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Use of serum long non-coding
RNA expression panel as a marker
for diabetic retinopathy
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John Gonder3, Tom Sheidow3, Phil Hooper3 and
Subrata Chakrabarti1,3,4*
1Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada, 2Centre
for Diabetes, Endocrinology, and Metabolism, St. Joseph’s Hospital, London, ON, Canada, 3Ivey Eye
Institute, St. Joseph’s Hospital, London, ON, Canada, 4Department of Pathology and Laboratory
Medicine, London Health Sciences Centre, London, ON, Canada
Introduction: Diabetic retinopathy (DR) is the most common chronic
complication of diabetes, the leading cause of vision impairments in working-
aged adults, and a significant cause of reduced quality of life for diabetic
patients. Diabetic patients are recommended to have regular screening in
order to catch DR at an early enough stage for effective management.
However, due to a variety of factors, many patients can still fall through the
cracks with the current screening methods.
Methods: Several long non-coding RNAs (lncRNAs), essential regulators of
physiological and pathological processes, were previously identified by us as
potential markers for DR phenotypes. In this study, we used a significantly
larger sample set to validate our panel of lncRNAs. We also explored the
possibility of creating a statistical model to detect DR from serum samples
using the expression profiles of these lncRNAs.
Results: Our regression models, based solely on lncRNA expression data,
demonstrated the ability to adequately detect DR and potentially predict it.
Models based solely on lncRNA expression performed equally or better
compared to models with additional patient information. The models showed
promising performance, suggesting that serum lncRNA expression profiles
could serve as reliable markers for DR detection.
Discussion: Further longitudinal studies are necessary to validate the model’s
capability to predict retinopathy in diabetic patients not yet diagnosed with
DR. Nevertheless, our findings indicate that this lncRNA panel may offer a
viable option for a simple, accessible, and convenient blood-based screening
test for DR.
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Introduction

Diabetes and its complications pose significant challenges to patients’ qualities of life

(1, 2). Diabetic retinopathy (DR) is among the most common chronic complications of

diabetes and is the leading cause of vision impairment in working-aged adults (3, 4). In

2020, DR was responsible for over 4.3 million visually impaired patients in the world

(5). Nearly all diabetic patients will develop retinopathy over the course of their

lifetime, and a significant portion will develop vision impairments (6, 7). Patients with

diabetes experience progressive hyperglycemic damage to the retinal tissues, and
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TABLE 1 Inclusion/exclusion criteria.

Inclusion criteria Exclusion criteria

Diabetic group Non-
diabetic
group

• ≥18 years of age
• Has been clinically

diagnosed with diabetes
mellitus (type I or type II)

• ≥18 years
of age

• No history
of diabetes

• Pregnant or breastfeeding
• Enrolled in another

randomized controlled trial
that could influence the
outcomes or data collection
of this study

• Unable to provide
written consent

Wang et al. 10.3389/fcvm.2025.1523997
undergo progressive stages of retinopathy, starting from no

retinopathy to non-proliferative DR (NPDR), and ultimately to

proliferative DR (PDR) (8–11). Clinically, each stage of DR

manifests as ophthalmologically distinct findings, ranging from

microaneurysms and microhemorrhages in early NPDR to

neovascularization and vitreous/preretinal hemorrhage in PDR

(8–11). Some studies have estimated that ∼18% of patients with

baseline NPDR progress to severe NPDR or PDR within 5 years

of diagnosis (12). During this progression, diabetic macular

edema—which can occur in either NPDR or PDR—and

neovascularization in PDR remain major factors leading to

blindness (8–11).

Despite its high prevalence in patients with diabetes, the

progression of DR can be influenced by many factors. Poor

glycemic control, dyslipidemia, hypertension, high body mass

index, and a variety of genetic and epigenetic factors can all

influence the progression from non-vision threatening to vision

threatening DR (8–11, 13). Given the multifactorial nature of DR

progression, early diagnosis and intervention can be vital in

preventing vision impairment in patients with diabetes (14).

Over the past several decades, regular ophthalmic screening and

timely treatment has helped reduce the frequency of vision

impairment due to DR (15), yet the current approaches to DR

screening are not without their limitations. Screening and

diagnosis of DR are currently done via ophthalmologic

techniques such as ophthalmoscopy, fluorescein angiography, and

optical coherence tomography, depending on their availability at

specific practices. These approaches rely on clinical observations

of physical manifestations of retinal changes (such as visible

vascular abnormalities and thickening of retinal membranes) (16,

17). Such changes are the result of accumulated hyperglycemia-

induced biochemical and cellular abnormalities, which can be

detected long before observable manifestations (18). Furthermore,

socioeconomic factors such as cost, accessibility, and convenience

mean that many patients do not adhere to the recommendations

for vision care and screening (19–21). Clinical access to

instruments/tools, the nature of the screening approaches, patient

access to healthcare, and other socioeconomic factors limit the

benefits conferred by regular ophthalmological examinations.

A simple, standardized, blood-based test may help improve ease

of access by being administered when patients get their regular

bloodwork, and timeliness of diagnosis by detecting underlying

biochemical changes. This would ultimately improve ophthalmic

outcomes for diabetic patients.

As with most chronic diseases, molecular and biochemical

alterations both underlie and precede clinical manifestations in

DR, for example, altered expressions of extracellular matrix genes

underpin the changes in basement membrane thickness which

lead to retinal vascular leakage (22). We have previously

identified changes in specific long non-coding RNAs (lncRNAs)

associated with the onset and progression of DR (23). lncRNAs

are RNA molecules greater than 200 bases in length, which do

not encode proteins (23). lncRNAs exert influences on gene

expression through a variety of means, and can regulate a wide

range of biological processes and are involved in the

pathogenesis of various diseases (24–26). Pertinently, lncRNAs
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are known to regulate pathways including angiogenesis,

inflammation, and endothelial-to-mesenchymal transition, all of

which are important in the pathogenesis of DR (27–29). We

previously investigated the development of a serum-based, multi-

panel PCR test using 9 lncRNAs (ANRIL, MALAT1, WISPER,

ZFAS1, H19, HOTAIR, HULC, MEG3, and MIAT) as a potential

diagnostic and prognostic tool (23). With the relatively limited

patients that were recruited for that study, we found that a

substantial portion of patients with some forms or retinopathy

could be identified using only the panel of lncRNAs or some

subset thereof (23). We believe based on our previous findings,

that the lncRNA panel can be improved for use as a blood test for

the diagnosis of DR. Here, we used a refined panel of lncRNAs in

an expanded patient population to validate the development of our

PCR-based screening and diagnostic test for DR.
Materials and methods

Patient population and sample collection

This study was approved by the Western Research Ethics Board

and Lawson Health Research Institute at the University of Western

Ontario (London, ON, CAN). Informed consent was received from

patients prior to obtaining specimens and the research was

conducted in accordance with the principles outlined by the

Declaration of Helsinki.

Patients were recruited from endocrinology or ophthalmology

clinics in London ON (n = 317). The clinicians approached

consecutive patients under their care as appropriate using broad

eligibility criteria (see below). All patients with diabetes and

diabetic retinopathy were considered for enrollment, no other

known diabetic complications or symptoms of other diseases

were present. In parallel, non-diabetic patients were also similarly

approached. Eligible patients were approached by a member of

the team, who introduced them to the study. If the patient

expressed interest, a member of the research team gave them

necessary literature and explained the study in greater detail.

Written, informed consents were obtained. All patients’ charts

were reviewed for data collection including age, sex, duration of

diabetes, type of diabetes etc. Table 1 outlines inclusion and

exclusion criteria. All samples were collected between 2022 and
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2023 during office visits, then immediately transported to the lab

for processing. Demographic information about the patients can

be found in Table 2.

Undiluted serum samples were collected in BD gold-top serum

separator tubes. Serum specimens received a code number and

were submitted to the research laboratory. All assessments were

performed in a masked fashion.
Development of the multi-lncRNA qPCR
panel

We developed a multi-lncRNA qPCR panel based on 8

lncRNAs of interest as investigated in the previous study (23),

namely, ANRIL, H19, HOTAIR, HULC, MALAT1, MIAT,

WISPER, and ZFAS1; MEG3, which was examined previously

had been excluded because it did not show clear enough

differences in disease progression. Customized exon-spanning

primers against human lncRNAs were designed as described

previously. Primers for our lncRNAs of interest, and the

reference gene ACTB, were air-dried in a 96-well plastic qPCR

plate and stored at room temperature. cDNA was synthesized

from patient serum samples and mixed with TB green master

mix (Takara Bio, Mountain View, CA, USA) and aliquoted into

the 96-well PCR plates containing the dried primer panel.

lncRNA expressions were quantified using a LightCycler 96

system (Roche Diagnostics, Laval, QC, CAN).
RNA isolation and quantitative real-time
polymerase chain reaction (Rt-qPCR)

Total RNA was isolated from 200 μl of serum using TRIzol

reagent (Invitrogen) as previously described (23). RNA

concentration was measured using a SpectraMax QuickDrop

Spectrophotometer (Molecular Devices); RNA purity was also

determined via OD 260/280 readings. Most samples had ratios

greater than 1.9, no samples had 260/280 ratios lower than 1.7.

cDNA was synthesized using 2 μg of total RNA with the High-

Capacity cDNA Reverse Transcription kit (Applied Biosystems,

Catalog #: 4368813) according to the manufacturer’s instructions.

qPCR was performed using a Roche LightCycler 96 system
TABLE 2 Demographic data.

Demographic
parameter

Non-diabetic
controls

(ND)

All diabetic
patients

(D)

Diabetic patie
without

retinopathy
(D-NR)

Sample size 55 262 97

Age 49.16 ± 17.33 63.15 ± 15.59 62.94 ± 19.18

Sex (F:M) 26:29 115:147 45:52

Duration of
diabetes (years)

NA 20.42 ± 11.76 19.42 ± 12.92

Data are expressed as mean ± SD where applicable; DR encompasses NPDR and PDR groups; D
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(Roche) as described previously (23). qPCR results were retrieved

using the LightCycler 96 SW 1.1 software (Roche) and

expression levels were calculated using the standard curve

method. β-actin was used as an internal control for sample

normalization (e.g., to account for potential differences in cDNA

synthesis due to varying RNA purity readings). All qPCRs were

performed in triplicates.
Data preprocessing and outlier removal

Distributions of MALAT1 and ZFAS1 expressions were

highly right skewed, so their levels were log-transformed to

better capture the patterns of changes in expression, and

outliers were removed from the dataset. Using a variation

of the “boxplot rule”, outliers were classified as samples

with two or more lncRNA expression levels above 3rd

quartile plus 1.5 times the interquartile range or below 1st

quartile minus 1.5 times the interquartile range.
Clinical group comparisons

T-tests were used to compare between two clinical groups. For

comparisons involving more than two groups, ANOVA tests were

used. If the ANOVA results indicated statistical significance,

pairwise t-tests were performed with Holm adjustment for

multiple comparisons. Significance was considered at p < 0.05

throughout the analysis.
Binomial regression for diabetic retinopathy

Binomial regression was conducted with diagnosis of DR of

diabetic patients as the response variable and lncRNA expression

levels as predictive factors. The resulting mathematical equation

estimates a subject’s likelihood—expressed as a probability

between 0.0 and 1.0—of having diabetic retinopathy. To assess

multicollinearity of regressors and prevent errors such as

overfitting, Pearson correlation coefficient (PCC) statistic was

utilized. In the case that 2 or more lncRNAs were highly

correlated, the weaker predictor was removed.
nts Diabetic patients
with retinopathy

(DR)

Retinopathy
patients with
NPDR (NPDR)

Retinopathy
patients with
PDR (PDR)

165 87 78

63.28 ± 13.08 65.93 ± 12.11 60.32 ± 13.57

70:95 32:55 38:40

20.99 ± 11.04 18.6 ± 12.92 23.7 ± 11.65

encompasses D-NR and DR groups. F, female; M, male.
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Cross-validation and optimal cut-off point

The dataset was randomly split into 80% training data

and 20% testing data for cross-validation. The optimal cut-

off point was determined using a receiver-operating

characteristic (ROC) curve and Youden’s index. The ROC

curve plots sensitivity against the false-positive rate (1

−specificity) over a range of cut-off values. The best cut-off

point for defining a positive test was identified using

Youden’s index: Youden’s index = max(true positive rate—

false positive rate). At this point, significant improvements

in sensitivity were achieved while maintaining reasonable

specificity. The cross-validated accuracy, specificity, and

sensitivity were calculated at the optimal cut-off point and

reported along with the area under the curve (AUC). The

significance of the variables in the final model was assessed

by 95% confidence intervals.
Statistical analysis

All analyses were conducted in RStudio (Version 2022.07). The

rstatix package was used to perform all statistical tests comparing

clinical groups. Ggplot2, ggcorrplot, and ggpubr were used for

data visualization.
Results

Serum lncRNA expressions are altered in
patients with diabetes

We first assessed the changes in expressions of individual

lncRNAs between the diabetic and the non-diabetic patients. We

conducted a correlation analysis between patients’ ages and

lncRNA expressions—as there was a significant difference in ages

between the ND and D patients—and found no significant

correlations between age and any of the lncRNA expressions via

the Pearson test. In accordance with our previous findings,

serum expressions of ANRIL, HOTAIR, HULC, MALAT1,

WISPER, and ZFAS1 were significantly higher in the

D compared to the ND group, while expression of H19 was

significantly lower (Figures 1A–E,G,H). We found no significant

difference in the serum expression of MIAT between D and ND

patients in our sample (Figure 1F), so it was therefore dropped

from subsequent analyses.
Serum lncRNA expressions show specific
patterns in diabetic patients at different
stages of Dr

Having established diabetes-related changes in serum

expressions of our lncRNAs of interest, we took a closer look at

differential lncRNA expressions in diabetic patients at differing

stages of DR. To this extent, we broadly categorized the diabetic
Frontiers in Cardiovascular Medicine 04
patients into 3 categories: D-NR, NPDR, and PDR. Apart from

MIAT, expressions of lncRNAs in D-NR, NPDR and PDR

groups were all significantly different from the non-diabetic

group. Interestingly, the data showed on average, that altered

lncRNA expressions peaked in the D-NR or NPDR groups and

showed a slight return to normal levels in PDR patients.

Expressions of ANRIL and HULC in the PDR cohort was

significantly lower than in the D-NR group (Figures 2A,D).

Expressions of H19, HOTAIR, MALAT1, WISPER and ZFAS1

also showed slight trends back toward levels seen previous stages

in the PDR groups (Figures 2B,C,E–G).
Serum lncRNA expressions can be used to
identify diabetic patients with DR

Assessment of average lncRNA expressions across stages of DR

allowed us to identify trends in the sample populations but were

insufficient to predict DR in individual diabetic patients. To

assess the likelihood of retinopathy for individual patients, we

conducted binomial regression using lncRNA expressions as

predictive factors. Because ANRIL and HOTAIR were strongly

correlated, HOTAIR was removed from binomial regression

(Figure 3). For this analysis, we grouped the NPDR and PDR

cohorts into a DR cohort. The regression plot showed relatively

clean separation of the no DR and DR groups (Figure 4A). For

diabetic patients, this model achieved a predictive accuracy of

75% with respect to presence or absence of retinopathy, with a

sensitivity of 81%, a specificity of 63%, and an AUC of 0.74

(Figure 4B). As a point of reference, we built a model based only

on patient demographic information, including age, sex, and

duration of diabetes. This model performed poorly, with an AUC

of 0.55, and almost indiscriminately predicted positive DR status

in all diabetic patients (Table 3). Combining demographic data

with lncRNA expression data did not necessarily improve the

predictive performance of the model (Table 3), furthermore

patient age and duration of diabetes were the lowest ranked

coefficients in the model’s algorithm (not shown).
Glycated hemoglobin levels did not improve
the predictive performance of our model
compared to lncRNA only

Glycemic control typically has more influence on the

development of retinopathy than simple demographic metrics. We

wanted to assess whether glycemic control information—in the

form of HbA1c levels—could improve the performance of the

model. Due to limitations with data access and data collection,

HbA1C data was only available in a smaller subset of patients

(n = 75), so we re-trained our other models as described above,

using only datapoints from patients with HbA1c data fairer

comparison. With this smaller dataset, the base model using only

demographic data performed similarly (Table 4). Adding HbA1C

improved the accuracy but reduced the AUC (Table 4). The

accuracy of the lncRNA only model was better in this subset of
frontiersin.org
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FIGURE 1

Serum abundances of key lncRNAs are different between diabetic and non-diabetic patients. Serum levels of (A) ANRIL, (B) HULC, (C) H19, (D) HOTAIR,
(E)MALAT1, (F)MIAT, (G)WISPER, and (H) ZFAS1 in non-diabetic (ND) and diabetic (D) patient serums were compared. Apart fromMIAT, serum levels of
all other lncRNAs of interest were significantly different between D and ND patients. lncRNA data presented as ratio to ACTB mRNA. MALAT1 and
ZFAS1 data were log-transformed to normalize the distributions. Statistical significances were calculated using Student’s T-test. n= 55 for ND, and
n= 262 for D groups.

Wang et al. 10.3389/fcvm.2025.1523997
patients than in the larger sample, and the addition of HbA1c did not

produce major differences (Table 4). We further tested a model using

all the components, which performed worse than lncRNA only

(Table 4). Duration of diabetes and patient age remain the two

lowest ranking coefficients in the model’s algorithm (not shown).
Discussion

Diabetes has long since reached pandemic levels, and recent

projections suggest a doubling of the prevalence of diabetes by

2050 (30). Such a rise will inevitably give rise to increased

incidences of DR and other diabetic complications. DR is the most

common microvascular complication of diabetes, affecting an

estimated 27% of patients with diabetes (3, 31). Data have shown

that early detection and intervention in DR have played a vital role

in achieving better ophthalmic outcomes for patients over the past

several decades (15). Yet current screening approaches are limited

by various factors (16–21). We set out to create an affordable

biomarker-based screening test for diabetic retinopathy which can
Frontiers in Cardiovascular Medicine 05
bypass the limitations of current approaches. We have previously

described a panel of lncRNAs which change in response to

retinopathy in diabetic patients (23). In the present study, we

validated our previous findings and refined the lncRNA panel

using a larger sample size and with patients from all stages of DR

(D-NR, NPDR, PDR). We then reported that lncRNA

derangement appears to progressively increase as diabetic patients

progressed from D-NR to NPDR, but that some lncRNAs showed

slight trends back to previous levels in PDR. We further

determined that we were able to adequately predict retinopathy

using 7 of the original 9 lncRNAs. Finally, we compared our

lncRNA-based model against models built using other patient

metrics and assessed the potential of combining lncRNA

expression with said metrics to build a better prediction model.

LncRNAs are considered master regulators of cellular

processes. One lncRNA, by interacting with various proteins and

other species of RNAs, can exert a broad range of effects on gene

expression and cellular behaviour. The lncRNAs of interest for

this test—namely ANRIL, H19, HOTAIR, HULC, MALAT1,

WISPER, and ZFAS1—were initially identified in other
frontiersin.org
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FIGURE 2

Serum abundances of lncRNAs of interest vary between stages of diabetes. Comparison of serum levels of (A) ANRIL, (B) HULC, (C) H19, (D) HOTAIR,
(E) MALAT1, (F) WISPER, and (G) ZFAS1 across non-diabetic (ND), diabetic without retinopathy (D-NR), non-proliferative diabetic retinopathy (NPDR)
and proliferative diabetic retinopathy (PDR) groups. Data showed that on average, derangements in serum lncRNA abundance were most significant in
D-NR or NPDR groups, and that lncRNA levels recovered slightly in the PDR group compared to the D-NR group. lncRNA data presented as ratio to
ACTB mRNA. MALAT1 and ZFAS1 data were log-transformed to normalize the distributions. Statistical significances were calculated using one-way
ANOVA and post-hoc t-tests were performed with Holm’s adjustment. n= 55 for ND, n= 97 for D-NR, n= 87 for NPDR, and n= 78 for PDR
groups. *p < 0.05, **p < 0.01, ***p < 0.001, or ****p < 0.0001.

Wang et al. 10.3389/fcvm.2025.1523997
pathologies, as evident in some of their names, highly upregulated

in liver cancer (HULC) (32), or metastasis associated lung

adenocarcinoma transcript 1 (MALAT1) (27). But these lncRNAs

have since been well-studied in the context of DR. For example,

we have shown in DR, that ANRIL regulates VEGF (33, 34), H19

inhibits inflammatory responses and prevents endothelial

dysfunction (28), HOTAIR promotes angiogenesis, oxidative

stress and mitochondrial dysfunction (29), and MALAT1

regulates inflammation via modulation of epigenetic regulators

(27). Others have also reported on the roles of these lncRNAs in
Frontiers in Cardiovascular Medicine 06
DR (35–40), thus we felt that it may be feasible to use integrate

expression profiles of these lncRNAs to create a diagnostic tool.

Because lncRNAs are upstream regulators of many processes, a

lncRNA-based diagnostic tool would be able to detect a much

earlier stage in the development of DR than current optical

screening approaches. Furthermore, we believe that a lncRNA-

based test can begin detecting DR before other emerging

screening tools, such as deep-learning approaches which are still

dependent on the presence of vascular changes (41), and even

other biomarkers which examine changes in abundances of
frontiersin.org
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FIGURE 3

lncRNA ANRIL correlates strongly with lncRNA HOTAIR. Correlation
analysis was performed to assess and prevent multicollinearity in the
regressors. ANRIL and HOTAIR were strongly correlated above our
cutoff of ±0.75, so HOTAIR was ultimately dropped from the
regression model to prevent overfitting and other errors.

Wang et al. 10.3389/fcvm.2025.1523997
proteins (42), metabolites (43), or microRNAs (44), all of which

typically occur downstream of lncRNA expression changes. We

began with a larger panel of lncRNAs in our initial pilot study

and refined it through the results of that study and the present

one. lncRNAs with high variation and/or low changes between

ND and D groups were dropped from the test, the remainder

were further analyzed and assessed for the creation of the

predictive model.

For lncRNAs that showed significant alterations between ND

and D groups, the D group was broken down into D-NR, NPDR,

and PDR. This allowed use to identify patterns in the lncRNA

expressions throughout the progressive stages of DR, and to build

expression profiles for diabetic patients without DR and those

with DR. Given that many studies have shown aberrations in

lncRNA expression to contribute to the pathogenesis of DR, we

had expected to see progressively greater deviance from normal

expressions as patients progressed from D-NR to PDR. This was

interestingly, not the case. Expressions of many lncRNAs showed

a slight reversal in PDR patients. The underlying cause of this

reversion is not within the scope of the current study; however, it

may be logical to expect that the treatments received by PDR

patients may play some role in this finding. Treatments in PDR

are designed to prevent and potentially reverse neovascularization

and vascular leakage, thus it may be the case that patients who

receive treatment for their PDR also see a mild reversal in their

lncRNA expressions with the amelioration of their conditions.

This trend may otherwise be explained by the pathobiology of

DR’s disease progression. As the early stages of DR are considered

vaso-obliterative, while the PDR stage is considered vaso-

proliferative, the genetic and biochemical changes underpinning

these phases may be different (8–11). However, as the sample size

of present study is not large enough to control for specific

treatment among PDR patients, any proposed reason behind this

phenomenon is merely speculative. Further in-depth studies will
Frontiers in Cardiovascular Medicine 07
be required to fully elucidate the mechanistic reasons behind this

trend and explore the effects of PDR treatments such as laser

photocoagulation and vitrectomy on lncRNA expressions. It is

important to note that while some lncRNA expressions in PDR

trended to similar levels as D-NR, they are still significantly

different from the ND group. Furthermore, this analysis showed

that there is relatively little difference in expressions of individual

lncRNAs between the diabetic sub-populations compared to the

difference in expressions between diabetic and non-diabetic

groups. In addition, from a technical standpoint, use of more

sensitive techniques, such as nano-PCR may potentially increase

the sensitivity of these assays. Such notion however must be

validated by additional well- designed studies.

While individual lncRNA expressions did not clearly separate

between different sub-groups within the diabetic condition, each of

the stages did have a distinct pattern of lncRNA expressions, thus

we were optimistic that together, the lncRNAs could be used to

build a model to better predict DR. To this extent, we opted to

group the patients into D-NR and DR, because we did not think it

would be useful to develop a model that can specifically predict

PDR, as that would not offer any benefits over currently available

tests. The model achieved a predictive accuracy of 75% and an

AUC of 0.745, compared with a model built only from patient

demographic data, which only achieved an accuracy of 66% and an

AUC of 0.546. The demographic data-only model serves as a

baseline, because the development and progression of DR are

dependent on various factors in addition to demographic

characteristics of the patient. We further tried using different

combinations and subsets of lncRNAs to train the model, but those

failed to match the main model. The lncRNA model had a higher

sensitivity (81%) than specificity (63%) meaning that it had a slight

tendency toward false positive predictions. This is in contrast with

a model built using both demographic data and lncRNA, which

had a similar predictive accuracy and AUC as the lncRNA-only

model but had a much higher specificity (94.7%) than sensitivity

(62.5%). We believe that high sensitivity is the key performance

metric for the models, as it means that the model can correctly

identify DR in patients who have it. We further think that a

relatively lower specificity could be a promising result, because if

the model is predicting that a patient from the D-NR group has a

high likelihood of DR, it may be that this patient has undiagnosed

DR, or is close to developing clinically detectable DR. This claim is

something that must be assessed over a longer study period with

follow-up, we cannot assess this claim in given the current study

parameters, however, given the promising results, we are optimistic

that a longitudinal study would show the benefits of the model.

Although we had promising results from the lncRNA-only

model, we still wondered if mixing it with other factors could lead

to better accuracy. One of the most important factors in the

development of diabetic complications is glycemic control (45).

Poor glycemic control leads to average higher glucose levels and

accelerated tissue damage in diabetes. Differences in glycemic

control may account for why patient age and duration of diabetes

were consistently the worst performing coefficients in our models,

as an older patient with longer duration of diabetes but good

glycemic control may have better ocular health than a younger
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FIGURE 4

Regression model built using lncRNAs of interest largely separates patients with retinopathy from those without. (A) Regression plot showing predicted
likelihood of patients having or not having retinopathy based on their lncRNA expression profiles. (B) Receiver operating characteristic curve showing
the sensitivity and specificity of the model. Based on lncRNA expressions, the model predicted that some diabetic patients without retinopathy are
likely to have retinopathy, resulting in a slightly lower specificity.

TABLE 3 Performance metrics for models.

Model performance
parameter

Demographic data only
(Age + sex + duration)

lncRNA only lncRNA +Demographic dataa

Accuracy 0.666 0.745 0.745

Sensitivity 1 0.8125 0.625

Specificity 0.105 0.632 0.947

AUC 0.546 0.737 0.786

aThis model reduces the significance of lncRNAs as predictive factors and shows signs of overfitting, which can be common in models with more predictive factors.

TABLE 4 Model performances only including patients with HbA1c data.

Model
performance
parameter

Demographic
data only

Demographic
data +HbA1C

lncRNA only lncRNA +HbA1C lncRNA +HbA1c +
Demographic dataa

Accuracy 0.643 0.714 0.857 0.857 0.786

Sensitivity 1 0.833 0.667 0.667 0.833

Specificity 0.375 0.625 1 1 0.75

AUC 0.604 0.5625 0.833 0.8125 0.75

aThis model reduces the significance of lncRNAs as predictive factors and shows signs of overfitting, which can be common in models with more predictive factors.
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patient with poor glycemic control. It is widely accepted that

patients with poor glycemic control will develop complications

faster than one with good glycemic control (45). So, we wanted to

see if including HbA1C levels, a widely used indicator of glycemic

control, would benefit the predictive accuracy of the model. As

mentioned, only a smaller subset of patients had HbA1C data

available, so all the models were re-trained on this smaller sample

size. Unsurprisingly, demographic data alone did not produce a

good model. Demographic data with the addition of HbA1C
Frontiers in Cardiovascular Medicine 08
showed an improvement compared with demographic data without

HbA1C. However, the lncRNA models with or without HbA1C

performed similarly, and much better than the two previously

mentioned models. This finding was initially surprising, however,

further review of the literature showed that while extremely high

HbA1C levels correspond to elevated risk for progression of

complications, HbA1C levels in the moderate to high range may

not correlate as strongly with disease progression (46, 47).

Furthermore, retinopathy can be triggered by sharp decreases in
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systemic glucose and HbA1C levels (48–50), and genetic variation

can influence how HbA1C levels correlate with glycemic control

(51, 52). Furthermore, HbA1C is a risk factor for DR, while the

lncRNA expression panel acts as a biomarker, which are more

directly correlated with DR progression. This means that HbA1C

may not be a good addition to the model to identify patients with

DR, and that the model built with only lncRNA expression data

likely remains the best option.

While we firmly believe that the findings of the current study are

promising, we are cognizant of the limitations of the study and its

parameters. All samples were collected from centers around

London Ontario, meaning that there is limited demographic

diversity, thus potentially limiting the generalizability of the

findings. Furthermore, despite all sample collections being done in

London Ontario, there were variations in the times between

collection and processing/analysis which can introduce unwanted

variability due to the potential for RNA to degrade. Separately, we

recognize the limitations of using HbA1C levels as a representation

of glycemic control, because though it is more reliable than fasting

glucose, is also subject to variation depending on short- to

medium-term glycemic control and lifestyle changes. Furthermore,

HbA1C data was not available from all patients, and although

available data were split evenly between diabetic patients with or

without DR, available data for distinct subgroups of DR were

limited. We also note that a longitudinal study would be required

in order to properly validate the notion that the lncRNA-based

model can detect D-NR patients who are at high risk for DR or

who have undiagnosed DR. We are planning such a longitudinal

study with patients being recruited from a wider background.

Regular ophthalmic screening and timely treatment have greatly

benefitted diabetic patients over the past decades (15). However,

current screening approaches are limited by factors such as their

need for clinical observations of physical changes and low patient

adherence to recommended screening, meaning that many diabetic

patients can develop DR and be undiagnosed for a long period of

time, negatively influencing the timeliness of effective treatment,

leading to poorer ophthalmic outcomes. The current study

proposes a promising serum-based biomarker test which can

bypass these limitations. The proposed serum lncRNA-based panel

is based on lncRNAs that are involved in the pathobiology of DR,

and are significantly altered in response to diabetes. Expression

profiles of these lncRNAs can be integrated to predict DR in

diabetic patients with 74.5% accuracy against clinically diagnosed

cases. Further validation, including longitudinal studies and multi-

centre patient recruitment, will be needed to fully develop this test,

however, the final panel should be able to detect DR at a stage

prior to the onset of physical vascular manifestations and can be

done in tandem with regular blood tests, leading to greater

accessibility and adherence to DR screening, and resulting in

better ophthalmic outcomes for patients with diabetes.
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