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Magnetocardiography (MCG) is a highly sensitive, non-invasive, and functional

imaging technique that records and examines magnetic fields generated by

the electrical activity of the heart to reflect cardiac electrophysiological

changes, including the first superconducting quantum interference device and

optically pumped magnetometers-MCG. The 60-year research process yields

new understanding in the areas of signal extraction, processing, and clinical

application for the detection and treatment of cardiac diseases. Especially, the

significant advancements in magnetic sensor technology, preprocessing

methods and denoising methods have promoted the development of MCG.

This article systematically reviews 83 studies to provide the latest and general

overview of MCG in acute chest pain (6 studies), acute coronary syndrome (10

studies), ischemic heart disease (13 studies), non-ischemic cardiomyopathies

(3 studies), arrhythmia (9 studies), and fetal congenital arrhythmia (11 studies).

We highlight its incremental value in the triage of acute chest pain, diagnosis

and prognosis prediction of chronic and acute coronary syndromes. We also

discuss the limitations of this field and directions of future development.

KEYWORDS
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1 Introduction

Local currents are produced by depolarization, repolarization, and ion transmembrane

mobility in cells. The electrophysiological activity of cells will produce weak magnetic

signals, which are strongest in excitable cells, including myocardial and nerve cells.

Magnetocardiography (MCG) can detect alterations in the magnetic fields induced by

abnormal electrical activity in the heart through magnetically shielded or unshielded

superconducting quantum interference device (SQUID) systems, optically pumped

magnetometers (OPM), or portable miniaturized induction coils (1). Compared to

electrocardiogram (ECG), which obtains electrical signals and current conventional

imaging detection methods, MCG provides additional information for disease diagnosis

through changes in magnetic signals and has unique advantages. First, MCG is not
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affected by the thickness of the pericardium or chest wall, providing

more accurate information through its multi-channel array (2). In

addition, MCG has a greater spatiotemporal resolution and is

sensitive to the magnetic field produced by tangential current,

which can simultaneously collect tangential and eddy currents in

the subepicardial and deep myocardium (3–5).

Recent decades have seen numerous studies on signal

processing and clinical applications of MCG. Several studies have

concluded that MCG is more sensitive to triage of acute chest

pain and diagnosis of ischemic heart disease (IHD) than widely

used screening tools such as ECG, echocardiography (ECHO),

and stress tests (6–8). Additionally, increasing research has linked

MCG to fetal heart disease, myocardial inflammation, and

arrhythmia. As an exceptionally sensitive, non-contact, non-

invasive, and radiation-free examination method, MCG has

potential clinical value. Therefore, we aimed to comprehensively

summarize the literature on the clinical application of MCG and

provide updated data.

2 Methods

In this review, we conducted an extensive electronic search of

all English-language studies published before Oct 31, 2024, from

the PubMed, Web of Science, EMBASE, and Cochrane Library

databases. We used the following search terms:

“magnetocardiography” AND (“heart disease” OR “cardiac

disease” OR “fetal disease” OR “clinical” OR “chest pain” OR

“coronary syndrome” OR “arrhythmia” OR “cardiomyopathy”).

After removing books, editorials, case reports, letters and

duplicates, we included studies that reported MCG in cardiac

diseases. Furthermore, references cited in the included

publications were examined to identify additional relevant

articles. Finally, 83 studies published between January 1971 and

October 2024 were included in this review.

3 Results

3.1 Magnetocardiography

The MCG technology has been developed for nearly 60 years.

In 1970, MCG based on a SQUID was created (9). This magnetic

detector offered high sensitivity, a wide measurement range, and

a broad frequency band, significantly enhancing the spatial

accuracy and signal-to-noise ratio (9). In the past 60 years, the

development of multichannel sensors, unshielded SQUID

systems, and the emergence of OPM have contributed to the

advancement of MCG. While SQUID have been the primary tool

for clinical research, OPM are being explored for their potential

in making MCG more accessible. In 1991, Fenici et al. developed

non-magnetic catheter technology based on 10 years of practical

experience in MCG and successfully achieved arrhythmia

localization through a single-channel system, laying early

evidence for the clinical research and application of MCG (10).

At present, there is still no standardized MCG consensus or

database to define the parameters of one-dimensional butterfly

diagram (BFD), two-dimensional magnetic field map and current

density map in MCG. Several scholars have recorded commonly

utilized parameters of one-dimensional and multi-dimensional

MCG, including interval duration, waveform, dipole

phenomenon, and vector parameters, and have identified

significant sex-based and age-related differences in amplitude and

repolarization angle parameters (11, 12).

3.2 Rapid triage and mortality prediction of
acute chest pain

Acute chest pain (ACP) continues a prevalent complaint in

emergency and internal medicine, with over 7 million annual

visits, of which 20%–40% are non-cardiac (13, 14). As a

heterogeneous group of diseases, accurate and expeditious

recognition of acute coronary syndrome (ACS), acute pulmonary

embolism, aortic dissection, and other high-risk ACP conditions

represents the primary focus and challenge in the emergency

management of ACP. There is a lack of sensitive, convenient and

rapid stratification methods to reduce the risk of misdiagnosis.

Same as avoiding unnecessary invasive tests and minimizing

patient loss.

Previous studies have investigated the utility of MCG in

triaging patients with ACP (Table 1). Compared to conventional

diagnostic tools (ECG, troponin I, and ECHO) at admission,

MCG exhibited superior performance in identifying ACS and

IHD through multiple MCG parameters including the angle,

intensity, shape, and additional characteristics of the current or

magnetic dipole vector during repolarization (6–8). Pena et al.

developed a novel imaging and analysis system to transform

MCG data into dynamic 90-second images to evaluate non-high-

risk ACP patients in the emergency observation unit, its

specificity (78.3%) and negative predictive value (NPV, 92.3%)

suggested potential utility in safely ruling out critical ischemia

and guiding discharge decisions (15). Ghasemi-Roudsari et al.

further explored a portable MCG and built a diagnostic

prediction model for ACP patients by logistic regression analysis

of 10 key parameters derived from QR and RS segments in

magnetic field map (MFM) and current density map (CDM), but

the model showed limited accuracy in differentiating IHD among

ACP patients (16). Beyond diagnosis, MCG parameters showed

strong prognostic significance. Two MCG parameters of QTc

prolongation and low repolarization reserve and one clinical

parameter of elevated serum creatinine were indicators of long-

term mortality in ACP patients (P < 0.05), achieving 90.9%

sensitivity, 85.6% specificity, and 99.4% NPV for cardiac death

(17). Patients with abnormal MCG findings faced a nine-fold

increased risk of cardiac death (17).

Abbreviations

MCG, magnetocardiography; fMCG, fetal magnetocardiography; IHD, ischemic

heart disease; CCD, chronic cardiac disease; ACS, acute coronary syndrome;

NICM, non-ischemic cardiomyopathy.

Li et al. 10.3389/fcvm.2025.1522467

Frontiers in Cardiovascular Medicine 02 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1522467
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


3.3 Acute coronary syndrome

ACS constitutes a continuous spectrum of life-threatening

conditions initiated by coronary atherosclerotic plaque rupture

and subsequent thrombotic occlusion, encompassing ST-elevation

myocardial infarction (STEMI) and non-ST-elevation ACS

(NSTE-ACS) (18). Characterized by high prevalence, sudden

onset, and significant mortality, ACS requires urgent diagnosis to

minimize the duration of emergency stay, as acute ischemia leads

to irreversible myocardial cell necrosis. Currently, NSTE-ACS

often lacks specific changes in ECG and myocardial damage

indicators, requiring continuous testing for diagnosis. There is a

pressing need for more efficient methods to facilitate early

detection and risk stratification.

We compiled a comprehensive list of ACS articles pertaining to

MCG (Table 2). In ACS, four qualitative and quantitative parameters

including magnitude, angle, perimeter and area of MFM, as well as

the T-wave CDM, exhibited marked abnormalities; T-peak

maximum current angle and magnetic field angle had the highest

sensitivity (96.4%), correlating positively with the severity of

myocardial infarction (19–22). Among them, the integrated

maximum CDM provided spatiotemporal information of

ventricular repolarization process, with higher sensitivity (91.2%)

and specificity (84.6%) for identifying STEMI than the integrated

equivalent current dipole method (sensitivity, 84.3%; specificity,

82.1%) (19). ACS consistently exhibits non-dipole phenomena in

MFM, with coherence impacted particularly during repolarization,

the relationship of depolarization parameters and ACS was weak

(23, 24). In 70% of unstable angina (UA) and 92.5% of non-ST-

elevation myocardial infarction (NSTEMI), NSTE-ACS manifested

as abnormal dipole position and shape, and was positively

correlated with the severity of coronary artery stenosis (20).

MCG also demonstrated predictive capacity for clinical

outcomes. Bang et al. illustrated that non-dipole phenomenon of

T-peak independently predicted major adverse cardiac events,

including all-cause death, reinfarction, and percutaneous

coronary intervention (hazard ratio = 2.89, 95% confidence

interval: 1.20–6.97, P = 0.02) (25). A three-year follow-up study

of NSTEMI patients revealed that MCG outperformed troponin

I, ECHO, and ECG in mortality prediction (relative risk: 4.58 vs.

2.48 vs. 1.58 vs. 1.69), with abnormal MCG independently

portending poor prognosis (7, 26).

It can be seen that MFM and CDM during the repolarization

phase have application prospects for both diagnosis and

TABLE 1 Studies of the diagnostic value of MCG in ACP.

Case Study Identified
disease/

Diagnostic
criteria

Test condition MCG parameters Test group
(n)/Control

(n)

Tool Sens
(%)/
Spec
(%)

NPV
(%)/
PPV
(%)

ROC
AUC

1 Kwon et al.

(6)

ACS/CA Shielded 64-channel

SQUID

ST interval: main current

angle_max; ST interval:

maximum of main current vector

strength change; T_FMA;

R_FMA

ACP suspected

of ACS (364)/−

MCG 84.0/85.0 74.0/91.3 –

ECG 44.7/89.8 46.5/89.1 –

ACP suspected

of ACS* (238)/−

MCG 78.1/82.6 70.4/87.7 –

ECG 30.1/85.9 43.6/77.2 –

ACP suspected

of ACS† (181)/−

MCG 73.5/82.3 70.7/84.3 –

2 Park et al.

(7)

ACS/CA Unshielded 9-channel

SQUID

T wave: main vector direction:

−20° to +110°, and/or three

subcriteria: angle changes over

45°; dipole distance over 20 mm;

change between the plus and

minus poles or strengths ratio

over 0.3 within 30 ms.

ACP suspected

of ACS (185)/−

MCG 95.1/92.8 84.8/97.8 –

ECG 33.9/91.1 27.4/93.3

Troponin-

I

42.7/90.5 31.7/93.8

ECHO 51.0/76.2 31.7/87.9

3 Tolstrup

et al. (8)

IHD/Troponin, stress

testing or CA

At rest; Unshielded

9-channel SQUID

Automated quantitative EMDV

score (one of angle, trajectory,

angular deviation) in ventricular

repolarization.

ACP (125)/− MCG 76.4/74.3 80.0/70.0 –

ECG 22.0/93.0 61.6/70.2

4 Pena et al.

(15)

ACS/Stress testing or

CA

Unshielded

14-channel

Current or dipole deviations in

T-wave

Non-high risk

ACP (101)/−

MCG 33.3/78.3 92.3/13.0 –

5 Ghasemi-

Roudsari

et al. (16)

IHD/Magnetic

resonance imaging

scan, Myoview, or

stress ECHO

Within 48 h or 4

weeks of chest pain;

Unshielded portable

prototype

magnetometer

QR-peak; RS-peak; RS-MMR IHD (70)/NIHD

with ACP (69)

MCG 94.3/20.3 95.2/- 0.75

QR-MMR; QR-angle; QR-pd;

QR-peak; RS-MMR; RS-peak; RS-

angle; RS-pd

IHD (70)/

Healthy subjects

(37)

MCG 100.0/

78.4

100.0/- 0.96

– IHD (70)/ NIHD

with ACP (69)

and healthy

subjects (37)

MCG 98.6/33.0 99.3/- 0.82

*Negative biomarker.
†Negative biomarker and no specific ECG findings.

MCG, magnetocardiography; ACP, acute chest pain; Sens/Spec, sensitivity/specificity; NPV/PPV, negative predictive value/positive predictive value; ROC AUC, receiver operating characteristic/

area under curve; CA, coronary angiography (stenosis≥ 50% in at least one of coronary arteries was positive); SQUID, superconducting quantum interference device; ECG, electrocardiograph;

FMA, magnetic field map angle; ECHO, echocardiography; EMDV, effective magnetic dipole vector; IHD, ischemic heart disease; MMR, amplitude ratio between the negative and positive pole;

pd, distance between the negative and positive pole.
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prognostic prediction in ACS. Future research requires further

quantification of MFM and CDM parameters to establish a

unified standard. Additionally, MCG has only been exclusively

detected after the treatment of acute myocardial infarction, and

point-of-care device reliability has not yet been fully validated

(27). Further investigations are warranted to examine the

feasibility of early detection in the post-event period.

3.4 Detection and classification of ischemic
heart disease

IHD arises from a disparity between coronary blood supply

and myocardial oxygen demand, caused by coronary spasm,

stenosis, or obstruction, which ultimately leads to myocardial

hypoxia or necrosis. IHD manifests as angina, myocardial

infarction or even sudden cardiac death clinically. As a major

global health concern, IHD affects 18.2 million cases in the

United States alone and remains the leading cause of death

worldwide, with 9.24 million global deaths attributed to IHD in

2022, representing 80% of sudden cardiac fatalities and 34% of

cardiovascular disease-related deaths under before aged 70

(28–30). The heterogeneous clinical presentations and complex

differential diagnosis of IHD pose significant challenges in

developing rapid and accurate methods for case identification

and risk stratification.

ECG and ECHO serve as first-line screening tools for IHD

detection. A meta-analysis of 147 studies involving 24,074

patients reported a sensitivity of 68% and specificity of 77% for

ECG stress tests (31). Coronary computed tomography

angiography (CCTA) offers a high diagnostic accuracy in

assessing anatomic coronary stenosis, with a sensitivity of 94%,

specificity of 83%, and NPV of 99% (32, 33). However, its poor

positive predictive value (PPV) (48%–64%) and inability to

reliably evaluate hemodynamic changes or screen large-scale

population necessitate additional supplementary testing to

determine ischemia severity (33, 34). Existing non-invasive

functional tests use perfusion imaging with radioactive tracers to

evaluate myocardial viability, though these methods carry

inherent risks of radiation exposure and potential adverse effects.

In contrast, MCG demonstrates promising diagnostic

performance. Three studies have shown that abnormal ST-

segment and T-wave in MCG during myocardial ischemia can be

correctly classified in 80% of cases using only one parameter

(sA4), irrespective of the number or location of affected vessels,

when combining all three parameters achieved 84% sensitivity

and 83% specificity (area under the curve, AUC: 0.912) (3, 35).

Comparative analyses revealed that MCG exhibited greater mean

differences in QRS complex, T-wave, and ST-segment

abnormalities than ECG (37% vs. 26%) (36).

We visually listed the literature on the diagnostic value of MCG

for coronary stenosis in Table 3. Whether at rest or under stress

testing, MCG demonstrated superior efficacy than ECG in

identifying chronic coronary disease (CCD), regardless of

whether recordings were obtained in magnetically shielded or

unshielded environments (37–40). Additionally, QTc parameters

of MCG successfully screened CCD patients at rest, providing a

viable alternative for individuals unable to tolerate stress testing

(41). Machine learning-based MCG diagnostic models have

achieved high sensitivity (82.6%–91.3%) in detecting myocardial

ischemia, though specificity remains modest (10.0%–50.0%) (42).

For borderline coronary lesions (40%–90% stenosis), MCG

yielded an AUC of 0.864 (95% CI: 0.803–0.925), suggesting its

potential to reduce unnecessary invasive procedures (43).

TABLE 2 Studies of the diagnostic value of MCG in ACS.

Case Study Test group (n)/
Control (n)

Test time and
condition

Map type and
parameters

Tool Sens
(%)/Spec

(%)

NPV
(%)/PPV

(%)

ROC
AUC

1 Leeuwen

et al. (23)

Revascularized after

STEMI (97)/Healthy

subjects (39)

5.8 ± 3.0 days after

infarction; Shielded

61-channel

MFM; STT interval MCG 87.2/84.5 – 0.917

2 Lim et al.

(20)

NSTEMI (83)/Young

control (185) and age-

matched control (19)

<3 days after hospital

admission; Shielded

64-channel SQUID

MFM and CDM; 10 parameters

from T wave and TT interval*

MCG 96.4/85.0 – –

3 Zhao et al.

(19)

STEMI (102)/Healthy

subjects (39)

Shielded 61-channel

SQUID

MFM and CDM; Magnitude,

Angle, Perimeter and Area in

T-wave interval

IECD 84.3/82.1 – 0.708–

0.894

IMCD 91.2/84.6 – 0.724–

0.917

4 Goodacre

et al. (27)

ACS (96)/Healthy

subjects (584)

Portable VitalScan

MCG

MCG algorithm and MACS

clinical score

MCG 89.0/15.0 89.0/14.0 0.560

MACS – – 0.690

MCG +MACS 85.0/30.0 93.0/16.0 0.640

5 Mace et al.

(24)

Suspected ACS and

HEART score ≥3

Times of clinical

convenience

MFM; QRS multipolarity, T wave

multipolarity, RT angle, T wave

dynamics, and ST segment

abnormalities

MCG 66.7/57.1 – –

*TT interval: interval from Tmax/3 to Tmax.

MCG, magnetocardiography; ACS, acute coronary syndrome; Sens/Spec, sensitivity/specificity; NPV/PPV, negative predictive value/positive predictive value; ROC AUC, receiver operating

characteristic/area under curve; STEMI, ST-segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial infarction; SQUID, superconducting quantum

interference devices; MFM, magnetic field maps; CDM, current density map; IECD, Integrated equivalent current dipole; IMCD, integrated maximum current density; MACS, manchester

acute coronary syndrome.
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TABLE 3 Studies of the diagnostic value of MCG in CCD.

Case Study Test group
(n)/Control (n)

Test condition MCG maps and
parameters

Tool Sens
(%)/
Spec
(%)

NPV
(%)/
PPV
(%)

ROC
AUC

1 Gapelyuk et al. (3) CCD (101)/Healthy

subjects (59)

At rest; Shielded

7-channel SQUID

sA4 MCG 79.0/73.0 – –

sA6 84.0/81.0 – –

sA4, sA6, ΔMFM orientation 84.0/83.0 – 0.912

2 Park et al. (37) Suspected CCD

(100)/−

At rest and dobutamine-

atropine scheme

Current strength/density MCG 97.6/82.8 – –

ECG 26.2/82.8 – –

3 Fenici et al. (38) Stable angina (51)/

Healthy subjects

(52)

At rest; unshielded

36-channel SQUID

Current density map; T-wave

dynamics and effective magnetic

vector parameters

MCG 83.0/96.0 89.0/94.0 –

ECG 38.0/100.0 80.0/

100.0

–

4 Shin et al. (39) Suspected CCD

(202)/−

At rest and exercise;

Shielded 64-channel

SQUID

Butterfly diagram; ST-segment

fluctuation score: −40.0%

Exercise MCG 68.4/95.1 82.4/90.0 0.839

Exercise ECG 40.5/91.1 70.4/74.4 0.658

5 Wu et al. (41) CCD (36)/Healthy

subjects (19)

At rest; Shielded

64-channel SQUID

QTc dispersion ≥ 79 ms MCG 83.3/68.4 – 0.758

Smooth index-QTc≥ 9.1 ms MCG 77.8/68.4 – 0.731

Combination of the above two MCG 86.1/68.4 – 0.773

Stress nuclear MPI MPI 69.4/94.7 – 0.820

6 Shin et al. (44) Suspected CCD

(96)/-

At rest and stress (bicycle

exercise test); Shielded

64-channel SQUID

ST-segment fluctuation score:

−51.0%

MCG 73.9/82.0 77.4/79.1 0.790

Non-dipole phenomenon in T wave MCG 84.8/88.0 86.3/86.7 0.864

Incorporation of the above two MCG – – 0.930

7 Park et al. (45) Suspected CCD

(47)/-

At rest and stress

(exercise and dobutamine

stress test); Shielded

64-channel SQUID

ST-segment fluctuation score:

−39.0%

MCG 86.7/73.9 – 0.835

8 Ramesh et al. (46) TMT + (12)/ TMT-

(17)

normal ECG; Shielded

37-channel SQUID

Magnetic field map; magnetic field

angle (normal: between −86° and

−45°) at T-wave peak

Magnetic angle 81.8/94.1 – –

Magnetic map 81.8/94.1

Either one 90.9/94.1

9 Hailer et al. (47) CCD (177)/ Healthy

group (117)

Normal ECG; At rest;

Unshielded 4-channel

SQUID

Current density vector maps during

ST-T interval

MCG 73.3/70.1 – –

nCCD (123)/

Healthy group (117)

73.9/49.6

CCD (177)/ nCCD

(123)

62.8/61.3

10 Chaikovsk et al.

(48)

CCD (54)/Chest

pain without

stenosis (25)

Unshielded 7-channel Complex index: AIQRStotal, AIST-

Ttotal, Adur, Ccor, R/Tcurrent, and

MAPtyp

MCG 93.0/84.0 93.0/85.0 –

CCD (54)/Healthy

subjects (30)

MCG 93.0/94.0 93.0/94.0 –

11 Shin et al. (49) CCD (35)/nCCD

(73)

At rest and bicycle

exercise test; Shielded

9-channel SQUID

Complex index: Positive T-wave score

at stress, T-wave dispersion at stress,

T-wave VMCG at rest, %change of

T-wave VMCG, %change of 1/2RT-

interval VMCG

MCG 89.0/77.0 91.0/74.0 0.91

12 Cui et al. (50) sCS (406)/nsCS

(107)

At rest; Unshielded

9-channel SQUID

Butterfly diagram and magnetic field

map: QR_MCTDd; QR_MVamp;

R_MA; S_MA; S_MDp; T_MA;

TT_MAC50

MCG 71.7/80.4 42.8/93.3 0.810

MCG, T2DM

and

Apoprotein A1

84.3/73.8 54.6/92.6 0.845

Magnetic map 81.8/94.1 – –

13 Huang et al. (51) CCD (128)/ nCCD

(81)

Unshielded 4-channel

SQUID

10 parameters of T wave: current

angle, field map angle, distance

MLP 91.4/87.7 86.6/92.1 0.954

14 Tantimongcolwat

et al. (52)

IHD (55)/Healthy

subjects (70)

9-channel SQUID J-T interval BNN 89.7/54.5 – –

DK-SOM 86.2/72.7 – –

15 Kangwanariyakul

et al. (53)

IHD (55)/Healthy

subjects (70)

36-channel SQUID J-T interval BPNN 86.2/68.1 – 0.905

BNN 96.6/54.5 – 0.849

Polynomial

SVM

89.6/45.4 – –

RBF SVM 41.3/86.3 – –

16 Steinisch et al. (54) CCD (4)/nCCD with

ACP (6)

At rest, during

pharmacological stress

QRS complex and ST-T segment;

MLP based on LDA

At rest 99.0/97.4 99.4/96.0 –

During stress 86.2/60.0 88.0/56.2 –

71.8/83.7 82.3/73.8 –

(Continued)
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Different MCG parameters and analytical approaches have

been explored to optimize coronary stenosis detection in

suspected CCD patients. The combination of ST-segment

fluctuation score and qualitative non-dipole parameter achieved

the highest diagnostic accuracy (AUC: 0.93) (39, 44, 45). In

chronic chest pain patients with normal ECG, magnetic field

map and angles distinguished coronary stenosis with 90.9%

sensitivity and 94.1% specificity (46). CDM during ST-T interval

effectively differentiated healthy individuals from CCD patients,

though their ability to distinguish non-CCD from CCD cases

was inferior to MFM (47). Integrating one-dimensional BFD

with MFM enhanced diagnostic performance and localized

stenosis with 69%–77% accuracy (48–50). To expedite data

processing and minimize manual errors, automated machine

learning approaches are applied for parameter extraction and

analysis. Bayesian neural networks and multilayer perceptron

demonstrated high sensitivity, making them suitable for high-risk

population screening (51–54). A hybrid classifier Support Vector

Machine-eXtreme Gradient Boosting, incorporating 164T-wave

features (time domain, frequency domain, and information

theory characteristics), achieved exceptional performance (AUC,

0.98; specificity, 94.0%) while effectively reducing false positives

(55). In summary, MCG showed particular strengths in

identifying ischemia in resting patients and those with borderline

lesions. Individual parameters in MFM and CDM as well as the

complex index in BFD are all strong predictors, AI-enhanced

approaches further improved diagnostic accuracy. Notably, MCG

also showed acceptable potential for detecting non-obstructive

coronary microvascular dysfunction (sensitivity: 68%, specificity:

65%) (56).

It is important to emphasize that all aforementioned studies

were conducted on patients with CCD, indicating that MCG can

detect lesions with coronary stenosis of ≥70%. However, for

vascular stenosis that has not yet affected the structure or

function of cells, it does not cause abnormal conduction or

magnetic signals, MCG will be unable to detect it. In addition, the

relationship between the degree of coronary stenosis and changes

in magnetocardiographic vector has not yet been standardized, so

the current evidence supporting magnetocardiographic evaluation

in this context remains limited and can not contribute to clinical

decision-making.

3.5 Non-ischemic cardiomyopathies

Beyond IHD, a spectrum of cardiac disorders arising from

genetic predisposition, metabolic dysfunction, and structural

myocardial changes are collectively termed non-ischemic

cardiomyopathies (57). Integrating more dimensions to achieve

precise classification of cardiomyopathies is a way forward for

efficient diagnosis and treatment. Emerging research have

investigated the promising role of MCG in the diagnosis,

treatment monitoring, and recurrence prediction of non-

ischemic cardiomyopathies.

Changes of magnetic vector (the value≥ 0.051) discriminated

cardiomyopathy from controls with 59% sensitivity, 95%

specificity, 93% PPV, and 64% NPV, and reflected immune-

suppressive therapeutic effect earlier than ECHO (7 vs. 30 days)

(58). In dilated cardiomyopathy, MCG effectively predicted major

adverse cardiac events (MACE) by detecting left intraventricular

disorganized conduction (LIDC) with high spatiotemporal

resolution to facilitate risk stratification, and the predictive value

of LIDC was superior to that of traditional ECG indices such as

fragmented QRS waves and late potential (59). By capturing early

changes of myocardial electrical remodeling and quantifying the

Kullback Leibler (KL) entropy of the cardiac magnetic field

topology, MCG differentiated hypertrophic cardiomyopathy from

healthy individuals or cardiac hypertrophy caused by other

reasons, and the accuracy increased to 87.9% when combined

with regional magnetic field strength parameters (sensitivity from

TABLE 3 Continued

Case Study Test group
(n)/Control (n)

Test condition MCG maps and
parameters

Tool Sens
(%)/
Spec
(%)

NPV
(%)/
PPV
(%)

ROC
AUC

and during recovery;

61-channel

During

recovery

17 Rong et al. (55) CCD (227)/Healthy

subjects (347)

Unshielded 4-channel

(MD-U041001)

164 features in T wave: time domain

(18), frequency domain (108),

information theory (38)

SVM-XGBoost

mixed model

−/94.0 – 0.98

18 Zhang et al. (42) Impaired myocardial

perfusion (70)/

Normal myocardial

perfusion (42)

36-channel OPM-MCG Five parameters RF 87.0/50.0 62.5/80.0 0.80

DT 82.6/30.0 42.8/73.0 0.78

SVM 91.3/10.0 33.3/70.0 0.80

MCG, magnetocardiography; CCD, chronic coronary disease; Sens/Spec, sensitivity/specificity; NPV/PPV, negative predictive value/positive predictive value; ROC AUC, receiver operating

characteristic/area under curve; CA, coronary angiography; ECG, electrocardiography; SQUID, superconducting quantum interference device; sA4, ST slope for location A4; sA6, ST slope

for location A6; MFM, magnetic field map; SPECT, single-photon emission computed tomography; QTc, QT/(R-R)1/2; TMT, treadmill test; nCCD, non-chronic coronary disease;

AIQRStotal, the mean value of AI during the QRS complex; AIST-Ttotal, the mean value of AI during the ST-T interval; Adur, Ccor, R/Tcurrent, the total current ratio between the

R and the T peak; MAPtyp, normality degree of maps’ for the myocardial ischemia; VMCG, vector magnetocardiography; sCS, severe coronary stenosis (≥70%); nsCS, non-severe

coronary stenosis; MCTDd, distribution of magnetic dipole center trajectory; MVamp, magnetic pole vector based on amplitude; MA, magnetic pole angle; MDp, dispersion of magnetic

pole; MAC50, angle changes of magnetic pole; T2DM, type 2 diabetes mellitus; MLP, multilayer perceptron; IHD, ischemic heart disease; BNN, Bayesian neural network; DK-SOM, direct

kernel self-organizing map; BPNN, back propagation neural network; SVM, support vector machine; RBF, radial basis function; ACP, acute coronary pain; LDA, linear discriminant

analysis; SVM-XGBoost, support vector machine-eXtreme gradient boosting; OPM-MCG, optically pumped magnetometers-magnetocardiogarphy; RF, random forest; DT, decision tree.
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78.8% to 84.8% and specificity from 86.9% to 88.9%), and

identified all patients with hypertrophic cardiomyopathy carrying

genetic mutation in familial screening (60).

3.6 Diagnosis and localization of arrhythmia

Compared to ECG, MCG has a enhanced spatial resolution of

cardiac current distribution and more comprehensive insights into

ventricular depolarization and repolarization. As summarized in

Table 4, growing evidence supports the utility of MCG in risk

stratification, original localization, and management guidance.

There was no statistical difference in ECG parameters between

benign and malignant early repolarization patterns (ERP).

Conversely, ERP-ventricular fibrillation (ERP-VF) patients in

MCG had prolonged QRS complex (108 ± 24 vs. 91 ± 23 ms,

P = 0.02) and diminished root-mean-square voltage of the last

40 ms (0.10 ± 0.08 vs. 0.25 ± 0.20, P = 0.01) (61). In addition,

compared with invasive electrophysiological mapping, the

accuracy of MCG in differentiating benign and malignant

ventricular arrhythmia was 94.7% (62). Beyond non-invasive risk

stratification for VF, the low-amplitude QRS complex also

predicted arrhythmia risk after MI, with QRS duration > 121 ms

as an independent predictor (63, 64). The P-wave duration, PR

interval and P-wave depolarization of patients with atrial

fibrillation were significantly longer than those of healthy

controls, providing more sensitive atrial fibrillation susceptibility

markers than ECG, the angle dynamics of P-wave depolarization

was an independent predictor of AF recurrence (P = 0.037) (65).

The alteration in left atrial pseudo-current conversion detected

left atrial dysfunction in paroxysmal atrial fibrillation, and

identify different atrial conduction pathways (such as Bachmann

bundles, margin of fossa ovalis, and coronary sinus ostial region)

with an accuracy of 93%, providing a new perspective for the

mechanism study of atrial fibrillation (66, 67).

The multi-channel sensors of MCG provide insights into the

temporal and spatial distribution of cardiac magnetic fields and

enable the localization of arrhythmia origins through three-

dimensional imaging. Ito et al. developed a new spatial filter to

differentiate ventricular arrhythmia originating from the right

ventricular outflow tract and the aortic sinus cusp, through three

parameters, with depth being the most powerful predictor (68).

By integrating cardiac computed tomography to reconstruct the

3-D current distribution, the origin of premature ventricular

complexes throughout the ventricle was pinpointed with 94%

accuracy (17/18) (69).

3.7 Fetal magnetocardiography

Current evaluation of fetal cardiac structure and function relies

on cardiotocography and ECHO, but they lack electrophysiological

data on the conduction system and cannot identify certain

malignant arrhythmia such as torsade de pointes (70). Fetal

MCG (fMCG) allows for precise assessment of cardiac time

intervals, signal characteristics, and various rhythm patterns by

extracting fetal cardiac magnetic signals after the 15 weeks of

pregnancy (71–74). It provides vital information about fetal

cardiac development and function, as shown in Table 5.

Both the 2014 and 2024 American Heart Association scientific

statements advocated fMCG to assess cardiac conduction and

rhythm abnormalities in fetuses with suspected or confirmed

congenital heart disease (Class 2a) (75, 76). Strand et al. used

SQUID to characterize fMCG waveforms of 132 healthy fetuses

TABLE 4 Studies of the diagnostic value of MCG in cardiac arrhythmia.

Case Study Test group (n)/
Control (n)

Test time and
condition

Map type and parameters Tool Sens
(%)/Spec

(%)

NPV
(%)/PPV

(%)

ROC
AUC

1 Iwakami

et al. (61)

ERP-VF + (13)/ERP-

VF- (103)

After survived the

VF; Shielded

64-channel SQUID

MCG: current arrow map; QRSD,

RMS40, LAS.

ECG: ST morphology, T-wave/R-wave

(T/R) ratio, J-wave distribution or

configuration, J-peak amplitude.

QRSD ≥ 100 ms 69.0/74.0 – 0.72

RMS40≤ 0.24 92.0/48.0 – 0.71

ECG parameters 8.0–85.0/10.0–

93.0

– 0.50

2 Her et al.

(66)

Paroxysmal atrial

fibrillation (22)/

Healthy subjects (26)

and marathon runners

(22)

At rest and stress

(bicycle exercise test);

Shielded 64-channel

SQUID

STAG; Peak value of PQ fluctuation

score, LA pseudo-current increase, PQ

mapping STAG.

MCG 76.7/91.7 97.3/50.6 0.896

3 Ito et al.

(68)

VA from RVOT (41)

or ASC (10)/−

One day before

ablation; Shielded

64-channel MCG

3-D MCG imaging; Depth of the VA

origin relative to the sensor array,

distance between sinus node and

origin of VA, magnetic field

orientation at the QRS complex peak

of the VA signal.

The depth of

origin

90.0/73.0 41/97 0.90

4 Aita et al.

(69)

Drug-refractory

premature ventricular

contractions (22)/−

Before ablation;

Shielded 64-channel

SQUID

3-D current distribution of the heart. MCG-CT

mapping

94.0 – –

ECG algorithms 56.0 – –

MCG, magnetocardiography; Sens/Spec, sensitivity/specificity; NPV/PPV, negative predictive value/positive predictive value; ROC AUC, receiver operating characteristic/area under curve;

ERP-VF, early repolarization pattern-ventricular fibrillation; SQUID, superconducting quantum interference devices; QRSD, QRS duration; RMS40, root-mean-square of the last 40 ms;

LAS, low amplitude (<10% of maximal) signal duration; STAG, spatiotemporal activation graph; LA, left atrial; VA, ventricular arrhythmia; RVOT, right ventricular outflow tract; ASC,

aortic sinus cusp; MCG-CT, magnetocardiography-computed tomography.
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at 15.7–39.9 weeks of gestation, P-wave, PR-interval, QRS complex,

and RR interval increased with gestational age (P < 0.001), while QT-

interval and QTc (QTc =QT/RR1/2) remained constant throughout

gestation (73). In contrast, another study used new magnetograph

dedicated to fetal recordings and concluded that P wave, QRS

complex, ST-segment, QT-interval and QTc increased with

gestational age, PQ segment and T-wave were independent of

gestation (77). It is imperative to elucidate the waveform

characteristics of fetuses at different developmental stages.

Wacker-Gussmann et al. reviewed 144 fetuses with tachycardia,

bradycardia atrioventricular block (AVB), or familial Long QT

syndrome (LQTS) (71). As a result, fMCG facilitated additional

diagnoses in 81% (117/144) of cases, with 56% (81/144)

exhibiting critical alterations, prompting a change in the

treatment regimen for 35 patients (71). LQTS is a hereditary ion

channel disorder that leads to potentially fatal heart rhythm

abnormalities and accounts for 10% of sudden infant death and

unexplained stillbirths (78). Early detection of abnormal heart

rates and intrauterine treatment can reduce mortality. Research

published in Circulation in 2013 showed that QTc > 490 ms,

corroborated by genetic testing, achieved 89% sensitivity and

specificity for LQTS between 19 and 38 weeks of gestation, with

QTc≥ 620 ms predicting a severe TdP phenotype, characterized

by various uncommon rhythms such as second-degree AVB,

T-wave alternation, and QRS alternation (79).

The waveform characteristics of AVB with different degrees of

severity are much more complex than those of ECHO. Fetuses with

positive maternal SSA/Ro SSB/La antibodies are at elevated risk of

developing immune AVB. The prolonged PQ segment predicts

early atrioventricular node involvement in fetuses (60.2 ms vs.

50.8 ms; P < 0.001) (80). Different waveforms classified AVB and

accurately identified third-degree AVB with structural heart

disease and poor prognosis (81, 82). ECHO struggled to

distinguish blocked atrial bigeminy (BAB) from 2nd degree AVB,

despite their divergent clinical management and prognosis (83).

fMCG discerned differences between the two entities, with the

ectopic P wave (P’) manifesting earlier and a higher heart rate

observed in BAB cases, thus offering pivotal evidence for

differential diagnosis (83).

4 Limitations

Although many studies have proved that MCG has excellent

clinical diagnostic and prognostic predictive capabilities across

various cardiac diseases and is a promising clinical tool in the

future, certain limitations persist within this domain. First, there

exists heterogeneity in study design, and parameters, with different

methodologies, MCG systems, and analytical parameters employed

across studies. The absence of standardized protocols in the

acquisition of cardiomagnetic images and data, as well as in

parameter definitions and diagnostic thresholds constrains the

general applicability and clinical advancement of research findings.

Establishing uniform guidelines for MCG interpretation is crucial

for advancing the field. Secondly, most clinical studies of MCG are

conducted in single-center with small cohorts and meticulously

screened populations. This may introduce selection bias and lead

to an overestimation of diagnostic accuracy. Consequently, larger,

multi-center studies are necessary to validate the reproducibility of

MCG across diverse populations, devoid of established clinical

backgrounds and in varied environments. Finally, research

evidence concerning non-ischemic cardiomyopathy and UA is

limited, and there are few studies on MCG parameters and long-

term prognosis verification, thereby limiting the robustness of

MCG results. Therefore, future research must focus on optimizing

the standardization of MCG data collection processes, establishing

unified parameter reference ranges, and identifying specific

parameters for various diseases.

5 Conclusion

Magnetocardiography provides a new perspective for the rapid

and non-invasive identification of critical and severe heart diseases.

TABLE 5 Studies of the diagnostic value of fMCG.

Case Study Study group (n,
GA)

Control
group (n, GA)

Testing conditions fMCG waveform features (study group vs.
control group)

1 Cuneo et al.

(79)

Suspected LQTS (30, 19–

38)

Shielded 37-channel and

64-channel biomagnetometers

LQTS: QTc > 490 ms; late-peaking T-wave morphology; TdP:

QTc ≥ 620 ms, with more complex waveforms

2 Kiefer-

Schmidt et al.

(80)

Exposed to SSA/Ro- or

SSB/La antibodies (11,

20–37)

Healthy (87,

17–41)

156-channel biomagnetic system PQ segments: 50.8 ms vs. 60.2 ms; P < 0.001

3 Zhao et al.

(81)

Second-degree AVB

(5, 19–32)

– Shielded 37-channel

biomagnetometer

Complex, changing rhythms, e.g., intermittent pre-excitation,

alternating high and low atrial rhythms, and variable AV

conduction.

Third-degree AVB (23,

20–32)

– Junctional ectopic tachycardia and ventricular tachycardia

4 Wiggins et al.

(83)

BAB (10, 21–29.3) – Shielded 37-channel axial

gradiometer or 21-channel vector

Ectopic P wave (P’) occurred early and heart rate was faster.

PP′/PP = 0.29 ± 0.03, PP′ = 209 ± 23 ms,

FHR = 82 ± 5.7 beats/min

Second-degree type II

AVB (5, 25–37.2)

– PP′/PP = 0.49 ± 0.01, PP′ = 419 ± 50.5 ms,

FHR = 69 ± 4.2 beats/min

fMCG, fetal magnetocardiography; GA, gestational age; LQTS, long QT syndrome; TdP, torsades de pointes; AVB, atrioventricular block; BAB, blocked atrial bigeminy; FHR, fetal heart rate;

PP, interval from the P wave of the sinus beat to the P wave of the premature beat.
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The high spatial and temporal resolution and absence of interference

from human tissue with the magnetic signal confer excellent

functional imaging capabilities to MCG, demonstrating superior

diagnostic performance for adult and fetal heart disease, including

MI, adult and fetal arrhythmia, and rapid triage of ACP. However,

its application is still limited to a few research centers, and the

lack of uniform equipment standards and specifications makes it

difficult to directly compare the results between different devices.

Furthermore, there remains a paucity of large-scale clinical

evidence and well-defined diagnostic criteria for MCG.

Future research should focus on validating parameters,

establishing usage standards, and integrating MCG into clinical

practice to develop high-performance devices suitable for routine

environments, ensuring the rapid and accurate diagnosis of acute

and severe heart diseases.
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