the underlying machine learning strategy used to develop and refine the EGF

algorithm has not yet been detailed. Here, we present how our EGF Model—

trained on procedural outcomes from 199 fully anonymized retrospective

patient datasets—identifies clinically significant sources of AF and how this

machine learning–driven hyperparameter optimization underlies its clinical

effectiveness. We also examine the statistical characteristics of the identified

sources and their impact on cycle length variability, offering insights into

potential pathophysiological mechanisms.

Methods and results: Unipolar electrograms were recorded from patients with

persistent or long-standing persistent AF using 64-electrode basket catheters.

The EGF Model processes these recordings to reconstruct divergent wavefront

propagation patterns and quantify their temporal prevalence. We included 399

retrospective patients in total: 199 for training and optimizing 24 model

hyperparameters, and 200 for subsequent analyses of source prevalence and

characteristics. Our machine learning approach established an activity

threshold, above which divergent wavefront patterns—termed “significant

sources”—predicted AF recurrence. This threshold was validated in 85

prospective patients from the published FLOW-AF trial. Significant sources

persisting post-procedure were associated with significantly higher recurrence

rates than those successfully ablated. Notably, the majority of significant

sources were not continuously active; however, when these sources switched

“ON,” the spatial variability of AF cycle lengths in the respective atrium

decreased by more than 50%, suggesting an entraining effect.
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Conclusions: By systematically optimizing the EGF Model’s hyperparameters

based on clinical outcomes, we reliably detect and target key AF sources that,

when ablated, improve procedural success. These findings, supported by the

FLOW-AF trial, underscore the usefulness of clinical outcome-based machine

learning to improve the efficacy of algorithm based medical diagnostics.

KEYWORDS

persistent atrial fibrillation, electrographic flow mapping, basket catheter, panoramic

mapping, machine learning, clinical validation

Introduction

Atrial fibrillation (AF) is characterized by chaotic and complex

atrial activations. While pulmonary vein (PV) triggers remain the

most widely recognized initiators of AF (1), many patients with

persistent or long-standing persistent AF show evidence of extra-

PV mechanisms (2–4). These mechanisms may include focal

firing sites (3), micro-reentry (5), macro-reentry (6), or

epicardial-to-endocardial breakthroughs (7, 8), though their

precise roles in sustaining AF continue to be debated (9, 10).

Efforts to localize and ablate AF-maintaining drivers have

produced limited improvements in outcomes (6, 11–15),

underscoring the difficulty of identifying truly actionable sources.

Electrographic flow (EGF) mapping offers a novel approach by

reconstructing and analyzing time series of divergent wavefront

propagation vectors derived from 64-electrode basket recordings

(16–24). This EGF method has demonstrated meaningful clinical

benefit in the FLOW-AF randomized controlled trial (22), and its

foundational principles have been reported in prior work. However,

the published studies have not focused on the machine learning

strategy based on retrospective patient data that was originally used

to optimize the EGF Model’s hyperparameters—the critical training

process for enabling the algorithm to detect clinically significant

sources that, once ablated, may improve outcomes. Unlike

randomly seeded neural network training approaches, which

require hundreds of thousands of patient datasets to learn both the

underlying physiology and its correlation with outcomes (25), the

EGF approach began with a mechanistic model for divergent

wavefront propagation. This mechanistic grounding reduced the

number of free parameters and thereby the data requirement for

training while still representing a trainable model capable of

identifying clinically significant AF sources.

In this paper, we describe the development and hyperparameter

optimization of the EGF Model. We detail how 24 hyperparameters

were trained on procedural outcomes in a cohort of 199 anonymized

retrospective patient datasets with persistent or long-standing

persistent AF for which 12-month outcomes were available. We

then present statistical characterizations of AF sources in the total

set of 399 retrospective patients. Finally, we refer to the

independent validation of these hyperparameter settings in the

published FLOW-AF trial, involving 85 prospective cases. Taken

together, these complementary datasets demonstrate how a

machine learning–optimized EGF mapping approach can

accurately pinpoint meaningful ablation targets and thereby

improve clinical outcomes.

Methods

Study population and data sources

This study retrospectively analyzed anonymized datasets from

399 patients with persistent or long-standing persistent atrial

fibrillation (AF) who underwent ablation procedures using

64-electrode basket catheters across five European centers

(Erasmus Medical Center, Netherlands; Praxisklinik Herz und

Gefäße, Dresden, Germany; Ruhr University, Bad Oeynhausen,

Germany; Asklepios Clinic St. Georg, Hamburg, Germany; and

Charité, Benjamin Franklin Clinic, Berlin, Germany). Procedures

were performed under sedation with systemic anticoagulation,

transseptal catheterization, and 3D electroanatomic mapping

(Carto or EnSite Precision). A total of 62% had previously

undergone AF ablation.

From this pool, 199 patients were specifically selected for

training and testing the Electrographic Flow (EGF) Model’s

hyperparameters. Criteria for inclusion were availability of final

intra-procedural recordings from both atria, documented

12-month clinical outcomes, and acceptable signal quality with

minimal baseline drift. The remaining 200 patients served to

characterize and analyze statistical properties and prevalence of

AF sources as identified by the fully optimized EGF Model,

including their impact on atrial cycle length variability.

EGF mapping: basic principles

The EGF Model, a core component of OptiMap® software

(Cortex Inc., Santa Clara, CA, USA), processes 1 min unipolar

electrogram recordings sampled at 1 kHz from basket catheters

placed in both atria. Signals undergo preprocessing, including

noise reduction, normalization, and removal of far-field

ventricular activity. Local activation vectors are computed using a

modified Horn–Schunck optical flow algorithm (see

Supplementary Material for details).

Wavefront Reconstruction involves combining these vectors

over consecutive, overlapping 2-second segments to identify

statistically dominant wavefront propagation patterns. Divergent

wavefronts originating from local singularities, termed “sources,”

are tracked throughout each recording. Figure 1B illustrates the

evolution of these source candidates, which begin to crystallize

after the first 0.4 s. After 4 s, the heatmap represents source

prevalence across segments. For each 60 s recording, these
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FIGURE 1

Training the EGF model and evolution of an electrographic flow (EGF) Map. (A) Hyperparameter training of the EGF Model was conducted in iterative

cycles using different subgroups of the 199-patient training cohort. Each step on the x-axis represents one cross-validation cycle involving 110

patients. The top panel shows the progression of the activity threshold (cutoff) over these cycles. The middle panel displays specificity (i.e., ability

to avoid false positives) and overall prediction accuracy. The bottom panel illustrates the ranges tested for 18 hyperparameters and how they

converged to the final optimized settings. (B) Evolution of AF sources in an EGF map. Left: A representative 64-electrode basket recording. Right:

After 0.4 s (150 EGF iterations), six source candidates begin to emerge. As time progresses and more frames accumulate, these sources stabilize.

By 60 s, three distinct sources remain, one of which is dominant. The 60-second EGF Summary Map, shown as a heat map, highlights the spatial

distribution and prevalence of these sources.
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analyses are summarized in a Summary Map highlighting potential

source regions and their temporal prevalence (see Figures 1, 2).

AF source detection, prevalence, and
activity

After training, each 60 s recording was analyzed to identify atrial

sources. Prevalence was defined as the percentage of recording time a

specific source was detected. Sources were termed “dominant” if their

prevalence exceeded 20%. Activity, the average prevalence per 2 s

segment normalized to the source’s maximum prevalence, adjusted

for electrode contact or noise artifacts. A clinically significant

activity threshold of 26.5%, established during hyperparameter

optimization, reliably predicted AF recurrence.

Cycle length analysis

Cycle length (CL) was computed via autocorrelation analysis of

electrograms, identifying peak intervals that represent local atrial

activation. Electrodes yielding autocorrelation below 0.6 or near-

field amplitudes below 0.7 times the far-field QRST amplitude

were excluded. CL values from remaining electrodes were

averaged into 2-second segments, computing mean CL and

standard deviation (SD) to assess how dominant sources

FIGURE 2

Validation of the EGF model for source ablation. (A) The top panel shows results from the training cohort of 199 retrospective cases collected from

four European centers (2013–2017). A 42% difference in freedom from AF was observed between patients whose final ablation recordings showed

sources ≥26.5% activity vs. those below this threshold. The bottom panel presents data from 85 patients in the FLOW-AF randomized prospective

trial (2019–2021). Here, a 51% improvement in one-year AF-free survival is seen in patients who underwent EGF-guided source ablation compared

to PVI-only. (B) An example case of a patient with recurrent AF following an initial PVI. EGF mapping identified a single, clinically significant source

(32% activity) in the LA, consistently reproduced across three consecutive 60 s recordings. After ablating this source and performing cardioversion,

the patient remained AF-free at 12 months.
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influenced local atrial activation (e.g., spatial CL variability

reduction). Detailed Software and Hyperparameter Description.

A comprehensive technical description of the EGF algorithm,

including its theoretical foundations, mathematical formulations,

and explicit definitions of all hyperparameters and their

optimization procedures, is provided in Supplementary Material.

Results

Patient population

This study included 399 patients with persistent or long-

standing persistent AF who underwent intra-atrial 64-electrode

basket recordings. The average age of the cohort was 63.4 ± 9.2

years, and 41% of participants were female. Mean AF duration

prior to mapping was 51 ± 42 months, with 62% having

undergone prior PVI and 63% having been treated with at least

one class I or III antiarrhythmic drug. The mean short-axis LA

diameter was 50 ± 8 mm, and the mean CHA2DS2-VASc score

was 2.2 ± 1.4 (Table 1).

Training the EGF model to predict clinically
significant sources

Of the 399 retrospective patient datasets, 199 were used to

optimize the EGF algorithm based on 12-month ablation

outcomes. By correlating the presence or absence of post-ablation

recurrence with specific EGF-derived flow patterns the algorithm

learned to recognize “clinically significant” sources (i.e., sources

correlating with AF recurrence). These sources were operationally

defined by an activity threshold such that divergent wavefronts

occurring with a frequency above this threshold predicted a

higher likelihood of recurrence.

A Kaplan–Meier (KM) analysis demonstrated that patients

with final EGF-derived source activity ≥26.5% had significantly

worse outcomes than those with <26.5% (Table 2, Figure 2A,

upper panel). Importantly, patients without a significant source

(i.e., below the threshold) had low recurrence rates, matching

patients whose previously high-activity sources were effectively

ablated. By contrast, patients whose ablation inadvertently led to

a new EGF source or who retained a high-activity source showed

recurrence rates similar to those who started with a significant

source. These findings suggest that sources identified by the

optimized EGF Model are not mere epiphenomena of a diseased

atrium but rather have a direct causal role in sustaining AF.

Validation with the FLOW-AF randomized
clinical trial

To further confirm the predictive utility of the optimized EGF

Model, we referenced 85 randomized prospective cases from the

published FLOW-AF trial (21, 22) (NCT04473963). In that

study, patients who had undergone PVI and were found to have

EGF sources ≥26.5% activity were randomized to either receive

no additional treatment or to undergo targeted ablation of these

sources. Kaplan–Meier curves revealed a 51% improved outcome

at 12 months in the group that received EGF-guided ablation

(Figure 2A, lower panel). Patients who retained a source above

the threshold experienced higher recurrence rates than those

without such a source or those whose sources had been ablated

(Table 3). Notably, patients without a significant source at the

outset exhibited similarly low recurrence rates as those who

underwent successful EGF-guided source ablation, demonstrating

the algorithm’s practical utility.

An illustrative case is shown in Figure 2B. A female patient

from the FLOW-AF study presented with persistent AF despite

having undergone a recent PVI. Confirmation showed all

TABLE 1 Baseline demographics.

Characteristic Total No dominant source
(prevalence <20%)

Dominant source
(prevalence ≥20%)

P-value

Number of patients, n 399a 217a 182a

Age (years) (mean, SD) 63.4 ± 9.2 62.4 ± 8.8 64.6 ± 9.6 0.005

Sex (Female), n (%) 132 (41.4) 58 (33.7) 74 (50.3) 0.003

Body mass index, (mean, SD) 29.1 ± 5.2 29.6 ± 5.6 28.6 ± 4.6 0.23

Left ventricle ejection fraction (mean, SD) 0.57 ± 0.08 0.57 ± 0.08 0.57 ± 0.08 0.77

Left atrial size (mm) (mean, SD) 50.5 ± 7.5 51.8 ± 7.2 48.8 ± 7.4 0.001

AF duration (months) (mean, SD) 51.3 ± 41.5 53.9 ± 42.8 48.2 ± 39.9 0.23

Prior AF ablation, n (%) 194 (62.2) 120 (70.6) 74 (51.7) 0.001

Prior antiarrhythmic drug use, n (%) 168 (63.4) 91 (60.7) 77 (67.0) 0.08

Hypertension, n (%) 204 (73.6) 116 (77.9) 88 (68.8) 0.10

Diabetes mellitus, n (%) 45 (18.5) 26 (18.8) 19 (18.1) 1.0

History of CVA/TIA, n (%) 22 (9.1) 12 (8.8) 10 (9.3) 1.0

Coronary or vascular disease, n (%) 52 (28.1) 27 (25.0) 25 (32.5) 0.32

CHA2DS2-VASc-score + (mean, SD)b 2.2 ± 1.4 2.0 ± 1.3 2.5 ± 1.5 0.004

aTotal number of patients analyzed for source activity level; however, for each of these patients, not all baseline demographic variables were available.
bCHA2DS2-VASc-score is a calculated risk stratification score to predict risk of stroke in AF patients.

AF, atrial fibrillation; CVA/TIA, cerebrovascular accident/transient ischemic attack; SD, standard deviation.
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pulmonary veins were still isolated, a scenario in which additional

linear or posterior wall ablation might typically be performed.

Instead, the EGF Model identified a single, significant source in

the LA roof. Ablation of this site led to freedom from AF over

12 months without further linear ablation, underscoring the

effectiveness of using EGF to guide a more targeted approach.

Prevalence and behavior of sources

Beyond validating the algorithm, we analyzed the properties of

EGF-detected sources across the entire 399-patient cohort. In many

cases, multiple sources were observed in a single patient, and these

sources often exhibited dynamic “ON/OFF” behavior over each

60 s mapping interval. As shown in Figure 3A, one representative

example features three LA sources with measured activities of

29%, 17%, and 10%, corresponding to prevalences of 29%, 15%,

and 8%, respectively, in the second of three consecutive 60 s

recordings. Despite fluctuating, these three sources appeared

consistently in all three consecutive recordings, suggesting

reproducible patterns of activation within the expected statistical

scatter of their random switching as previously published (23,

24). Only the source with 29% activity met the threshold for a

“significant source.”

To further illustrate this dynamic behavior, Figure 3B displays

2-second snippets of each source’s activation state, along with

histograms quantifying their time-varying prevalence. These

histograms reveal periods when two or even all three sources

were concurrently active, as well as intervals with no detectable

sources. Overall, the case exemplifies how EGF mapping can

capture the transient and overlapping nature of multiple AF

sources within a short timeframe.

Out of a total of 2,625 sources detected across all initial LA and

RA recordings, only 278 (10.7%) met the criteria for dominance

(≥20% prevalence). These dominant sources were found in 182

patients (45.7%), yielding an average of 1.5 dominant sources per

patient among those harboring them. Geographically, dominant

sources were nearly evenly split between the LA (55%) and RA

(45%). Patients frequently had several sources with prevalence

<20%; the number of such “sub-dominant” sources ranged from

1 to 17 per patient (mean 6.6 ± 2.4).

Interestingly, patients harboring at least one dominant source

were older (p = 0.005), more likely female (p = 0.003), had a

smaller LA diameter (p < 0.001), and had a higher likelihood of

prior AF ablation (p = 0.001) than those without any dominant

sources (Table 1). The EGF Model design accommodates both

focal and rotational wavefronts; the current study showed that

about 15% of dominant sources were rotational, indicated by a

curl ≥0.7. There were no significant differences in outcomes or

average activity between active rotational vs. focal sources (data

not shown).

Significant sources entrain their
environment

To investigate whether dominant sources influence overall AF

dynamics, we examined cycle length (CL) changes upon “ON”

switching of these sources. As shown in Figures 4A,B, some

sources increased local CL, while others decreased it, suggesting

no consistent direction of source effect on dominant frequency

(DF = 1/CL) unlike previously presumed (2). As shown in

Figure 4C (left panel) that was true for either high CL (n = 32),

low CL (n = 33), or intermediate CL (n = 329). However,

Figure 4C (right panel) demonstrates that when a dominant

source was active, the spatial standard deviation of CL among all

recording electrodes diminished by two- to three-fold for all

three groups of CL. This suggests that while sources do not

universally affect mean CL in a single direction, they appear to

entrain nearby tissue, creating more uniform cycle lengths and,

thus, more organized AF.

Together, these results reinforce the concept of EGF-detected

dominant sources as pivotal organizing sites for AF. By

identifying and targeting these sources via ablation, clinicians

may significantly improve long-term outcomes in patients with

persistent or long-standing persistent AF.

Discussion

Extra-PV sources

Long-term results of PVI-only catheter ablation in persistent

AF remain suboptimal (26, 27). Increasing evidence suggests that

extra-PV drivers and triggers can sustain AF in many patients (4,

13, 28, 29, 30), motivating diverse strategies to detect and

eliminate these sites (31, 32).

Unfortunately, most current source-detection algorithms based

on mechanistic models have not substantially improved clinical

outcomes (6, 11–14, 33). One recent trial used an AI-trained

TABLE 3 Subgroup statistics from FLOW-AF using the Z-test statistics.

Comparison prospective
validation data

Z-score P-value

Sources ablated vs. Sources above threshold 2.000 0.0450

No sources vs. Sources above threshold 2.410 0.0160

Number of cases: No sources (n = 28), Sources ablated (n = 19), Sources from beginning

above threshold (n = 21).

TABLE 2 Subgroup statistics of the retrospective training data using the
Z-test statistics.

Comparison retrospective
training data

Z-score P-value

No sources vs. Sources ablated 0.517 0.604

No sources vs. Increasing sources 4.486 <0.001

No sources vs. Sources above threshold 4.613 <0.001

Sources ablated vs. Increasing sources 3.026 0.00247

Sources ablated vs. Sources above threshold 3.213 0.00131

Increasing sources vs. Sources above threshold 0.333 0.738

Number of cases: No sources (n = 110), Sources ablated (n = 27), Sources with Increasing

activity during procedure (n = 33), Sources from beginning above threshold (n = 29).
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algorithm targeting spatiotemporal dispersion and achieved

improved outcomes. However, that approach was trained on

experts’ visual interpretation rather than actual procedural

outcomes, leading to high sensitivity but low specificity for

clinically significant sources. Consequently, it sometimes guided

more extensive ablation outside the pulmonary veins (34), even

in patients who may otherwise have been adequately treated by

PVI alone.

FIGURE 3

EGF source behavior and prevalence. (A) The upper-right three panels show consecutive 60 s recordings made from a central LA basket position

(upper-left panel). Recurrent sources at G1 and G23, as well as a weaker source at DE45, appear across these recordings. (B) Several 2-second

segments depict different activation states: G1 only, G23 only, E5 only, G1 plus G23, and no active sources. The three histograms (corresponding

to G1, G23, and E5) display the temporal prevalence of each source during the second 60 s recording. (C) Histograms provide an overview of all

sources found in the initial recordings (both atria) across the entire patient cohort.
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EGF mapping with machine learning based
on procedural outcome

In the present study, we describe a new machine learning

strategy in which the EGF Model’s hyperparameters are

optimized based on procedural outcomes rather than human

labeling. By integrating a highly parameterized mechanistic

model with outcome-driven adjustments, we identified clinically

significant sources with high specificity. Despite the inherent

spatial limitations of low-density basket catheters, the trained

FIGURE 4

Sources entrain their AF environment. (A) Two examples showing changes in cycle length (CL) when a leading source switches “ON.” The top example

shows a decrease in CL; the bottom shows an increase. (B) The first two panels each summarize five cases where CL increases upon source activation

and five cases where CL decreases, respectively, plotted against the source’s segment prevalence. The third panel illustrates that, overall, CL changes

show a symmetric distribution about zero, indicating no consistent directional effect on the absolute CL. (C) The left panel demonstrates that mean CL

does not systematically depend on source prevalence, illustrated by grouping patients into high, intermediate, and low baseline CL. However, the right

panel shows that the standard deviation of CL (i.e., spatial variability among the basket electrodes) decreases significantly as source prevalence

increases in all three groups, indicating enhanced local entrainment when the source is “ON.”
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EGF Model effectively pinpoints actionable AF sources. Besides

divergent wavefront patterns there are also other output

parameters that can be obtained from EGF maps such as EGFC

the activation wavefront flow consistency which was recognized

as useful to identify patients who respond poorly overall (22).

EGFC was not part of the hyperparameter optimization,

however, because it was not yet systematically measured at the

time. In FLOW-AF, patients with advanced remodeling or low

EGFC did not benefit as much from the EGF ablation strategy,

consistent with known challenges in treating long-standing

persistent AF.

A key advantage of using a mechanistic model-based

algorithm, such as the EGF Model, is that it requires far fewer

training datasets compared to purely data-driven neural network

approaches. Because the EGF algorithm is anchored to well-

established physiological principles—namely, that atrial activation

wavefronts originate from a singular focal or rotational source—

the model does not have to re-learn these fundamentals from

scratch. In contrast, a neural network starting from randomized

parameters typically needs exceptionally large datasets to capture

both the basic electrophysiological rules of AF and their

relationship to clinical outcomes. For example, the

groundbreaking study from Mayo Clinic trained neural networks

on more than 180,000 patients and nearly 650,000 sinus-rhythm

ECGs to achieve robust performance in predicting AF occurrence

(25). In our setting, by focusing on divergent wavefronts and

integrating real-world outcome data from 199 retrospective

patients, we were able to systematically refine the EGF

algorithm’s hyperparameters to pinpoint clinically significant

sources with high specificity—even with a comparatively modest

training cohort.

Source behavior and AF cycle length
correlation

Dominant sources appear in 182 of 399 patients. Among these

patients, we found on average only 1.5 dominant sources per

patient, distributed widely throughout both atria (19). In

contrast, the average number of subdominant (lower-prevalence)

sources was much higher (6.6 per patient). This is noteworthy

because previous mapping technologies often identified

substantially more targets to ablate (6, 12, 15, 28, 31), indicating

that our outcome-based machine learning approach can

streamline and minimize ablation by focusing only on those

sources most likely to sustain AF.

Once a dominant source switched “ON,” surrounding cycle

length variability was substantially reduced, suggesting that these

sources entrain local tissue. Our previous experimental work

showed that an artificial source induced by pacing can

immediately supplant native sources in the EGF map, with the

original sources reemerging only after pacing is halted (35). By

contrast, other mapping methods failed to detect pacing sites as

sources and have sometimes identified epiphenomenal rotations

or focal breakthroughs unrelated to AF induction or

maintenance, failing to detect the true driver sites (36).

Study limitations

Despite the encouraging results and rigorous methodology, this

study has several limitations.

While our analysis is supported by a substantial retrospective

dataset (399 patients in total), these data were anonymized,

limiting the amount of detailed clinical information (e.g., precise

AF onset dates, presence or absence of sinus rhythm at arrival in

the lab, etc.) that could be collected.

The EGF Model relies on data from 64-electrode basket

catheters, which inherently have a lower spatial resolution than

high-density mapping systems. Although we show that a

mechanistic, outcome-based machine learning approach can

overcome some of these limitations, the findings may not directly

translate to other mapping modalities or catheter designs without

further validation.

Electrographic flow consistency (EGFC) was not systematically

measured in all retrospective data used to train the EGF Model.

Subsequent analyses (e.g., within FLOW-AF) suggest that EGFC can

be a critical determinant of overall ablation success in advanced

substrates. Hence, the model’s performance may vary across

phenotypes that were not well-represented in the initial training data.

The retrospective nature of the training cohort means that follow-

up protocols (e.g., frequency of ECG monitoring or Holter recordings)

might not have been fully uniform. Although the FLOW-AF trial

provides prospective validation, the sample size there remains

modest, warranting confirmation in larger, multicenter studies.

The results primarily represent patients with persistent AF

recruited from European centers. Ongoing prospective studies,

including the RESOLVE-AF trial (NCT05883631), will further

clarify how the optimized EGF Model performs across diverse

patient populations and different healthcare systems. To date,

evidence is insufficient regarding whether source behavior identified

by EGF mapping in patients with paroxysmal AF, mapped during

induced or spontaneous episodes, differs significantly from

persistent AF. Although post-ablation recurrence following

successful pulmonary vein isolation is typically lower in paroxysmal

AF patients compared to those with persistent AF, future studies

are anticipated to include paroxysmal cohorts.

Future directions

Our findings suggest that training the hyperparameters of a

mechanistic model, one that captures divergent wavefront

patterns in AF, can successfully identify ablation targets using a

relatively small dataset of only 199 patients. Ongoing refinements

to the model and additional prospective trials aim to further

enhance this performance. In particular, the upcoming

RESOLVE-AF trial—a large, prospective, multinational study—

will evaluate the impact of the next iteration of model-based

EGF-guided ablation on patient outcomes. This investigation will

also help delineate how best to integrate EGF mapping into

clinical practice and confirm the potential for improved long-

term success in patients with persistent or long-standing

persistent AF.

Ruppersberg et al. 10.3389/fcvm.2025.1517484

Frontiers in Cardiovascular Medicine 09 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1517484
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Conclusion

The EGF mapping algorithm utilizes low-density

multielectrode basket electrograms to detect divergent activation

wavefronts. By employing a machine-learning approach, the

algorithm is trained to detect clinically significant AF sources

whose ablation improves clinical outcomes.
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