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The roles of neutrophils in
cardiovascular diseases
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The immune response plays a vital role in the development of cardiovascular
diseases (CVDs). As a crucial component of the innate immune system,
neutrophils are involved in the initial inflammatory response following
cardiovascular injury, thereby inducing subsequent damage and promoting
recovery. Neutrophils exert their functional effects in tissues through various
mechanisms, including activation and the formation of neutrophil extracellular
traps (NETs). Once activated, neutrophils are recruited to the site of injury,
where they release inflammatory mediators and cytokines. This study
discusses the main mechanisms associated with neutrophil activity and
proposes potential new therapeutic targets. In this review, we systematically
summarize the diverse phenotypes of neutrophils in disease regulatory
mechanisms, different modes of cell death, and focus on the relevance of
neutrophils to various CVDs, including atherosclerosis, acute coronary
syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial
fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the
preclinical/clinical translational significance of neutrophil-targeted strategies.
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1 Introduction

Cardiovascular diseases (CVDs) are currently considered the leading cause of death

worldwide, with approximately 50% of annual deaths attributed to CVDs (1). During

the past few years, there has been a renewed focus on innate immunology. Neutrophils,

the most abundant type of immune cell in the innate immune system (2), serve as a

vital defense against pathogens. Traditionally viewed as the final effector cells of acute

inflammatory responses and playing a leading role in the clearance of extracellular

pathogens, the roles of neutrophils have expanded based on increasing evidence (3–5).

They regulate inflammation and the immune system by producing a variety of

cytokines and other inflammatory factors (6, 7). Early studies focused on the impact

of neutrophils on rheumatic immunity, cancer, sepsis, etc., with a limited understanding

of their role in cardiovascular inflammation. As research progresses, the significance of

neutrophils in the development of CVDs has been increasingly investigated. Neutrophils

are widely involved in the occurrence and development of CVDs; overactivation can

exacerbate the progression of various CVDs, including atherosclerosis (8), myocardial

infarction (9), hypertension (10), and atrial fibrillation (11). This overview focuses on

the basic principles of neutrophil biology associated with cardiovascular

pathophysiology and its significance in CVDs.
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2 Formation, markers, and cardiac
biological functions of neutrophils

2.1 Formation of neutrophils

Neutrophils are the most abundant type of leukocytes,

constituting the crucial first line of defense against infections, the

general life cycle of neutrophils includes their formation in the

bone marrow, release into the bloodstream, migration to tissues,

and eventual clearance (12). They are originated from

hematopoietic stem cells (HSCs) in the bone marrow and

undergo different stages of differentiation under the regulation of

granulocyte colony-stimulating factor (G-CSF). These stages

include the progression from multipotent progenitor cells

(HPCs), through myeloid lineage-committed progenitors, to

common myeloid progenitor cells (CMPs), and granulocyte-

monocyte progenitor cells (GMPs). Then, GMPs enter the

mitotic pool, where they rapidly divide and differentiate into

promyelocytes, myelocytes, subsequently into late promyelocytes,

band neutrophils, and finally into segmented nuclear neutrophils

(13). Mature segmented nuclear neutrophils are released into the

bloodstream through the bone marrow-blood barrier, ready to

respond to signals of inflammation or infection (3) The

traditional view holds that neutrophils have a half-life of

approximately 6–12 h (14). They reside in the vasculature for an

average of only 6–8 h before crossing the vessel walls to enter

tissues and exert their functions. Once in the tissues, they

typically do not return to the bloodstream. Aged neutrophils are

usually cleared by apoptosis within 1 day or are phagocytosed by

macrophages and other immune cells. This short lifespan has

long been considered a limitation for their role in immune

regulation. However, studies by Pillay et al. (15) show that the
FIGURE 1

Partial markers of neutrophils. illustrates the heterogeneity of neutrophils in d
neutrophils in the bone marrow (A), the markers of positive migration and agi
and organs in the human body (C) (Created using Figdraw).

Frontiers in Cardiovascular Medicine 02
average lifespan of circulating human neutrophils is

approximately 5.4 days. This finding challenges the previous

notion of a short neutrophil lifespan and provides a new

perspective for re-evaluating the functions of neutrophils in

health and disease.
2.2 Heterogeneity and markers of
neutrophils

The diverse functional responses of neutrophils are triggered by

the changes in transcriptional activation and the expression or

activity of surface molecules. These phenotypic variations are

often detectable only in a subset of neutrophils, indicating a

significant heterogeneity among neutrophils (13, 16). Therefore,

the heterogeneity of neutrophils in different states can be

observed through the differential expression of certain markers

(Figure 1). Immature neutrophils, which are in the early stages of

differentiation, are primarily located in the bone marrow and can

be rapidly mobilized into the peripheral circulation in response

to specific stimuli (17). CD33, CD15, CD11b, CD16, and CD10

are the signature molecules of immature differentiated

neutrophils (18–20). Mature neutrophils are cells that have

completed the differentiation process and possess the ability to

perform immune defense functions. They carry a range of

preformed adhesion and chemotactic receptors, as well as

effector proteins, enabling them to migrate rapidly and respond

to a variety of microbial and sterile stimuli (17). Phenotypes such

as CD16hi, CXCR2hi, CXCR4low, and CD62Lhi are characteristics

of mature circulating neutrophils (21). The down-regulation of

the chemokine receptor 4 (CXC chemokine receptor 4, CXCR4)

is a vital event in the mobilization of neutrophils from the bone
ifferent states, including the markers of immature, mature, and activated
ng in the bloodstream (B), and the markers of migration to various tissues
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marrow (22), and chemokines (including CXCL8, CXCL1, CXCL2,

and CXCL5) can stimulate the release of neutrophils into the

circulation and their migration to inflammatory sites via CXCR2

signaling, where they adhere to the endothelium (23–26).

Neutrophil activation by inflammatory signals initiates

transendothelial migration into tissues. Interactions with selectins

and chemokines lead to vesicle secretion and exposure of

membrane proteins. Activated neutrophils up-regulate CD11b/

CD18, enhancing firm adhesion to endothelium (3). The

activation of neutrophils also results in an increase in the

expression of CD66b, which can be mobilized from intracellular

granules to the cell membrane in the process of degranulation

(27). Moreover, in the context of infection, the expression of

CD64 on the surface of neutrophils is rapidly upregulated (under

normal conditions, CD64 is barely expressed on neutrophil

surfaces). This upregulation serves as one of the early responses of

neutrophils to pathogen invasion and is regarded as a crucial step

in the innate immune response (28, 29). The CD177 glycoprotein

(NB1) is expressed exclusively on the surface of human

neutrophils and controls transendothelial transport through

interaction with platelet endothelial cell adhesion molecules (30).

Aging neutrophils, in addition to being smaller in size and

containing fewer granules (31), exhibit the enhanced pro-

inflammatory activity but have impaired adhesion and phagocytic

functions (32, 33). The general phenotype of “aged neutrophils”

includes CXCR2low, CXCR4hi, CD62Llow, CD11bhi, CD11chi and

CD47low (31, 34–37). Chemokine CXC motif ligand 12

(CXCL12) and its receptor CXCR4 are widely expressed in

different cells in human bone marrow, heart, and other tissues

(38). CXCR4 is generally considered to be the sole specific

receptor for CXCL12, and the multi-pathway signaling of CXCR4

can mediate different biological movements and responses

including cell migration, chemotaxis, proliferation, anti-apoptosis,

homing, and adhesion (39). The retention and release of

neutrophils in the bone marrow are controlled by the synergistic

action of the CXCL12/CXCR4 axis (35, 40). In the peripheral

blood, aged neutrophils with increased CXCR4 expression home

to the bone marrow through the chemokine CXCL12 pathway,

and once in the bone marrow, CD62Llow neutrophils migrate

towards macrophages, causing the clearance of these neutrophils

from the bloodstream (31, 35, 36, 38). Moreover, the reduced

expression of the “do not eat me” molecule CD47 can enhance

the recognition and phagocytic action of macrophages (34, 37).

Other markers associated with aged neutrophils include CD45,

CD24, ICAM-1 and TLR4 (41–43).

In addition to the bloodstream, under normal conditions,

neutrophils can also migrate to various tissues and spontaneously

change their phenotype. For instance, the spleen exhibits

neutrophils with the phenotypeCD62LlowCD11bhiICAM1hi (44),

and the neutrophils located in the marginal zone of the human

spleen are referred to as “neutrophil B cell helpers” (NBH cells)

(45). This subpopulation (CD15int/lo, CD16int/low, and

CD11bhi) can release B cell-stimulating molecules, including

B cell-activating factor (BAFF) and CD40 ligand (CD40l),

promoting the secretion of IgM and IgG. Prostates express

neutrophils with the phenotype CD11b + Ly6G + Ly6Clo,
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possessing stronger immunosuppressive activity (46). Currently,

our understanding of how neutrophils change into various

phenotypes in different tissues and what roles they play is still

limited, and there is a vast unknown territory awaiting our

continued exploration.

After migrating to tissues, neutrophils can return to the

bloodstream, a process known as reverse transendothelial

migration (rTEM). Markers associated with reverse migrating

neutrophils include CD18, ICAM1 (47), CXCR4low (48), and

neutrophil elastase (NE), which degrade junctional adhesion

molecule-C (JAM-C) (49). CD18 can interact with endothelial

cell surface molecules (including binding to ICAM-1) (50, 51),

and the homing of neutrophils to the bone marrow is mediated

by CXCR4 (52). Neutrophil rTEM regulates the proliferation of

T cells and B cells, as well as NET formation, and induces

systemic inflammation and interaction with the immune system

by clearing excess neutrophils from local tissues (49). Therefore,

targeting neutrophil rTEM may offer a novel therapeutic strategy

for resolving inflammation.
2.3 Cardiac biological functions of
neutrophils

2.3.1 Generation and chemotaxis
Healthy adults need to produce 1011 neutrophils daily, and

mice require 107 (14). Under homeostatic conditions, the

number of mature neutrophils remains relatively stable and can

be released into circulation from the bone marrow following a

circadian rhythm through the mutual regulation of CXCR2/

CXCR4 and the interaction with CXCL1 and CXCL2 produced

by endothelial cells and megakaryocytes (53–55). However, in

acute inflammation and emergency situations including

myocardial infarction, the production of neutrophils can be

accelerated and maintained by proliferative signals from cells

subjected to ischemic injury or exposed to ischemic damage, and

their numbers can rapidly increase in circulation (56). On the

one hand, they can phagocytose dead cells and cellular debris,

clearing sterile inflammation; on the other hand, they can also

send signals to recruit monocytes, promoting the phagocytosis of

apoptotic or necrotic neutrophils (57). Meanwhile, after

recognizing microbes and/or inflammatory stimuli, neutrophils

can immediately migrate from circulating blood to the site of

inflammation through an adhesion/migration cascade, exerting

their effector functions and responding to damage by capturing

and eliminating pathogens through phagocytosis, producing ROS,

degranulation, secreting vesicles, and forming NETs (58). The

activated neutrophils can up-regulate OXPHOS genes, relying on

mitochondrial respiration to produce sufficient ATP to ensure

the continuation of cell migration and chemotaxis (59, 60).

2.3.2 Pro-inflammatory and repair functions
Neutrophils display distinct phenotypes and functions during

pro- and anti-inflammatory processes. Post-cardiac injury, they

polarize temporally from pro-inflammatory “N1” to reparative

“N2” phenotypes. In myocardial infarction’s early phase,
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neutrophils activate and polarize into N1 via pattern recognition

receptors (PRRs) recognizing pathogen-associated molecular

patterns (PAMPs) or damage-associated molecular patterns

(DAMPs), enhancing pro-inflammatory functions (61, 62). On

the first day, N1 type neutrophils produce and release pro-

inflammatory mediators, including cytokines (such as TNF-α, IL-

1β) and chemokines (like CCL3), further recruiting other

immune cells (63). Simultaneously, polarization also occurs in

the peripheral blood and bone marrow of myocardial infarction

models, which may involve the reverse transport of neutrophils,

stimulating granulopoiesis and spreading inflammation (64).

During the resolution of inflammation and tissue repair, N2 type

neutrophils are dominant (65, 66), expressing anti-inflammatory

markers from the 5th to the 7th day of injury, which assists in

the resolution of inflammation and the clearance of apoptotic

myocardial cells (67). Interestingly, neutrophils also promote

cardiac repair through the production of matrix proteins required

for fibrotic scar formation (including fibronectin and fibrinogen)

and by secreting MMP9 to promote angiogenic responses (68).
2.3.3 Immune regulation
Neutrophils can also interact with various immune cells, which

include dendritic cells, T cells, and B cells, and modulate their

functions (69). For instance, conventional neutrophils in the

marginal zone, known as NBH cells, are thought to facilitate

B cell proliferation and antibody production (45). The interaction

between neutrophils and dendritic cells can influence the

maturation and antigen-presenting capacity of dendritic cells,

thereby affecting the activation and differentiation of T cells (70).
FIGURE 2

Mechanisms of neutrophil death. provides an overview of the four com
ferroptosis. At sites of cardiac injury, neutrophil death can be triggered by
(PAMPs), damage-associated molecular patterns (DAMPs), bacteria, and
pathways and are interrelated (Created using Figdraw).
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Neutrophils are also capable of expressing and secreting

molecules that affect T cell functions, such as arginase 1 and

inducible nitric oxide synthase (iNOS), which can hinder T cell

proliferation and activation, thus regulating T cell-mediated

immune responses to some extent (71). These interactions

suggest that neutrophils may exert a more complex role in

forming and regulating adaptive immune responses than

previously thought. In addition, neutrophils modulate immune

responses by secreting extracellular vesicles (EVs) that contain

microRNAs (miRNAs), Specific miRNAs, such as miR-130a and

miR-155, are known to regulate various stages of neutrophil

development and function (72).
3 Neutrophil death mechanisms

Neutrophils can undergo various modes of death, such as

apoptosis, NETosis, pyroptosis, and ferroptosis (Figure 2).

Understanding the diverse death mechanisms of neutrophils can

further elucidate the critical points at which neutrophils are

involved in the pathogenesis of CVDs.
3.1 Apoptosis in neutrophils

The maturation of neutrophils reduces the transcription and

translation rates, thereby decreasing the expression of anti-

apoptotic proteins while retaining that of pro-apoptotic effector

proteins (73). Under normal conditions, neutrophils enter the
mon modes of neutrophil death: apoptosis, NETosis, pyroptosis, and
a variety of factors, including pathogen-associated molecular patterns
viruses. Different modes of death can be induced through distinct
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circulation and migrate to peripheral tissues after maturation.

A subset of neutrophils, after fulfilling their physiological

functions in the tissues (such as destroying the invading

organisms), undergo “spontaneous apoptosis” through a series of

orderly, programmed intracellular processes, ultimately leading to

cell death. This form of cell death maintains the integrity of the

neutrophil membrane, preventing the release of intracellular toxic

substances, and limiting their destructive capacity to surrounding

tissues (74, 75). It is crucial for maintaining the balance of

circulating neutrophil numbers and the pro-inflammatory/anti-

inflammatory balance in the body (14). Following myocardial

ischemia, cardiomyocytes subjected to severe ischemia and

hypoxia may suffer injury or even necrosis, leading to the release

of DAMPs (76). These DAMPs can interact with PRRs to trigger

intercellular signaling cascades, promoting the expression of pro-

inflammatory cytokines and chemokines (77). This process

further amplifies inflammation and exacerbates myocardial injury

(78, 79). Neutrophil apoptosis is one of the essential mechanisms

for maintaining homeostasis and limiting inflammatory damage.

Apoptosis of neutrophils is initiated through two distinct

signaling pathways, namely, the intrinsic and extrinsic pathways.

The extrinsic apoptosis pathway in neutrophils depends on ROS

produced by NADPH oxidase (80), and its mechanism may be

related to the ability of ROS to directly change the activity of

intracellular signaling pathways involved in neutrophil death/

survival, such as NF-kB and MAPK (81, 82). The intrinsic

apoptosis pathway is mediated by mitochondria, which is

featured with the loss of mitochondrial membrane potential and

the release of pro-apoptotic factors like cytochrome c into the

cytosol (83, 84).
3.2 NETosis

Neutrophils are a vital component of the innate immune

system. Apart from phagocytosing and destroying invading

microbial pathogens and releasing antimicrobial granules, they

can also exert their functional effects in tissues through various

mechanisms, including the production and release of reactive

oxygen species (ROS) and neutrophil extracellular traps (NETs),

causing damage and destruction of pathogens (85–87). At first,

NETs were described by Brinkmann et al. in 2004 (88) and are

the extracellular web-like structures released by activated

neutrophils, with DNA as its backbone and combined with

various antimicrobial proteins including histones, neutrophil

elastase (NE), calprotectin B (also known as S100A9), and

myeloperoxidase (MPO), which primary function is to capture

and kill microorganisms such as bacteria, fungi, and viruses (89).

NETs can also participate in the onset and progression of CVDs

by promoting thrombosis and exacerbating inflammatory

responses, among other mechanisms (90). The activated

neutrophils produce and trigger a special form of cell death

called NETosis when they generate and release NETs. NETosis is

distinct from both apoptosis and necrosis and is entirely

independent of the action of caspases involved in apoptosis.

Although the lifespan of neutrophils is short, the function of
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released NETs can last for several days to further exert their

effects. Neutrophils can be activated by recognition through Toll-

like receptor 2 (TLR2), Toll-like receptor 4 (TLR4), and

complement receptors (91), and they are stimulated by

pathogenic microorganisms, activated platelets, specific cytokines

(such as IL-8 and TNF-α), lipopolysaccharides (LPS), and other

stimuli (92), finally activating the NADPH oxidase (93). NADPH

oxidase is one of the major sources of intracellular ROS, which

can activate a series of signaling pathways. ROS can activate

protein arginine deiminase 4 (PAD4) (94) and it catalyzes

histone citrullination, such as converting arginine in histone H3

to citrullinated H3 (CitH3), leading to chromatin decondensation

(95). ROS can also activate the translocation of NE and MPO

from azurophilic granules to the nucleus. Subsequently, NE

cleaves histone H1 and modifies core histones, ultimately

resulting in the release of chromatin into the extracellular space

to form NETs (96). Additionally, some viruses, including

influenza A, HIV-1, and encephalomyocarditis virus, can also

trigger the formation of NETs (97–99), but not all pathways that

result in the formation of NETs can result in neutrophil death.

Currently, two different forms of NETosis have been identified,

including the classical or suicidal NETosis (which lead to cell

death through the formation of NETs with nuclear membrane

rupture) and “vital NETosis” or non-suicidal NETosis (which

maintains cell viability and a range of effector functions, and is

mediated by vesicles) (100, 101). Non-suicidal NETosis is

thought to play a more significant role in regulating pathogen

infection. Although NETs are vital effectors in clearing bacterial

infections and sterile inflammation, they can also cause tissue

damage (102–104). S100A8/A9, belonging to the S100 family of

calcium-binding proteins, exerts a certain effect on various

inflammatory diseases (105). When NETs are generated, S100A8/

A9 can be released from the cytoplasm of neutrophils, activating

surrounding immune cells and thus amplifying the inflammatory

response (106). Therefore, inhibiting the overactivation of the

innate immune system remains a key therapeutic approach. In

addition, miRNAs can also regulate the formation of NETs. For

example, miR-155 modulates NET formation by targeting PAD4

(107), while exosomes containing miR-505 have been shown to

promote NET formation (108). Understanding the complex

interplay among miRNAs, NETs, and cardiovascular diseases is

an active area of research that may lead to the discovery of novel

therapeutic strategies.
3.3 Pyroptosis of neutrophils

Pyroptosis is a form of regulated cell death mediated by the

Gasdermin family of proteins, which is characterized by the

formation of membrane pores, causing cell swelling and rupture,

release of inflammatory mediators, and promotion of

inflammatory responses (109). Pyroptosis has been identified as

another mode of regulated cell death that can occur in mature

neutrophils, and it is triggered by various signaling pathways,

including the canonical (caspase-1 dependent) [NOD-like

receptor family pyrin domain containing 3, NLRP3] and
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non-canonical (caspase-11 dependent) inflammasomes [such as

Absent in Melanoma 2, AIM2], death receptors (RIPK1 and

caspase-8), and granule serine proteases (110). Neutrophils can

express Gasdermin D (GSDMD) and maintain their ability to

release IL-1β (a pro-inflammatory cytokine) through a GSDMD-

dependent pathway, thereby promoting inflammatory responses

and immune responses without cell death (111). As a key

molecule in regulating cell pyroptotic necrosis, the absence of

GSDMD reduces the degree of myocardial fibrosis after

myocardial infarction, and decreases IL-1β released by infiltrating

myeloid cells in the heart, thus playing a cardioprotective role

(109). This result indicates that GSDMD is a potential target for

improving ventricular remodeling and reducing heart failure

(HF) after AMI. Moreover, NETosis may be related to the

pyroptosis of neutrophils (111). The NLRP3 inflammasome can

recognize PAMPs and DAMPs, and the activation of the NLRP3

inflammasome can stimulate NETosis, further amplifying the

inflammatory response (112). The GSDMD inhibitor Disulfiram

(DSF) can inhibit the release of NETs (113), suggesting that

different forms of neutrophil death are interconnected and

collectively affect the body’s immune function.
3.4 Ferroptosis of neutrophils

Ferroptosis, first proposed by Stockwell et al. (114), is a novel

form of regulated cell death caused by iron overload and the

accumulation of lipid ROS, accompanied by DAMPs. Implicated

in inflammation and disease pathogenesis, it is increasingly

linked to cardiovascular diseases (CVDs). Neutrophil ferroptosis

has become a burgeoning research area. Elevated lipid ROS and

neutrophil ferroptosis have been observed in the serum of

systemic lupus erythematosus (SLE) patients (115), yet there have

been no reports on neutrophil ferroptosis in CVDs. However, it

is believed that further exploration of neutrophil ferroptosis may

provide new opportunities for the treatment of CVDs.
4 Neutrophils and CVDs

4.1 Neutrophils and atherosclerosis (AS)

The development of AS relies on a chronic inflammatory

process driven by lipids, from the initial stage of vulnerable

atherosclerotic plaques to their eventual rupture, where

neutrophils play a key pathophysiological role. Megen et al.

reported (116) the presence of neutrophils and NETs in

atherosclerotic lesions in mice and humans. Initially,

hyperlipidemia can induce neutrophilia (117), and neutrophils

can damage endothelial function by mediating the deposition of

granule proteins on endothelial cells, inducing adhesion, and

promoting the recruitment of monocytes, thereby exacerbating

the local response in the atherosclerotic process (118).

Meanwhile, activated mast cells present in the intima and

perivascular tissue of atherosclerotic plaques can release

chemokines (such as CXCL1), inducing further recruitment of
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neutrophils to the inflammatory site (119). In AS mouse models,

sterile inflammation is also shown to drive cytokine production,

and neutrophils, once activated, initiate effector functions and

release NETs (8). Research by Knight et al. (120) showed that

chloromethyl ketone inhibited PAD4, thereby reducing the

formation of NETs and the lesion area of atherosclerotic plaques,

further suggesting the important role of NETs in AS. Studies

have indicated (121) that human neutrophil granules express

bactericidal/permeability-increasing protein (BPI), which may

participate in AS and atherosclerotic thrombosis, highlighting AS

as an inflammatory and immune response. While lipid-lowering

therapy is fundamental in AS treatment, it is insufficient for

mitigating residual cardiovascular risk, suggesting that targeted

neutrophil therapy could be a promising future approach.
4.2 Neutrophils and acute coronary
syndrome (ACS)

ACS is a group of clinical syndromes caused by a sudden

reduction in blood supply to the heart, encompassing Non-ST-

segment Elevation Myocardial Infarction (NSTEMI), ST-segment

Elevation Myocardial Infarction (STEMI), and Unstable Angina

(UA) (122). In ACS, neutrophils are involved in all aspects,

including the activation of the early inflammatory response,

myocardial cell necrosis, and the later stage of myocardial scar

repair. The neutrophil count is regarded as an independent

prognostic factor for patients with ACS (123). Neutrophils are

present in the early vulnerable ruptured/eroded atherosclerotic

plaques and are massively recruited in the late stage of plaque

progression (124). After myocardial infarction, a large amounts

of DAMPs are produced by the damaged myocardial cells (125),

including the nuclei of myocardial cells (such as HMGB1),

cytoplasm (such as RNA), extracellular matrix (such as

fibronectin), mitochondria (such as mtDNA), and contractile

components (myosin) (126, 127), which triggers the sterile

inflammatory response after myocardial infarction and ultimately

activates a complete innate immune signaling pathway (128).

Numerous neutrophils are activated and immediately initiate a

series of processes, including neutrophil recruitment, adhesion,

binding, and final migration and infiltration (129). Activated

neutrophils can induce endothelial cell damage via apoptosis or

protease production. Proteases disrupt endothelial adhesion to

the vascular wall, leading to cell detachment, exposure of the

underlying connective tissue matrix, platelet adhesion, and

thrombosis (130). In the meantime, thrombin-activated platelets

interact with neutrophils at the site of plaque rupture, leading to

local NETosis and the activation of tissue factor (131). After

myocardial infarction, neutrophils can also release S100A8/A9 in

the infarction area through NETosis, interact with Toll-like

receptor (TLR) 4 on naïve neutrophils, activate the NLRP3

inflammasome of the NOD-like receptor (NLR) family pyrin

domain-containing 3, and amplify granule production through

IL-1 and IL-18 dependent signaling pathways (132), eventually

promoting the development of myocardial fibrosis (133).

Subsequently, the recruitment of neutrophils can not only clear
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cellular debris and dead cells, but also produce key molecular

signals for monocyte/macrophage reprogramming (129).

Neutrophils release MMP8 and MMP9, degrading the

extracellular matrix. The inhibition of MMP-9 in mice can

reduce left ventricular dilation and collagen accumulation in the

infarction area after coronary artery ligation (134), further

proving that neutrophils are indispensable in adverse cardiac

remodeling after myocardial infarction (135).
4.3 Neutrophils and myocardial ischemia/
reperfusion injury (MI/RI)

Reperfusion of ischemic myocardium is an absolute necessity

to save the myocardial tissue from ultimate death. The activation

of neutrophils and the accumulation of ROS are the important

pathophysiological mechanisms that mediate MI/RI. Within

24–48 h after myocardial reperfusion, neutrophils are the

main infiltrating cells (136), which can exacerbate myocardial

damage by mediating inflammatory responses and affecting

microcirculatory blood flow. The primary mechanism involves

the activation of nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase (respiratory burst), releasing a large amount

of ROS (137). ROS can directly react with lipids, proteins, and

DNA, generating cellular damage and inducing the release of

cytokines and chemokines that are partially mediated by NF-κB.

In the myocardial ischemia-reperfusion (MI/R) model, blocking

NF-κB can reduce myocardial injury and left ventricular

remodeling (138). DAMPs released during MI/R can activate the

complement cascade, which up-regulates adhesion molecules on

endothelial cells to promote neutrophil migration (139). PDE4B

plays a key role in MI/RI by mediating neutrophilic

inflammatory responses and microcirculatory disturbances.

Blocking PDE4B can not only reduce myocardial cell death, but

also improve coronary microvascular obstruction, which provides

the dual cardiac protection (140), and offers a novel perspective

for preventing and treating MI/RI. The development of subtype-

selective PDE4B inhibitors or the repurposing of existing PDE

drugs may become a new cardiac protective agent for patients

with acute myocardial infarction during reperfusion.
4.4 Neutrophils and hypertension (HTN)

In addition to neuro-humoral regulatory mechanisms,

immune-inflammatory responses exert a critical role in the

pathological cardiac remodeling caused by HTN. Evidence has

suggested that the innate immune system has a vital role in the

development of hypertension since the 1960s (141). Morton et al.

(142) demonstrated neutrophils’ direct role in blood pressure

regulation. These cells infiltrate arteries, heart, and kidneys,

potentially promoting fibrosis through secretion of pro-oxidant,

pro-inflammatory, and profibrotic molecules, and stimulating

immune cell infiltration into tissues such as blood vessels and the

heart (143), and leading to inflammation and fibrosis related to

HTN. In patients with HTN or animal models of HTN,
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neutrophils isolated from peripheral blood exhibit high levels of

ROS (144, 145), which enhances their oxidative stress

characteristics and triggers multiple processes such as

inflammation, proliferation, and fibrosis, thereby damaging

vascular function. Previous studies have suggested that an

increased neutrophil count and an elevated neutrophil/

lymphocyte ratio (NLR) in hypertensive patients are correlated

with an increased risk of hypertension (146), with NLR being

higher in non-dipper hypertensive patients. Additionally, some

clinical studies have shown that the use of certain

antihypertensive medications can reduce the NLR in patients

with HTN.
4.5 Neutrophils and atrial fibrillation (AF)

AF is the most commonly seen clinical arrhythmia. Patients

with AF typically exhibit an increased inflammatory signal

activity (147). In both patients with AF and in angiotensin II-

induced AF mouse models, increased infiltration of immune cells

such as neutrophils, macrophages, and monocytes in the atrial

tissue can be detected (148–150). Even in the absence of

underlying structural heart disease, leukocytes can be found in

the atrial tissue of patients with AF (151). Lipid inflammatory

mediators such as platelet-activating factor (PAF), which are

synthesized by activated neutrophils, can induce atrial and

ventricular arrhythmias as well as repolarization abnormalities in

isolated cardiomyocytes (152). The sustained rapid pacing can

lead to the loss of myocardial cell structure, which provides a

strong stimulus for the secretion of NETs. NETs can promote

apoptosis in cardiomyocytes via the autophagy pathway, and

cause swelling of mitochondria in cardiomyocytes, depolarization

of mitochondrial membrane potential, and increased production

of mitochondrial ROS (153), resulting in an increased

susceptibility to AF (152). In the in vivo experiments, the

degradation of NETs by DNase I can reduce the duration of AF

and improve fibrosis associated with AF, providing a new

strategy for the treatment of AF (153). An elevated NLR is not

only seen in patients with AF accompanied by underlying

structural heart disease and in patients undergoing paroxysmal

AF, but can also act as a predictive marker for the recurrence of

AF after cardiac conversion.
4.6 Neutrophils and heart failure (HF)

HF is a complex clinical syndrome caused by various etiologies

that lead to structural and/or functional abnormalities of the heart,

resulting in impaired ventricular systolic and/or diastolic function

(154), Ischemic heart disease is the most common cause of heart

failure (155). Although the role of neutrophils as first responders

in the acute phase of myocardial infarction to clear dead cells,

their role in chronic ischemic heart failure remains unclear (135).

The relationship between neutrophils and HF is multifaceted,

involving inflammation, cardiac remodeling, and immune

regulation. Hemodynamic changes in HF can induce a sterile
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inflammatory state (156). Early inflammatory responses include the

migration of neutrophils and macrophages, production of pro-

inflammatory cytokines and chemokines such as TNF-α, IL-1,

and IL-6 at different stages of HF (157), mediation of myocardial

cell necrosis and exacerbation of adverse cardiac remodeling

(158), making the targeted inhibition of neutrophil-derived pro-

inflammatory factors an active area of research for treating HF.

Studies have shown that in the HF mouse of myocardial

infarction models, the depletion of neutrophils through antibody-

mediated or genetic methods can halt the progression of HF,

especially the left ventricular remodeling and fibrosis progression

in the middle and late stages of HF (135), further indicating that

neutrophils are a potential therapeutic target for lowering

myocardial damage and preventing HF (159, 160). Neutrophils

may also directly damage cardiomyocytes by releasing ROS and

proteolytic enzymes, leading to cardiac dysfunction (161). The

NLR also has predictive value in the severity, prognosis, and

diagnosis of HF, with its increased level being associated with a

poor prognosis in patients with HF (162).
4.7 Neutrophils and viral myocarditis (VMC)

Myocarditis can be caused by various infectious and non-

infectious etiologies, such as viruses, immune system activation

(e.g., autoimmune diseases like sarcoidosis or immune

stimulation due to vaccines or cancer therapies), or exposure to

toxins and medications. Among infectious causes, viruses are the

most common etiology. The localized or diffuse inflammatory

lesions of the myocardium caused by viral infection are referred

to as VMC, with Coxsackie virus B3 (CVB3) being a major

pathogenic agent (163). Molecules derived from the virus, which

act as PAMPs, are effective inducers of NETs. The role of

neutrophils in virus-associated diseases is not previously

emphasized, but research by Fairweather et al. (164) reported

that the severity of acute myocarditis was closely associated with

the accumulation of neutrophils in the heart. Patients and mice

with CVB3-induced myocarditis have significantly increased

levels of S100A8/S100A9, which exacerbate oxidative stress and

viral replication in myocarditis (165, 166), further indicating the

important role of neutrophils in the antiviral immune response

(167). In the acute phase of CVB3-induced VMC in mice,

Vγ1γδT cells are the main infiltrating cells with cardioprotective

effects. However, with the depletion of Vγ1γδT cells, the

infiltration of NK cells, macrophages, and neutrophils into the

heart gradually increases (168). Neutrophils mainly recognize

CVB3 via endosomal TLR-8, thereby triggering NF-κB activation

and inducing the release of NETs (169), and neutrophil depletion

mediated by anti-Ly6G antibodies or PAD4-dependent NETs

blockade can reduce cardiac injury and leukocyte recruitment

(170). Virus internalization increases cell survival, up-regulates

CD11b expression, enhances adhesion to fibrinogen and

fibronectin, and boosts secretion of IL-6, IL-1β, TNF-α, and IL-8,

thereby promoting neutrophil migration to target organs and

viral spread (169). Consequently, neutrophils play both direct

and indirect roles in the pathogenesis of CVB3-induced VMC.
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5 Research progress on cardiac
remodeling treatment strategies
targeting neutrophils

At present, there are no widely used clinical standard drugs.

Some studies have indicated that non-steroidal anti-inflammatory

drugs (NSAIDs) can decrease the activation and aggregation of

neutrophils, decreasing their role in the inflammatory response

after myocardial infarction (171). Drug treatment strategies

targeting neutrophils in CVDs are under development. These

strategies may modulate neutrophil behavior (activation,

recruitment, migration, infiltration), reduce NETs production,

boost phagocytosis, and thus, prevent and treat CVDs (Figure 3).
5.1 Inhibition of neutrophil activation and
adhesion

Stamp2 prevents maladaptive structural remodeling and

contractile dysfunction of the heart after ischemia by diminishing

neutrophil activation (172). RTP-026 selectively activates formyl-

peptide receptor type 2 (FPR2), which can reduce the activation

of neutrophils and monocytes, thereby decreasing the infarct size

(173). Tetrandrine (TTD), isolated from the traditional Chinese

medicinal herb Stephania tetrandra, has been shown to mitigate

MI/RI through the inhibition of neutrophil activation, thereby

reducing inflammatory responses and the production of ROS

(174). This provides a novel strategy for cardiac protection,

namely, the clinical targeting of neutrophil activation to mitigate

inflammatory responses and tissue damage, thereby improving

patient outcomes.
5.2 Reduction of neutrophil migration and
infiltration

Evasin-3 is a CXC chemokine-binding protein that can bind to

CXCL1, which can prevent its interaction with the receptor

CXCR2, thereby inhibiting the biological activity of CXCL1. This

reduction in neutrophil migration and infiltration into

inflammatory sites may help to lower the risk of AS-related

diseases (175). The nicotinamide phosphoribosyl transferase

(NAMPT) inhibitor FK866 can decrease the production of

CXCL1 by endothelial cells, reduce the recruitment of

neutrophils to ischemic myocardium, and subsequently alleviate

inflammation in atherosclerotic plaques (176). CXCL8 recruits

neutrophils through the PI3K/AKT pathway, and curcumin

reduces neutrophil recruitment by inhibiting this pathway,

thereby mitigating inflammatory responses (177). In a mouse

model of myocardial ischemia, administration of anti-CCL5

monoclonal antibodies significantly decreases the infarct size and

lowers the risk of HF development, which is associated with

reduced neutrophil recruitment in the infarcted heart (178). In

an animal model of myocardial reperfusion, sgp130Fc reduces

the infiltration of neutrophils and macrophages into the
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FIGURE 3

Neutrophils and cardiovascular diseases. Illustrates the complex relationship between neutrophils and cardiovascular diseases. Neutrophils play a
pivotal role in the pathogenesis of various cardiovascular conditions, including atherosclerosis, myocardial infarction, and heart failure. They
contribute to inflammation, plaque formation, and tissue damage through the release of pro-inflammatory cytokines, reactive oxygen species, and
proteolytic enzymes.
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myocardium, decreasing infarct size and preserving cardiac

function (179). Necrosulfonamide (NSA) reduces the infiltration

of neutrophils into the cardiac injury area by blocking the

formation of pores by GSDMD on the cell membrane, thus

reducing the occurrence of pyroptosis (109). Colchicine is an

ancient anti-inflammatory drug that has been used for different

rheumatic and immune diseases for many years. Recently, an

increasing number of scholars have found that colchicine exerts a

vital role in the treatment of CVDs (180). One of the

mechanisms is that colchicine can inhibit microtubule

polymerization by binding to tubulin dimers and negatively

regulate the migration and infiltration of neutrophils after injury

(181). Basic research indicates that therapeutically targeting

neutrophil migration and infiltration can protect the heart,

reduce infarct size, enhance cardiac function, and potentially

improve patient outcomes.
5.3 Reduction of NETs formation

Inhibiting the protein components related to NETs, including

MPO, PAD4, and CitH3, may also be one of the intervention

methods. Nitroxides are a class of reversible MPO inhibitors that

suppress the production of HOCl by serving as substrates for the

MPO compound I, reducing the release of NETs (182). MPO
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inhibitors also include 4-aminobenzoic acid hydrazide (182) and

PF1355 (183), which can not only reduce neutrophil aggregation

but also decrease the formation of NETs. Chloro-amidine, by

inhibiting PAD4, can not only reduce NETosis but also inhibit

the recruitment of neutrophils and macrophages to inflammatory

sites, reducing the size of atherosclerotic lesions (184). DNase is

a commonly used NETs inhibitor, Brinkmann et al. (88) first

demonstrated that the addition of DNase I in vitro degraded

NETs. Basic research also shows that both DNase I and chloro-

amidine can provide additional AS protection through inhibiting

NETosis in mice (8). However, the mechanism of action of

DNase I does not prevent the production of NETs but rather

decompose the structure of NETs (185), so its efficacy is still a

matter of debate. In the MIRI model, MKEY treatment reduced

the inflammatory response after MIRI, decreased the infarct size,

and also reduced the levels of CitH3 in the infarcted tissue,

indicating that MKEY can prevent the formation of NETs in the

body (186). The use of S100A8/A9 blocker ABR-238901

immediately after myocardial infarction can reduce the number

of neutrophils in the myocardium and the presence of S100A9,

reducing the size of myocardial infarction (187), and having a

positive impact on cardiac injury. The development of new

neutrophil-targeting therapeutic drugs and compounds targeting

NETs-associated protein components may represent a change in

the current treatment status of CVDs. Moreover, a meta-analysis
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showed that miRNAs have the potential to serve as a therapeutic

target for inhibiting NETosis, and limiting a variety of clinical

diseases (188). Targeting NETs-associated protein components or

using miRNAs as therapeutic tools to regulate NETs formation

may find broad applications in the treatment of cardiovascular

diseases in the future.
5.4 Enhancement of neutrophil phagocytic
capacity

Treatment of rats with acute myocardial infarction using the

FPR2 agonist BMS-986235 enhances the phagocytic capacity of

neutrophils, aiding in the clearance of dead cells and inflammatory

mediators, lowering inflammatory damage, and enhancing

adverse remodeling and cardiac function post-myocardial

infarction (189). Future therapies may combine multiple aspects of

immunomodulation to achieve additional benefits, while other

challenges such as the targeting of inflammation in cardiovascular

disease patients must also be considered.
6 Conclusions and perspectives

In summary, neutrophils, as key immune cells, play a crucial

role in CVD treatment. They interact with both innate and

adaptive immune cells under inflammatory conditions,

contributing to chronic sterile inflammation in cardiovascular

patients and the progression of diseases such as AS, ACS, MI/RI,

HNT, AF, HF and VMC. Current research emphasizes

neutrophil activation, recruitment, and NETs production, which

could inform therapeutic strategies targeting neutrophils for the

prevention and treatment of CVDs. It is worth noting that the

inconclusive results of current anti-inflammatory drug trials in

clinical settings highlight an incomplete understanding of the

complex inflammatory networks in CVDs. Moreover, the use of

NET inhibitors currently focus more on animal experiments, and

in-depth research is lacking in clinical trials. Against the

backdrop of the coexistence of risks and benefits in current anti-

inflammatory treatments, further exploration of highly selective

targeted drugs to avoid affecting the normal functions of

neutrophils is a subject deserving further investigation.
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