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Identification of a PANoptosis-
related gene signature reveals
therapeutic potential of SFRP2 in
pulmonary arterial hypertension

Li Li and Mukamengjiang Juaiti*

Department of Cardiovascular Medicine, The Fourth Hospital of Changsha (Changsha Hospital of

Integrated Traditional Chinese and Western Medicine), Changsha, China

Background: Pulmonary arterial hypertension (PAH) is a serious condition

marked by elevated pulmonary artery pressure, often progressing to right

heart failure and high mortality. PANoptosis, an inflammatory form of

programmed cell death, remains understudied in the context of PAH. This

study aims to identify and validate PANoptosis-related signature genes in PAH

using bioinformatics analysis alongside in vivo and in vitro experiments,

seeking to uncover its potential role in disease progression.

Methods: PAH-related datasets and PANoptosis-associated genes were sourced

from the Gene Expression Omnibus (GEO) database and prior studies. Feature

genes were identified through weighted gene co-expression network analysis

(WGCNA), least absolute shrinkage and selection operator (LASSO), and random

forest (RF) algorithms, with validation performed on external datasets. The

immune landscape in PAH was characterized using the CIBERSORT algorithm,

providing insights into immune cell composition and its role in disease

progression. Gene expression was further validated using a rat PAH model and

pulmonary artery fibroblasts (PAAFs), while hub gene functions were investigated

at the cellular level through Western blot, CCK-8, and flow cytometry assays.

Results: Through integrated transcriptomic analysis, SFRP2 was identified as a

feature gene related to PAH and PANoptosis. Experimental validation was

conducted in MCT-induced rat PAH models and TGF-β1-induced PAAFs,

confirming SFRP2’s role in regulating fibroblast proliferation and anti-apoptotic

processes. The diagnostic model derived from dataset analysis exhibited high

accuracy in diagnosing PAH, while immune cell infiltration analysis highlighted

immune dysregulation associated with the condition.

Conclusion: SFRP2 was identified as a potential biomarker for PAH, impacting

cell proliferation and resistance to apoptosis, thus providing new insights for

PAH prevention and treatment.

KEYWORDS

PANoptosis, pulmonary arterial hypertension, bioinformatics, SFRP2, immune cell
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1 Introduction

Pulmonary arterial hypertension (PAH) is a condition characterized by elevated

pulmonary artery pressure, often leading to right heart failure and other severe clinical

consequences. It affects approximately 25 out of every 1 million people, with about 5

new cases emerging annually in the same population (1). Various factors, such as

genetic predisposition, environmental influences, and underlying diseases, contribute to
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the development of PAH (2). Early symptoms, including shortness

of breath, fatigue, chest pain, and palpitations, are often mild,

making timely diagnosis challenging and complicating clinical

decision-making (3). As a result, identifying hub genes associated

with PAH could play a pivotal role in its early detection and

improved management, potentially altering the course of this

debilitating disease.

Cell death is integral to maintaining tissue stability, particularly

during recovery from tissue injury or infection, as it removes

inflammatory and stromal cells essential for tissue repair (4).

This clearance process is fundamental for restoring cellular

equilibrium and sustaining the structure and function of organs

(5). PANoptosis, an inflammatory programmed cell death that

combines pyroptosis, apoptosis, and necroptosis, plays a

significant role in this homeostasis (6). Studies indicate that

PANoptosis is intricately linked to various lung conditions,

including acute lung injury (ALI), acute respiratory distress

syndrome (ARDS), and chronic obstructive pulmonary disease

(COPD) (7). These conditions frequently involve mechanisms of

inflammation and tissue remodeling, which are also pertinent to

PAH progression. For instance, in lung fibrosis—closely

associated with PAH—an inflammatory response can prompt

epithelial-mesenchymal transition (EMT) and impact the

pyroptotic activity of epithelial cells (8). Furthermore, biomarkers

associated with PANoptosis, such as TNFR1, NLRP3, and key

proteins involved in pyroptosis, apoptosis, and necroptosis

pathways, have been identified as influential factors in the

inflammatory responses that drive vascular remodeling in PAH

(9). During chronic inflammation or bacterial infection, pathways

involving Toll-like receptors (TLRs) and other death receptors

modify the activation of key proteins, including caspase-8 and

RIPK1, which are critical in the inflammatory landscape of PAH

(10). Research has shown that downregulating PANoptosis-

related genes can alleviate inflammatory responses, suggesting a

promising therapeutic avenue for PAH (9). In PAH,

inflammatory macrophages release molecular signals through

mechanisms such as pyroptosis, amplifying inflammation and

contributing to vascular remodeling and elevated arterial pressure

(11). By targeting the PANoptosome complex and modulating

specific pathways of PANoptosis, there is potential to develop

therapies that mitigate inflammation, slow disease progression,

and alleviate vascular damage characteristic of PAH.

Bioinformatics and machine learning have become effective tools

for exploring potential mechanisms and biomarkers (12). In this

study, we merged two GEO datasets and integrated differentially

expressed genes (DEGs) with PANoptosis-related genes to identify

PANoptosis-related DEGs (PR-DEGs) for functional enrichment.

We then analyzed gene correlations and expression levels using

Weighted Gene Co-Expression Network Analysis (WGCNA),

Least Absolute Shrinkage and Selection Operator (LASSO) logistic

regression, and Random Forest (RF). A nomogram and ROC

curve assessed diagnostic value. Additionally, immune infiltration

analysis examined the relationship between characteristic genes

and immune cell infiltration in PAH. Final hub genes were

validated in two datasets, with protein expression levels confirmed

in animal and cellular models, highlighting their roles in cell

proliferation and anti-apoptosis. This study ultimately offers new

therapeutic targets for PAH.

2 Materials

2.1 Data source

For this study, the gene expression datasets GSE15197 (13),

GSE117261 (14), GSE113439 (15), and GSE48149 (16) were

selected. All datasets were retrieved from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) as standardized and quality-

controlled gene expression matrices. The GSE15197 dataset

includes lung tissue samples from 18 PAH patients and 13

normal controls, while GSE117261 consists of 58 PAH and 25

control lung tissue samples. The GSE113439 dataset contains

lung tissue samples from 15 PAH patients and 11 control

subjects, and the GSE48149 dataset was obtained from lung

tissue samples, comprising 9 control subjects and 8 patients

diagnosed with PAH.GSE15197 and GSE117261 were used as the

training datasets, while GSE113439 and GSE48149 were selected

as validation datasets. The datasets GSE113439 and GSE117261

are based on the GPL6244 platform, GSE15197 is based on the

GPL6480 platform, and GSE48149 is based on the GPL16221

platform. After removing batch effects using Surrogate Variable

Analysis (SVA), the GSE15197 and GSE117261 microarray

datasets were integrated to form the training dataset (17).

Principal component analysis (PCA) was used to visualize the

differences between batches before and after SVA adjustment.

Data normalization and background correction were carried out

using the robust multi-array average (RMA) method. Key

regulatory genes involved in apoptosis, pyroptosis, and

necroptosis are classified as PANoptosis-related genes, and this

gene set was collected from the previous research literature

(Supplementary Table S1) (18–20). The study’s analysis workflow

is illustrated in Figure 1.

2.2 Characterization of DEGs and
enrichment analysis

Raw data were processed in R software, and differential

expression analysis was performed using the “limma” package

(21), and DEGs between the PAH and control groups were

identified based on the criteria adj.p < 0.05 and |log2FC| > 0.5.

Visualization of DEG expression data was done using the

“ggplot2” and “pHeatmap” packages, generating volcano plots

and clustered Heatmaps, respectively (22). PANoptosis-related

DEGs(PR-DEGs) were derived from the intersection of DEGs

and PR-DEGs. Enrichment analysis of Gene Ontology (GO)

terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways was carried out using the enrichGO and enrichKEGG

functions within the “clusterProfiler” package (23). In this study,

single-gene Gene Set Enrichment Analysis (GSEA) was

conducted by calculating the correlation of each diagnostic gene

with others, ranking all genes by correlation in descending order,
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and then applying GSEA through the gseGO and gseKEGG

functions in the “clusterProfiler” package.

2.3 Weighted gene co-expression network
analysis (WGCNA)

The WGCNA package in R facilitated the construction of a

weighted gene co-expression network to identify modules linked

to PAH. Genes with low median absolute deviation (MAD) were

removed, and the pickSoftThreshold function identified an

optimal soft threshold power to achieve scale-free topology (24).

The resulting adjacency matrix was converted into a topological

overlap matrix (TOM), followed by unsupervised clustering

through hierarchical clustering to detect modules. After

refinement, 12 distinct gene modules were identified, each

represented by its eigengene summarizing the gene expression

profile. The physiological significance of these modules was

explored by correlating module eigengenes with PAH traits, and

significant modules were visualized using labeled Heatmap.

Modular membership (MM) and gene significance (GS) scores

were then analyzed to investigate the relationships between

individual genes, modules, and clinical phenotypes.

2.4 Machine learning

Machine learning techniques like LASSO regression and RF are

frequently applied for variable selection (25, 26). LASSO, utilizing L1

regularization, serves as a linear model that supports feature

selection and regression by adding an L1 penalty, which reduces

certain coefficients to zero. This approach is particularly useful for

handling high-dimensional data and minimizing overfitting, thus

enhancing model stability. In this study, key genes were identified

using a 10-fold cross-validation to determine the optimal lambda

value. Random Forest, an ensemble learning method, combines

predictions from multiple decision trees trained on random

subsets of data to perform classification or regression tasks. This

approach improves accuracy and robustness, making it well-suited

for handling complex, high-dimensional, and noisy datasets. The

analyses utilized the “glmnet” and “randomForest” packages in R.

2.5 Development of a nomogram for
diagnostic evaluation

The “rms” package was utilized to build a nomogram to

comprehensively assess the diagnostic value of the selected genes.

FIGURE 1

The flow chart of this study.
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A calibration curve was then plotted to evaluate the model’s

accuracy. Within this model, each gene was assigned a specific

score, and the cumulative scores of the three identified genes

were used to estimate PAH probability.

2.6 Assessment of diagnostic performance
for signature genes and nomogram

The expression levels from the previously merged dataset were

compared with those in the validation dataset. ROC curves were

generated using the “pROC” package to evaluate the diagnostic

performance of both the characteristic genes and the nomogram.

2.7 Analysis of immune cell infiltration
patterns

CIBERSORT, accessible in both R and web-based formats,

leverages linear support vector regression to decompose the

expression matrix of diverse human immune cell subtypes. This

method assesses the infiltration levels of 22 distinct immune cell

types within samples based on gene expression profiles specific to

each subtype. In this research, the CIBERSORT algorithm,

implemented through its R script, was employed to determine

the relative proportions of infiltrating immune cells across

samples. The infiltration differences between the PAH group and

controls were compared, with immune cell correlations visualized

using the “corrplot” package. Furthermore, the associations

between hub genes and immune cells were examined.

2.8 Single-cell analysis reveals hub gene
expression in pulmonary artery cells of
PAH patients

Using the publicly available GEO dataset GSE210248 (27), we

conducted single-cell analysis of PAH and control groups using the

Seurat package (version 4.4.0). A Seurat object was created with the

following filtering criteria: min.cells = 3, min. features = 200,

mitochondrial content < 20%, erythrocyte content < 0.1%, and

nFeature_RNA < 3,000. Batch effects were corrected using

Harmony, and the datasets were subsequently integrated. PCA

and UMAP were applied for dimensionality reduction. The

FeaturePlot function was used to visualize the expression of hub

genes across different cell subpopulations in the pulmonary artery.

2.9 MCT-induced PAH rat model

The Animal Care and Use Committee of Central South

University Xiangya Hospital (Changsha, China) granted approval

for this study, which adhered to NIH guidelines for animal care.

We employed the MCT-induced PAH model because it is one of

the most classic and widely used models for studying the

mechanisms of PAH and evaluating potential therapeutic agents

(28, 29). Twelve male Sprague-Dawley rats (weighing 200–250 g)

were kept under standard laboratory conditions and acclimated

for one week before random assignment into control and MCT

groups (n = 6 per group). The control group received an

intraperitoneal injection of saline, whereas the MCT group was

given monocrotaline (60 mg/kg, Sigma-Aldrich, USA) to induce

PAH. The study period was 21 days, with the rats housed in a

pathogen-free setting. At the end of the experiment, the rats were

euthanized, and lung tissues were collected for histological

examination and Western blot analysis. Right ventricular

hypertrophy was evaluated by determining the ratio of right

ventricular weight to the combined weight of the left ventricle

and septum.

2.10 H&E staining

Lung tissue samples were fixed, embedded in paraffin, and

sectioned into slices of 5 μm thickness. Hematoxylin and eosin

(HE) staining was performed on these sections using a kit

(C0105S, Beyotime, China) in accordance with the

manufacturer’s instructions. Following staining, the sections were

mounted and examined microscopically for analysis.

2.11 Real-time PCR

All rats were euthanized under anesthesia, and their lung

tissues were collected for total RNA extraction using the TRIzol

reagent (R0016, Beyotime, China). Complementary DNA was

synthesized, and quantitative real-time PCR (qRT-PCR) was

performed using the SYBR Green One-Step qRT-PCR Kit

(D7268S, Beyotime, China) to assess the RNA expression levels

of specific target genes. The primer sequences used in this study

are listed in Supplementary Table S2.

2.12 Western blot

Proteins were extracted using RIPA buffer (YSD0100, Yoche,

China) supplemented with 1% PMSF (G2008-1ML, Servicebio,

China). The protein concentration was measured with a BCA kit

(YSD-500T, Yoche, China). Samples were separated on SDS-

PAGE gels and transferred to PVDF membranes. After blocking,

the membranes were incubated overnight at 4°C with primary

antibodies: SFRP2 (1:1,000, GB11880, Servicebio), PCNA

(1:5,000, GB11010, Servicebio), BCL2 (1:1,000, GB154380,

Servicebio), and BAX (1:1,000, GB154122, Servicebio). Internal

control was performed with α-Tubulin (1:5,000, GB15200,

Servicebio). Following three 10-minute washes, secondary

antibodies (1:10,000, GB23303 and GB2330, Servicebio) were

applied at 37°C for 1 h. The bands were visualized using ECL

solution (PYT005, Yoche, China) and analyzed with Gel-

ProAnalyzer software after additional washing steps.
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2.13 Cell culture experiment

Primary pulmonary artery adventitial fibroblasts (PAAFs) from

rats were isolated and cultured following a previously established

method (30). In summary, rats were euthanized under anesthesia,

and lung tissue was quickly excised. The distal pulmonary artery

was carefully dissected to isolate the adventitial layer, and

connective tissue was removed to expose fibroblasts. The adventitial

layer was then finely minced and digested in HBSS containing

1 mg/ml collagenase I (Sigma-Aldrich, USA) at 37°C for 20–30 min

to release PAAFs. The cell suspension was filtered and centrifuged,

and cells were cultured in DMEM/F12 supplemented with 10%–

20% FBS until confluent. For experiments, 3rd to 5th-generation

PAAFs at 70%–80% confluence were used. To stimulate PAAFs,

cells were serum-starved in 0.5% FBS medium for 24 h to

synchronize cell cycles, preparing them for TGF-β1 induction. After

serum starvation, PAAFs were treated with TGF-β1 (Peprotech,

USA) at 10 ng/ml for 24 h to promote fibroblast activation and

differentiation. For gene knockdown, PAAFs were transfected with

either control siRNA or si-SFRP2 following the manufacturer’s

protocol. The siRNA, synthesized by Ribobio (China), had the

sequence 5′-CACTGTAAATATTTCAGATAAAC-3′ for si- SFRP2.

2.14 Cell counting Kit-8 (CCK-8) assay for
cell proliferation

The Cell Counting Kit-8 (CYT001-500, Qichun, China) assay

was employed to assess PAAFs proliferation. In brief, pretreated

PAAFs were exposed to TGF-β1 for designated time periods.

Subsequently, 10 μl of CCK-8 solution was added to each well,

followed by a 2 h incubation at 37°C in a humidified incubator.

Absorbance was then measured at 450 nm using a microplate

reader to evaluate cell proliferation rates.

2.15 Annexin V-Pi dual staining for
apoptosis detection by flow cytometry

Cells were seeded in a 6-well plate and divided into control,

single-positive, and experimental groups (Control, TGF-β1 + NC,

TGF-β1 + si-SFRP2. After appropriate transfection and treatment,

cells were collected, digested, and washed in PBS. Experimental

groups were stained with Annexin V-FITC and PI, incubated in

the dark for 10 min, and analyzed within 1 h. Flow cytometry

was performed at 488 nm, detecting FITC fluorescence on FL1

and PI on FL3. Data analysis was conducted using FlowJo with a

cross gate to identify positive signals.

2.16 Statistical analysis

Data are presented as mean ± SD. Most comparisons were

analyzed using one-way ANOVA with Tukey’s post hoc test,

while an unpaired Student’s t-test was applied where appropriate.

Statistical significance was set at p < 0.05. All analyses were

conducted using R software (version 4.2.1) and GraphPad Prism

software (version 8.0).

3 Results

3.1 Identification and enrichment analysis of
DEGs in PAH

To illustrate the batch differences before and after adjustment

between GSE117261 and GSE5197, a two-dimensional PCA

clustering plot was generated. The analysis revealed that once batch

effects were resolved, the two sample groups displayed clear

clustering (Figure 2A). A total of 384 differentially expressed genes

(DEGs) were identified, comprising 197 upregulated and 187

downregulated genes, as illustrated in the volcano plot (Figure 2B)

and Heatmap (Figure 2C). GO and KEGG enrichment analyses were

performed to investigate the biological functions and signaling

pathways related to these DEGs. GO analysis revealed that DEGs

were significantly enriched in biological processes (BP) such as

chemotaxis, taxis, positive regulation of defense response, and

cytokine production; cellular components (CC) including the

“external side of plasma membrane” and “collagen-containing matrix

metalloproteinase”; and molecular functions (MF) like “immune

receptor activity” and “cytokine binding” (Figure 2D). KEGG

analysis indicated significant enrichment of DEGs in pathways such

as “Hematopoietic cell lineage”, “Cytokine-cytokine receptor

interaction”, and the “Chemokine signaling pathway” (Figure 2E).

3.2 Identification and enrichment analysis
of PR-DEGs

By intersecting the 384 DEGs with 672 PANoptosis-related

genes, a total of 18 PR-DEGs were identified (Figure 2F).

Pearson correlation analysis indicated significant interactions

among PR-DEGs (Figure 2G). GO analysis revealed significant

enrichment of these PR-DEGs in pathways such as the “extrinsic

apoptotic signaling pathway”, “intrinsic apoptotic signaling

pathway”, “positive regulation of cell growth”, “regulation of

apoptotic signaling pathway”, and “regulation of extrinsic

apoptotic signaling pathway” (Figure 2H). KEGG analysis

demonstrated the enrichment of PR-DEGs in pathways like the

“IL-17 signaling pathway”, “HIF-1 signaling pathway”, “p53

signaling pathway”, “NF-kappa B signaling pathway”, “TGF-beta

signaling pathway”, and “Toll-like receptor signaling pathway”

(Figure 2I). These findings suggest that studying PANoptosis in

PAH is of critical importance for understanding the pathogenesis

of PAH and exploring potential therapeutic approaches.

3.3 Identification of PAH-associated gene
modules

WGCNA was used to identify gene modules significantly

linked to PAH. The sample clustering dendrogram and the
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FIGURE 2

Screening differentially expressed genes (DEGs) and PANoptosis-related DEGs (PR-DEGs) in pulmonary arterial hypertension (PAH). (A) Principal

Component Analysis (PCA) illustrates a distinct separation between the PAH and control groups in the merged datasets of GSE15197 and

GSE117261. (B) The volcano plot highlights the upregulated (red) and downregulated (green) DEGs. (C) A clustering analysis with an accompanying

Heatmap depicts the expression profiles of DEGs between the PAH and control groups. (D) Bubble plots visualize the GO enrichment analysis of

DEGs, encompassing biological processes, cellular components, and molecular functions. (E) The circus plot presents the KEGG enrichment

analysis of DEGs. (F) A Venn diagram identifies the overlapping DEGs shared with PANoptosis-related genes. (G) The Heatmap displays the

correlations among PANoptosis-related DEGs. (H,I) GO and KEGG enrichment analyses of PR-DEGs are visualized, offering insights into their

biological significance. GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes.
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corresponding clinical trait Heatmap are presented in Figure 3A.

A soft-threshold power of 4 was chosen as the optimal value

(R−2 = 0.85) based on the scale-free topology fit index and mean

connectivity, allowing for the construction of a scale-free network

(Figure 3B). After merging modules with highly correlated

eigengenes, 12 gene modules were ultimately identified

(Figures 3C,D), and module-trait relationships were assessed and

visualized (Figure 3E). The magenta module (r =−0.22, p = 0.02)

and turquoise module (r = 0.46, p = 2 × 10−07) exhibited the

highest and most significant correlations with PAH. Additionally,

in the magenta module (r = 0.19, p = 0.0024) and turquoise

module (r = 0.66, p = 6.7 × 10−85), module membership (MM)

showed a significant correlation with gene significance (GS)

(Figure 3F), underscoring the module’s importance. Finally, we

FIGURE 3

Identification of gene modules associated with PAH using WGCNA. (A) Sample clustering and phenotypic information for the merged dataset. (B)

Determination of the optimal soft-thresholding power through the analysis of the scale-free fit index (left) and mean connectivity (right) across

different soft-thresholding powers. (C) Cluster dendrogram depicting module eigengenes. (D) Gene dendrogram with corresponding modules,

where gene modules associated with PAH are represented in distinct colors beneath the dendrogram. (E) Correlation Heatmap illustrating the

relationships between various gene modules and PAH status. (F) Scatter plots displaying the correlation between module membership (MM) and

gene significance (GS) in the magenta and turquoise modules. WGCNA, weighted gene co-expression network analysis.
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selected genes from the turquoise module, which displayed the

strongest correlation and highest statistical significance, as key

PAH-related genes for further analysis.

3.4 Screening of hub genes with diagnostic
value via machine learning

To screen for hub genes with diagnostic value, we applied LASSO

and RF machine learning algorithms to identify key PAH- and

PANoptosis-associated genes from the 18 PR-DEGs. In the LASSO

regression analysis, set to a binomial family, cross-validation

generated gene coefficient and binomial deviance plots (Figures 4A,

B). Hub genes were selected based on variables linked to the optimal

penalty parameter with the best lambda value (lambda.min = 0.012).

The ROC curve demonstrated strong diagnostic performance for this

model (Figure 4C). Fourteen hub genes were ultimately identified

through LASSO regression, including ITGAM, S100A8, CD14,

SFRP2, INHBA, EYA4, CXCL12, GZMB, VNN1, IGF1, PF4, SFN,

IFNG, and CYP1B1.In the RF algorithm, diagnostic errors were

visualized, and candidate genes were ranked by variable importance

(Figures 4D,E). Genes with a MeanDecreaseGini of 4 were identified

as significant, comprising ITGAM, STAT4, SFRP2, S100A9,

CXCL12, S100A8, CD14, IFNG, SFN, GZMB, HMOX1, IGF1, and

PF4. By intersecting the top genes from LASSO, RF, and WGCNA,

four characteristic genes (ITGAM, S100A8, CD14, and SFRP2) were

identified (Figure 4F).

3.5 Single-gene GSEA of characteristic
genes

To further investigate the biological functions and pathways

associated with the key genes (ITGAM, S100A8, CD14, and

SFRP2), we performed single-gene GSEA, utilizing GO and KEGG

enrichment analyses for each gene. The top six terms from GO

and KEGG are displayed in Figures 5A–H. These analyses revealed

that the characteristic genes are involved in biological processes

such as leukocyte chemotaxis, lymphocyte chemotaxis, lymphocyte

migration, monocyte chemotaxis, mononuclear cell migration,

neutrophil chemotaxis, granulocyte migration, extracellular matrix

(ECM) structural constituent, and tertiary granule formation.

KEGG pathway analysis highlighted terms such as lysosome, toll-

like receptor signaling pathway, amino sugar and nucleotide sugar

metabolism, hematopoietic cell lineage, focal adhesion, and natural

killer cell-mediated cytotoxicity. The single-gene GSEA results

indicate that these key genes likely play a critical role in

modulating immune response, facilitating cellular migration, and

influencing various cell signaling pathways.

3.6 Construction of the diagnostic
nomogram for PAH

A diagnostic nomogram for PAH, incorporating the identified

characteristic genes, was developed using the “rms” package. In this

nomogram, each gene is assigned a specific score, and the

cumulative score of the four genes is utilized to estimate the risk

of PAH (Figure 6A). The calibration curve demonstrates that the

nomogram’s predicted probabilities closely align with those of an

ideal model (Figure 6B), and decision curve analysis indicates

that decisions based on the nomogram are beneficial (Figure 6C).

Expression analysis in the training cohort reveals that ITGAM,

S100A8, and CD14 are significantly downregulated in PAH,

while SFRP2 is significantly upregulated (Figure 6D). All four

hub genes exhibit strong diagnostic performance, with area under

the ROC curve (AUC) values of 0.845, 0.830, 0.775, and 0.779

for ITGAM, S100A8, CD14, and SFRP2, respectively (Figure 6E).

The nomogram based on these four hub genes shows robust

diagnostic efficacy, with an AUC value of 0.886 (Figure 6F).

3.7 Immune cell infiltration analysis

We used the CIBERSORT algorithm to assess the

characteristics of immune cell infiltration in PAH. Figure 7A

shows the proportions of 22 immune cell types in each sample.

Compared to the control group, T cell CD4 naive and

neutrophils significantly decreased, while T cells CD4 memory

activated, macrophages M1, and mast cells resting significantly

increased (Figure 7B). Correlation analysis revealed positive

correlations between B cells memory and plasma cells, T cells

gamma delta and T cells CD8, and T cells regulatory (Tregs) and

T cells CD4 naive. Additionally, negative correlations were

observed between mast cells resting and neutrophils, mast cells

activated and dendritic cells activated, and dendritic cells

activated and macrophages M2 (Figure 7C). We further explored

the correlation between immune cells and the four diagnostic

biomarkers, as well as the association between the four hub genes

and immune cells (Figure 7D). Interestingly, we found that

S100A8 was positively correlated with neutrophils, SFRP2 was

negatively correlated with resting NK cells, ITGAM

was positively correlated with macrophages M0, and CD14 was

positively correlated with macrophages M0.

We used the CIBERSORT algorithm to assess the immune cell

infiltration landscape in PAH. Figure 7A shows the relative

proportions of 22 immune cell types in each sample. Compared

to the control group, the PAH group exhibited a significant

decrease in CD4 naïve T cells and neutrophils, while CD4

memory activated T cells, M1 macrophages, and resting mast

cells were significantly increased (Figure 7B), suggesting a shift

from innate to adaptive immune activation, and increased pro-

inflammatory responses. Correlation analysis (Figure 7C) revealed

specific immune cell interaction patterns. For instance, positive

correlations between memory B cells and plasma cells, or

between CD8 T cells and gamma delta T cells, may reflect

coordinated adaptive immune activation. Negative correlations,

such as between resting mast cells and neutrophils or between

activated dendritic cells and macrophages M2, suggest potential

immune regulatory dynamics or cellular competition within the

inflammatory microenvironment. To further explore the

relationship between key diagnostic markers and immune
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FIGURE 4

Identification of Key genes in PAH using machine learning. (A,B) Key genes were identified through LASSO regression analysis, with 14 genes selected

as optimal candidates based on the lowest point of the binomial deviance curve. (C) The ROC curve derived from the LASSO model demonstrates

excellent diagnostic performance. (D) Diagnostic errors were visualized using the random forest (RF) model. (E) In the RF model, genes were

ranked in descending order based on their MeanDecreaseGini values, indicating their importance. (F) A Venn diagram shows four overlapping

genes identified by the LASSO model, RF algorithm, and WGCNA. LASSO, least absolute shrinkage and selection operator; ROC curve, receiver

operating characteristic curve.
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FIGURE 5

Single-gene GSEA of characteristic genes. GO and KEGG enrichment analyses were conducted using GSEA for the genes ITGAM, S100A8, CD14, and

SFRP2 to explore their biological roles and associated pathways. GSEA, gene set enrichment analysis.
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FIGURE 6

Construction of the diagnostic nomogram and performance assessment. (A) A diagnostic nomogram was developed based on four characteristic

genes. Each gene was assigned a corresponding score, and the total score was used to predict the risk of PAH. (B) A calibration curve was

generated to assess the accuracy and reliability of the nomogram. (C) Decision curve analysis (DCA) was performed to evaluate the net benefit of

the nomogram in predicting PAH. (D) Expression levels of the four hub genes were compared within the merged dataset. (E,F) ROC curves were

plotted to evaluate the predictive performance of the individual genes and the nomogram in diagnosing PAH.
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context, we analyzed correlations between the four hub genes

(SFRP2, S100A8, ITGAM, CD14) and immune cell subsets

(Figure 7D). S100A8 showed strong positive correlation with

neutrophils, consistent with its known role in neutrophil

activation and chemotaxis. SFRP2 was negatively correlated with

resting NK cells, which may imply a potential suppressive effect

on innate immune surveillance. ITGAM and CD14 were both

positively correlated with M0 macrophages, highlighting their

potential role in modulating macrophage recruitment or

differentiation in PAH. These findings suggest that the identified

diagnostic markers are not only altered at the gene expression

level but may also be involved in reshaping the immune

microenvironment in PAH.

3.8 External validation of the characteristic
genes and nomogram

The expression levels and diagnostic accuracy of the four

characteristic genes were further validated using two external

datasets (GSE113439 and GSE48149). In both the training

and validation groups, only one hub gene, SFRP2,

consistently showed significantly upregulated expression

(Figures 8A,D). In the GSE113439 dataset, ROC analysis

indicated that only CD14 and SFRP2 exhibited favorable

diagnostic efficiency, with AUC values of 0.770 for CD14

and 0.818 for SFRP2 (Figure 8B). In the GSE48149 dataset,

SFRP2 demonstrated an AUC value of 0.850 (Figure 8E).

The nomogram based on the four hub genes exhibited

strong diagnostic efficacy, with AUC values of 0.879 and

0.920, respectively, in the two datasets (Figures 8C,F).

Therefore, we selected SFRP2 as our final hub gene.

3.9 Validation of SFRP2 expression and
functional role in PAH fibroblast model

We first established an animal model of PAH induced by MCT.

Using HE staining, we observed marked vascular thickening and

remodeling in the pulmonary vessels of the MCT group. The

RV/(LV + IVS) ratio in the MCT group was significantly higher

than in the control group, confirming successful model

establishment (Figure 9A). At the mRNA level, we used qRT-

PCR to examine the expression levels of ITGAM, S100A8, CD14,

FIGURE 7

Immune cell infiltration analysis. (A) The stacked bar plot represents the different immune cell proportions in each sample. (B) The boxplot depicts the

comparison of 22 types of immune cells between PAH and control groups. (C) The Heatmap shows the correlation between different immune cells.

(D) The correlation Heatmap exhibits the association of the immune cells with the four characteristic genes.
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and SFRP2. Our results showed significant differences in the

mRNA expression of the latter three genes, while ITGAM

showed no notable change (Supplementary Figure S1). At the

protein level, we validated the expression of SFRP2, with

Western blot results showing significantly higher SFRP2 levels in

the MCT group compared to the control group (Figure 9B).

Previous studies have reported SFRP2 expression in the

pulmonary artery adventitia, leading us to select pulmonary

artery fibroblasts as the study subject (31). Furthermore, our

single-cell sequencing results revealed that SFRP2 is highly

expressed in fibroblasts, further supporting its critical role in

pulmonary vascular remodeling and fibrosis (Supplementary

Figure S2). Results showed a marked increase in SFRP2 protein

levels in fibroblasts induced by TGF-β1 (Figure 9C). Figure 9D

shows that SFRP2 knockout can reverse TGF-β1-induced changes

in the proliferation marker PCNA, the BAX/BCL2 ratio, as well

as the expression levels of inflammasome-related proteins NLRP3

and cleaved Caspase-1. For further validation, CCK8 assay results

(Figure 9E) demonstrated that SFRP2 knockout can reverse

TGF-β1-induced proliferation. Additionally, flow cytometry

analysis (Figure 9F) revealed that SFRP2 knockout can

counteract TGF-β1-induced apoptosis resistance.

4 Discussion

Current research suggests that the process of cell death may

serve as a critical therapeutic target in PAH (32). In PAH, when

cells develop resistance to apoptosis, a dynamic molecular

network is formed, allowing these cells to evade mechanisms that

would typically limit their survival and disease progression (33).

In this context, PANoptosis—a mechanism composed of

interconnected forms of cell death—may play a unique role in

the pathology of PAH. Our study establishes a robust evaluation

system by leveraging bioinformatics to identify and validate key

genes and molecular pathways associated with PANoptosis in

PAH. Through the integration of machine learning algorithms

and immune infiltration analysis, the study enhances scientific

rigor and credibility, offering insights into the pathological

processes and molecular mechanisms underlying PAH. This

approach provides a foundation for potential targets in future

clinical treatments.

In our study, we identified 384 DEGs and conducted GO and

KEGG enrichment analyses, which revealed their involvement in

key immune and inflammatory pathways, such as cytokine

production and chemokine signaling. For instance, the

FIGURE 8

Evaluation of four characteristic genes in external datasets. (A) Expression levels of the four characteristic genes were compared between the PAH and

control groups in the validation dataset GSE113439. (B) ROC curves were generated to assess the diagnostic performance of the four genes and the

nomogram in GSE113439. (C) ROC curves demonstrated the diagnostic performance of three genes and the nomogram in GSE113439. (D) Expression

levels of the four genes were compared in the validation dataset GSE42955. (E) ROC curves were used to evaluate the diagnostic performance of three

genes and the nomogram in the GSE48149 dataset. (F) ROC curves demonstrated the diagnostic performance of three genes and the nomogram in

GSE42955. Statistical significance: *p < 0.05; **p < 0.01.
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chemokine signaling pathway plays a critical role in immune cell

migration to specific tissue sites. In PAH, overexpression of

chemokines may lead to excessive immune cell accumulation

around pulmonary arteries, exacerbating inflammation, vascular

smooth muscle proliferation, and remodeling (34, 35). Targeting

this pathway could potentially mitigate immune cell recruitment

and reduce inflammation. Similarly, the cytokine-cytokine

receptor interaction pathway may sustain chronic inflammation,

accelerating vascular damage and remodeling, thus worsening

PAH progression (36). Strategies inhibiting specific cytokines or

receptors could help alleviate these effects. The immune

differential analysis highlights the involvement of multiple

immune cells in the progression of PAH. A significant decrease

in T cells CD4 naive, which are critical for initiating adaptive

immunity, suggests compromised immune surveillance and a

shift toward chronic immune activation (37). In contrast, the

altered levels of T cells CD4 memory resting indicate a

disturbance in immune homeostasis, potentially contributing to

persistent inflammation (38). Moreover, macrophages M1, known

for their pro-inflammatory phenotype, were found to be

significantly elevated. These cells are recognized for their

secretion of cytokines that exacerbate endothelial dysfunction,

promote vascular remodeling, and amplify inflammatory

responses (39). Resting mast cells also appear to play a role, as

their activation releases histamine and other inflammatory

mediators, which may further exacerbate vascular inflammation

and fibrosis (40). Neutrophils contribute to PAH pathogenesis by

releasing reactive oxygen species and neutrophil extracellular

traps, mechanisms that promote endothelial damage, smooth

muscle proliferation, and ECM remodeling (41).

FIGURE 9

Validation of Hub genes both in vivo and in vitro. (A) HE staining and right ventricular hypertrophy index (RVHI) were analyzed in lung tissues from the

control and MCT groups. The red color represents the control group (n= 6), and the green represents the MCT group (n= 6). RVHI was calculated as

the ratio of right ventricular weight to the combined weight of the left ventricle and interventricular septum (RV/LV + S). The scale bar in the image is

25 μm. **p < 0.01. (B) The expression of SFRP2 in lung tissues was compared between the control and MCT groups. The left panel shows Western blot

results, while the right panel displays quantitative analysis. (C) SFRP2 expression in PAAFs induced by TGF-β1 was examined. The left panel presents

Western blot results, and the right panel provides quantitative analysis, n= 3 in each group. (D) The effect of SFRP2 knockdown on cell proliferation

and apoptosis was analyzed. Compared to the control group, SFRP2 knockdown significantly enhanced the proliferation and anti-apoptotic properties

of PAAFs. The left panel shows Western blot results, while the right panel displays quantitative analysis, n= 3 in each group. (E) The impact of SFRP2

knockdown on cell proliferation activity was assessed. **p < 0.01. (F) Annexin V-PI double staining was performed to detect apoptosis rates. Q3

represents the proportion of early apoptotic cells, and Q2 represents late apoptotic cells. The sum of Q3 and Q2 was calculated and statistically

analyzed. *p < 0.05.
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Through screening the intersection of 384 DEGs with

PANoptosis-related genes, 18 PR-DEGs were identified. GO

analysis revealed significant enrichment of DEGs in apoptotic

signaling pathways and cell growth regulation, while KEGG

analysis highlighted pathways such as IL-17, HIF-1, p53, NF-

kappa B, TGF-beta, and Toll-like receptor signaling. These results

underscore the importance of PANoptosis in understanding PAH

pathogenesis and identifying potential therapeutic targets. The core

genes identified, including ITGAM, S100A8, CD14, and SFRP2,

are closely associated with multiple inflammatory pathways and

act as key genes within these pathways, suggesting that

PANoptosis may be involved in the complex immune-

inflammatory regulation process underlying PAH pathogenesis.

Among them, ITGAM plays a vital role in immune cell adhesion

and migration, where its overexpression may lead to endothelial

damage and promote PANoptosis-related cell death. Additionally,

its significant association with M0 macrophages suggests that

ITGAM may influence macrophage adhesion and differentiation.

This could facilitate the transition of M0 macrophages toward a

pro-inflammatory phenotype, further amplifying vascular

inflammation and remodeling in PAH; S100A8, a calcium-binding

protein, was found in this study to be associated with neutrophils

and monocytes. Its involvement in immune cell recruitment and

activation suggests a role in amplifying inflammation. Through

neutrophils, S100A8 may promote endothelial damage via reactive

oxygen species and NETs, while its connection with monocytes

highlights its role in driving pro-inflammatory signaling

and vascular remodeling (42); CD14, a receptor in monocytes and

macrophages, is involved in pathogen recognition and

inflammation initiation, where its high expression may exacerbate

PAH and atherosclerosis progression, triggering the PANoptosis

process through excessive immune activation (43). Additionally,

SFRP2, a regulator of the Wnt signaling pathway, is closely related

to cardiovascular development and repair (44). Its abnormal

expression in PAH and other cardiovascular diseases may

influence cell death–related signaling pathways and is potentially

associated with PANoptosis-related forms of programmed cell

death. These core genes are involved in the regulation of

inflammation and immune responses in PAH, suggesting a

possible involvement of PANoptosis in the disease’s pathogenesis,

which warrants further investigation.

Following validation in external datasets, SFRP2 was identified as

the most stable hub gene, suggesting its potential role in PAH and

fibrosis. Although direct studies on SFRP2 in PAH are limited, its

established involvement in the Wnt signaling pathway provides a

strong basis for its potential contribution to PAH pathogenesis.

The Wnt pathway regulates processes such as vascular remodeling,

cell proliferation, and differentiation, and SFRP2 may influence

these processes by modulating signaling dynamics within

pulmonary vascular cell (45). In fibrotic diseases, including IPF,

SFRP2 promotes ECM remodeling by enhancing the activity of

MMP-2 and MMP-9, leading to collagen deposition and tissue

stiffness. These processes are hallmarks of pulmonary vascular

remodeling in PAH. While specific studies on SFRP2 in PAH are

lacking, its shared role in fibrosis across tissues suggests a potential

contribution to fibrotic changes in pulmonary arterioles (46).

Notably, fibrosis in PAH is driven by the activation of PAAFs,

which are key mediators of ECM remodeling and vascular

stiffening (47). To investigate this, our study focused on PAAFs

and revealed, for the first time, that SFRP2 deficiency significantly

reduces TGF-β1-induced proliferation and anti-apoptotic activity in

PAAFs. These findings highlight the critical role of SFRP2 in

fibroblast activation, contributing to ECM deposition and vascular

remodeling in PAH. Additionally, SFRP2 interacts with TGF-β

signaling to further enhance fibroblast activation and differentiation

into myofibroblasts, exacerbating fibrosis and vascular stiffness (48).

SFRP2 has been implicated in a range of vascular diseases,

including atherosclerosis, hypertension-induced vascular

remodeling, and cardiac fibrosis (49). In hypertension-induced

vascular remodeling, SFRP2 expression is associated with

increased extracellular matrix deposition and vessel wall

thickening, potentially exacerbating vascular stiffness and

dysfunction. These findings suggest that SFRP2 may serve as a

critical modulator of vascular pathology, further highlighting its

relevance in PAH progression. Recent studies suggest that SFRP2

may also be involved in programmed cell death regulation,

including pathways related to PANoptosis. While traditionally

considered a Wnt pathway modulator, SFRP2 has been linked to

apoptotic resistance, inflammation, and immune cell regulation

in various disease contexts (50). Notably, PANoptosis, an

inflammatory form of cell death integrating pyroptosis, apoptosis,

and necroptosis, is known to play a role in chronic inflammatory

and fibrotic diseases, including those affecting the lungs and

vasculature (51). Emerging evidence indicates that SFRP2 may

influence these processes through its effects on immune cell

infiltration and inflammatory signaling cascades, particularly via

NF-κB and IL-1β, both of which are key regulators of

PANoptosis (52). This suggests a potential mechanistic link

between SFRP2, PANoptosis, and the progression of PAH.

However, the direct role of SFRP2 in PANoptosis within PAH

remains to be elucidated and warrants further investigation. In

summary, SFRP2 serves as a key regulator of fibroblast-driven

fibrosis and vascular dysfunction in PAH through its modulation

of Wnt and TGF-β signaling pathways. These findings provide

new insights into the role of SFRP2 in PAH pathogenesis and its

potential as a therapeutic target.

However, our study has several limitations. Firstly, the sample

size is relatively small, and variability across different datasets may

introduce potential biases in the results. Therefore, expanding the

sample size in future studies is essential to further validate these

findings and improve the accuracy of clinical models. Differences

in sequencing platforms, patient demographics, and disease

subtypes across datasets could lead to batch effects and impact

the reproducibility of our findings. Therefore, expanding the

sample size in future studies, including multi-center cohort

studies, is essential to further validate these findings and improve

the accuracy of clinical models. Additionally, the potential impact

of sample heterogeneity in human datasets should be

acknowledged. PAH is a highly heterogeneous disease influenced

by genetic, environmental, and comorbid factors, which may lead

to variability in gene expression profiles. Future studies should

stratify patients based on relevant clinical parameters, such as
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PAH etiology, disease severity, and treatment history, to refine

biomarker selection and improve model robustness. Secondly,

clinical samples were not included in our validation process,

which highlights the need for more comprehensive clinical

studies to assess the clinical applicability of these findings.

SFRP2, as a secreted protein, can be detected in blood samples,

making it a promising biomarker for clinical practice. Future

research could explore incorporating SFRP2 into a risk score

alongside clinical characteristics and other routine biomarkers,

such as C-reactive protein, to assess the risk and progression of

PAH. Additionally, several confounding factors, including

treatment history, disease stage, and comorbidities, such as age,

gender, lifestyle, and environmental exposures, may influence

SFRP2 expression and its diagnostic potential. These factors

should be carefully considered and controlled in future clinical

trials. Furthermore, a prospective clinical trial with a larger

sample size, comparing a control group with a cohort of already

diagnosed PAH patients, will be crucial to confirm the findings

of this study. Such a trial will help further validate the diagnostic

value of SFRP2 and other biomarkers and provide evidence for

their combined use in early screening, risk assessment, and

monitoring therapeutic response in PAH. Moreover, while our

study primarily explored the role of SFRP2 in PAH-related

fibroblast proliferation and apoptosis resistance, further

validation is needed to determine whether PANoptosis plays a

definitive role in PAH pathogenesis. Although our findings

suggest a potential link, additional studies incorporating caspase

activation assays, LDH release assays, and inflammasome

activation detection are necessary to fully elucidate the

involvement of PANoptosis and the regulatory role of SFRP2 in

this process. Lastly, future research should also investigate the

precise mechanisms by which these characteristic genes impact

PAH through PANoptosis regulation. In addition, performing

genetic manipulation studies, such as altering SFRP2 expression

in animal models, would strengthen the causal relationship

between SFRP2 and the pathogenesis of PAH. Despite these

limitations, our study offers important insights into PAH

diagnosis and treatment strategies, particularly in the context of

therapeutic interventions targeting the PANoptosis pathway.

5 Conclusion

In conclusion, through a comprehensive analysis of

PANoptosis characteristics in PAH, we identify SFRP2 as a

robust predictive marker. Knockdown of SFRP2 suppresses the

proliferation of pulmonary artery fibroblasts and the progression

of apoptosis resistance, suggesting that SFRP2 may serve as a

potential therapeutic target for PAH.
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