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Background: Cardiovascular disease (CVD) is the major cause of death globally,
ranking first in terms of morbidity and mortality among non-communicable
diseases. Red blood cell distribution width (RDW) and albumin (ALB) possess
potential clinical application values. Moreover, the ratio of the two, namely
RAR, might hold more advantages in disease diagnosis. However, the
relationship between RAR and CVD in the general population has not been
studied yet.
Method: This represents a study encompassing 12,765 subjects. Logistic
regression, Cox regression, restricted cubic splines, mediation analysis, and
receiver operating characteristic curves were utilized to probe into the
association between RAR and CVD, cardiovascular mortality rate and all—
cause mortality rate.
Result: A total of 12,765 participants were enrolled in this study, The mean age
was 47.47 ± 16.33 years. Logistic regression revealed that RAR was positively
correlated with the CVD. Furthermore, COX regression also illustrated that
RAR was non—linearly and positively associated with both all—cause mortality
rate and cardiovascular mortality rate (all—cause mortality: p−non
−linear= 0.0322; cardiovascular mortality: p−non−linear=0.0280).
Additionally, the ROC results indicated that at various time points, RAR
exhibited a stronger discriminatory capacity for cardiovascular mortality rate
compared to all—cause mortality rate. HbA1c partially mediated the
relationship between RAR and CVD. Subgroup analysis and interaction findings
demonstrated that hypertension and race exerted a significant influence on
the relationship between RAR and both all—cause mortality rate and
cardiovascular mortality rate.
Conclusion: RAR was significantly linked to an elevated risk of CVD. The higher
the RAR level, the greater the cardiovascular mortality rate and all—cause
mortality rate. Thus, RAR could potentially be an independent risk factor for
CVD. This underscores the crucial value of RAR in the discrimination and
management of CVD.
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1 Introduction

Cardiovascular disease (CVD), being among the preeminent

lethal afflictions on a global scale, present a grave threat to

human life and well—being. Among non—communicable

diseases, the incidence and mortality figures of CVD occupy the

leading position (1). Based on the survey findings, the number of

fatalities attributed to CVD attained 17.9 million in 2009.

Projections indicate that by 2030, this figure will surpass 22.2

million. Research findings have demonstrated that the onset of

CVD is intricately linked to inflammation, with the immune

response being comprehensively engaged. Macrophages, therein,

assume a pivotal role (2, 3).

The red blood cell distribution width (RDW) is employed to

evaluate the heterogeneity in the sizes of red blood cells. There

exist two calculation approaches for RDW. One is measured as the

width at the 20% height of the red blood cell size distribution

histogram. The other is derived by dividing the standard deviation

of red blood cell volume by the mean red—blood—cell volume

and subsequently multiplying by 100 to yield the coefficient of

variation of red—blood—cell volume (RDW—CV) (4). Research

has revealed a robust association between RDW and the

inflammatory response. And RDW can be considered as a viable

indicator of chronic inflammation (5, 6). Albumin (ALB) is

synthesized within the hepatic parenchyma. ALB represents the

most prevalent protein in the human bloodstream. In addition to

mirroring the body’s nutritional state, ALB also exerts functions

including anti—inflammatory, antioxidative, colloid—osmotic—

pressure—maintaining, and anticoagulant properties (7).

RAR represents a novel composite metric derived by dividing

RDW by ALB. In comparison to RDW and ALB, RAR might

possess greater advantages in terms of its diagnostic capacity for

diseases (8). Prior investigations have established an association

between RAR and the unfavorable outcomes of diverse diseases,

including diabetic retinopathy (9), stroke (10), carotid artery

plaque (11), acute myocardial infarction (12), among others.

Nevertheless, to date, no research has probed into the

relationship between RAR and the risk and mortality of CVD,

along with all—cause mortality.

Consequently, the present study harnessed the data derived

from the National Health and Nutrition Examination Survey

(NHANES) of the United States spanning from 2005 to 2016 to

delve deeper into the associations between RAR and the risk of

CVD, all—cause mortality rate, and cardiovascular mortality rate.

Additionally, employing glycated hemoglobin (HbA1c) as a

mediator, the study further probed into the role played by

HbA1c in this context.
2 Materials and methods

2.1 Description of the study

NHANES is administered by the National Center for Health

Statistics (NCHS) of the United States. The principal objective of
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NHANES is to monitor the health and nutritional conditions of

American adults and children. In order to ensure that the

samples possess high representativeness, this survey employs a

multistage, stratified, and cluster probability sampling

methodology. The survey protocol of NHANES has obtained

approval from the Institutional Review Board of NCHS, and all

participants have affixed their signatures to written informed—

consent documents prior to the commencement of the survey.

Therefore, no additional ethical review is required. And all data

required for this study can be downloaded from the official

NHANES website [NHANES, National Health and Nutrition

Examination Survey Homepage (cdc.gov)].
2.2 Study population

In the present study, a total of 33,813 individuals were recruited

from the NHANES database to serve as the initial research cohort.

To guarantee the integrity and precision of the research data,

rigorous screening protocols were implemented. After excluding

those with absent or incomplete data regarding outcome

indicator data (n = 894), blood disorders(leukemia, anemia)

(n = 3,881), biochemical markers(RDW, ALB, HbA1c)(n = 2,228),

and death data (n = 14,045) (ftp.cdc.gov-/pub/Health_Statistics/

NCHS/datalinkage/linked_mortality/), the multiple imputation

method was employed for refinement. A total of 12,765

participants were incorporated into the final analysis (Figure 1).
2.3 Assessment of independent variables
and outcome measures

The calculation approach for the RAR index is specified as:

RAR = RDW/ALB. Within the database, albumin is quantified

through the bromocresol purple method, while RDW is derived

from the measurement of peripheral blood utilizing a Coulter

analyzer. The records of the National Death Index (NDI) were

employed to ascertain all-cause mortality. These records were

current as of December 31, 2019, and were linked to the

NHANES dataset. Cause-specific mortality was determined based

on the International Classification of Diseases, Tenth Edition

(ICD-10). Specifically, ICD-10 codes I00-I09, I11, I13, and

I20-I51 were categorized as deaths attributable to CVD (ftp.cdc.

gov-/pub/Health_Statistics/NCHS/datalinkage/linked_mortality/).

CVD is defined as follows: if an individual has any one of the

diseases [coronary heart disease(CAD), angina pectoris, stroke,

heart attack, heart failure], the value is assigned as 1; otherwise,

it is assigned as 0.
2.4 Assessment of covariates

The covariates employed in the present study encompassed

age, gender, race, body mass index (BMI), educational

attainment, physical activity (vigorous or non—vigorous activity),

marital status (married or single), Smoking, alcohol intake,
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FIGURE 1

Flow chart of participant inclusion and grouping.
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High—density lipoprotein (HDL), Low—density lipoprotein

(LDL), diabetes mellitus(DM), poverty index ratio (PIR),

triglyceride, estimated glomerular filtration rate (eGFR), white

blood cell count(WBC), and HbA1c.
2.5 Statistical analysis

The statistical methodologies utilized in the present study

adhered to the criteria of the NHANES official website. Taking

into account the multistage, stratified, and cluster probability

sampling framework, suitable weights were chosen for the

analysis. The surv_cutpoint function was used to select the

optimal cut point of the RAR value, and the subjects were

divided into two subgroups (RAR < 3.33, RAR≥ 3.33). In an

effort to minimize allocation bias and confounding effects, a 1:1

nearest neighbor matching algorithm with a caliper width of 0.05

was applied for propensity score matching (PSM). All covariates

were integrated into the generation of the propensity score. The

standardized mean difference (SMD) was utilized to evaluate the

extent of propensity score matching, and a threshold value of less

than 0.1 was regarded as acceptable. Logistic regression was

utilized to evaluate the association between RAR and CVD. The

Cox regression analysis was employed to assess the relationships

of RAR with both all—cause mortality rate and cardiovascular

mortality rate. Restricted cubic splines (RCS) and threshold—

effect analysis were used to investigate the non—linear
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relationship between RAR and CVD. The receiver operating

characteristic (ROC) curve was applied to analyze the

discriminatory power of RAR for all—cause mortality rate and

cardiovascular mortality rate at diverse time points. Additionally,

a mediation analysis was performed with HbA1c serving as the

mediator. Ultimately, subgroup analysis along with interaction

analysis was employed to assess the robustness of the

associations between RAR and either all-cause mortality rate or

cardiovascular mortality rate among various categories of age,

gender, race, education, smoking, alcohol, DM, and hypertension.

In the present study, Model 1 was adjusted for age, gender, and

race. Model 2 was additionally adjusted for education, PIR, BMI,

smoking, and alcohol, building upon Model 1. Model 3 was

adjusted for physical activity, marital status, HDL, LDL, DM,

Triglycerides, WBC, eGFR, and HbA1c, based on Model 2. All

data in this study were analyzed with the use of R 4.3.3 software,

and a two—tailed p—value < 0.05 was regarded as

statistically significant.
3 Result

3.1 Baseline data

In this study, a total of 12,765 participants were enrolled. The

average age was 47.47 ± 16.33 years, presenting an equitable gender

distribution, with males and females each accounting for 50%.
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TABLE 1 Baseline characteristics of the study participants.

Characteristic Unmatched participants Propensity score matched participants

Overall,
na = 12,765

No-CVD
n= 11,356

CVD
n= 1,409

SMD Overall,
n= 2,728

No-CVD
n = 1,364

CVD
n= 1,364

SMD

Age (years) 47.47 (16.33) 45.87 (15.75) 63.73 (12.81) 0.999 61.76 (14.37) 59.93 (15.60) 63.50 (12.86) 0.045

Gender (%) 0.187 0.001
Female 6,352 (50%)c 5,767 (51%) 585 (43%) 1,149 (44%) 574 (45%) 575 (43%)

Male 6,413 (50%) 5,589 (49%) 824 (57%) 1,579 (56%) 790 (55%) 789 (57%)

Race (%) 0.283 0.134
Mexican American 1,894 (9.3%) 1,724 (9.5%) 170 (6.6%) 340 (7.0%) 175 (7.3%) 165 (6.6%)

Other Hispanic 1,481 (7.0%) 1,307 (7.0%) 174 (7.0%) 336 (6.9%) 167 (6.8%) 169 (7.0%)

Non-Hispanic white 4,798 (64%) 4,140 (64%) 658 (69%) 1,194 (68%) 561 (68%) 633 (69%)

Non-Hispanic Black 2,671 (11%) 2,383 (11%) 288 (11%) 585 (11%) 303 (11%) 282 (11%)

Other/multiracial 1,921 (8.6%) 1,802 (8.8%) 119 (6.8%) 273 (6.7%) 158 (6.9%) 115 (6.5%)

BMI (%) 0.278 0.008
Underweight 186 (1.4%) 172 (1.5%) 14 (0.9%) 22 (0.8%) 8 (0.7%) 14 (0.9%)

Normal 3,265 (27%) 3,016 (27%) 249 (18%) 484 (17%) 241 (17%) 243 (18%)

Overweight 4,119 (32%) 3,704 (33%) 415 (27%) 778 (28%) 372 (28%) 406 (28%)

Obese 5,195 (40%) 4,464 (38%) 731 (54%) 1,444 (54%) 743 (54%) 701 (54%)

Education levels (%) 0.297 0.048
Less than 9th grade 1,632 (6.9%) 1,365 (6.4%) 267 (12%) 522 (11%) 270 (11%) 252 (11%)

9–11th grade (12th grade with
no diploma)

1,935 (12%) 1,684 (11%) 251 (15%) 488 (16%) 246 (16%) 242 (15%)

High school graduate GED 2,851 (22%) 2,496 (22%) 355 (27%) 690 (27%) 347 (28%) 343 (27%)

Some college or AA 3,559 (31%) 3,228 (31%) 331 (28%) 641 (27%) 316 (26%) 325 (28%)

College graduate or above 2,788 (28%) 2,583 (29%) 205 (18%) 387 (19%) 185 (19%) 202 (18%)

Activity (%) 2,356 (21%) 2,191 (21%) 165 (15%) 0.211 348 (16%) 187 (17%) 161 (15%) 0.057

Marital Status (%) 10,501 (82%) 9,211 (81%) 1,290 (92%) 0.308 2,502 (91%) 1,255 (91%) 1,247 (92%) 0.021

Smoking (%) 0.358 0.068
Current 2,642 (20%) 2,334 (20%) 308 (23%) 625 (23%) 328 (24%) 297 (23%)

Former 3,071 (25%) 2,549 (23%) 522 (38%) 1,006 (38%) 508 (37%) 498 (38%)

Never 7,052 (55%) 6,473 (57%) 579 (39%) 1,097 (39%) 528 (39%) 569 (39%)

Alcohol (%) 0.181 0.058
Non-drinks/month 3,740 (24%) 3,269 (23%) 471 (30%) 920 (30%) 467 (31%) 453 (29%)

1–5 drinks/month 6,428 (51%) 5,699 (51%) 729 (53%) 1,392 (52%) 687 (52%) 705 (53%)

5–10 drinks/month 926 (9.1%) 865 (9.5%) 61 (4.5%) 111 (4.8%) 50 (5.0%) 61 (4.6%)

10+ drinks/month 1,671 (16%) 1,523 (17%) 148 (13%) 305 (13%) 160 (13%) 145 (13%)

HDL-C (mg/dl) 53.24 (16.52) 53.69 (16.55) 48.69 (15.55) 0.273 49.17 (15.14) 49.39 (14.70) 48.96 (15.55) 0.01

LDL-C (mg/dl) 112.50 (36.31) 113.95 (35.83) 97.77 (37.83) 0.431 99.57 (37.65) 100.73 (37.55) 98.47 (37.72) 0.042

DM (%) 3,658 (22%) 2,857 (19%) 801 (50%) 0.681 1,505 (47%) 737 (45%) 768 (50%) 0.046

PIR 2.87 (1.65) 2.91 (1.66) 2.44 (1.55) 0.248 2.48 (1.57) 2.51 (1.59) 2.45 (1.56) 0.024

Triglycerides (mg/dl) 140.83 (123.56) 138.00 (123.05) 169.62 (125.12) 0.185 169.15 (146.19) 169.85 (165.35) 168.48 (125.24) 0.038

WBC (1,000 cells/ul) 6.93 (2.13) 6.88 (2.12) 7.48 (2.12) 0.230 7.42 (2.54) 7.38 (2.93) 7.45 (2.10) 0.-016

eGFR (ml/min/1.73 m²) 93.87(21.48) 95.80(20.32) 74.31(23.10) 1.022 75.93(23.02) 76.75(23.39) 75.15(22.65) 0.038

HbA1c (%) 5.81(1.19) 5.75(1.14) 6.44(1.45) 0.457 6.42(1.49) 6.42(1.54) 6.42(1.44) 0.008

CVD, cardiovascular disease; RAR, red blood cell distribution width-albumin ratio; BMI, body mass index; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein

cholesterol; DM, diabetes mellitus; PIR, poverty-to-income ratio; WBC, white blood cell; eGFR, estimated glomerular filtration rate; HbA1c, glycated hemoglobin.
an (unweighted).
bMean (SD) for continuous.
cn (percentages) for categorical.
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Specifically, 1,409 subjects were assigned to the CVD group, while

11,356 were in the non—CVD group (Table 1). Evidently, the

CVD group demonstrated significant disparities compared to

the non—CVD group in several aspects, including age, gender,

race, BMI, education, activity, marital status, smoking, alcohol,

HDL, LDL, DM, PIR, triglycerides, WBC, eGFR, and HbA1c.

For instance, the mean age in the CVD group was markedly

higher than that in the non—CVD group (CVD:63.73 ± 12.81
Frontiers in Cardiovascular Medicine 04
years; no-CVD:45.87 ± 15.75 years), and the prevalence of DM

was also greater (CVD:50%; no-CVD: 19%). Prior to PSM, the

SMD of each variable exceeded 10% (Figure 2), suggesting that

the baseline characteristics between the two groups were

imbalanced, potentially compromising the accuracy of the

research findings. However, Subsequent to PSM, 1,364

individuals were present in each group. The SMD of each

variable decreased substantially, and the group characteristics
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FIGURE 2

The standardized mean differences (SMD) of the variables. The y-axis depicts diverse variables, specifically eGFR, Age, Diabetes, LDL, HbA1c, Smoking,
Race, BMI, Education, Martial status, HDL, PIR, Activity, WBC, Alcohol, Triglycerides, Gender. The x-axis denotes the standardized mean difference
(SMD, %). In the bar graph, the dark—blue bars signify the SMD values prior to PSM, while the light—blue bars signify the SMD values subsequent
to PSM. Prior to PSM, the SMD values of numerous variables surpassed 10%. Subsequent to PSM, the SMD values of all variables were below 10%,
suggesting that PSM efficiently equalized the baseline characteristics between the two groups.
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became comparable, effectively minimizing the confounding

effects and laying a solid foundation for the subsequent

exploration of the association between RAR and CVD, along

with other outcomes.
3.2 Logistic regression, COX regression and
RCS

Logistic regression was employed to explore the relationship

between RAR and CVD (Table 2). In Model 1, considering RAR

as a continuous variable, each 1—unit increment in RAR led to a

remarkable elevation in the probability of CVD occurrence [OR

(95%CI): 2.32 (1.97, 2.74), p < 0.001], signifying that an upsurge

in RAR was closely linked to a heightened risk of CVD onset. In

Model 2, after incorporating factors like educational level, PIR,
Frontiers in Cardiovascular Medicine 05
BMI, smoking status, and alcohol intake for adjustment, for each

1—unit increase in RAR, the probability of CVD occurrence

escalated to 1.78—fold [OR (95% CI): 1.78 (1.52, 2.09),

p < 0.001], suggesting that these factors exerted an influence on

the RAR—CVD relationship to a certain degree, thereby

reducing the strength of the association. After further adjustment

for additional covariates in Model 3, the increment in CVD risk

was further mitigated. Specifically, for each 1—unit increase in

RAR, the CVD risk escalated to 1.53—fold [OR (95% CI): 1.53

(1.31, 1.80), p < 0.001]. The outcomes of Model 4 subsequent to

PSM demonstrated that the CVD risk rose to 1.78—fold [OR

(95% CI): 1.78 (1.25, 2.54), p < 0.001] in comparison with Model

3, reaffirming the robustness of the positive correlation between

RAR and CVD across diverse models and analytical approaches.

During the categorical analysis of RAR, a positive correlation

with CVD was detected in all models. Moreover, a distinct
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TABLE 2 The relationship between RAR and CVD.

Characteristic Model 1 Model 2 Model 3 Model 4

ORa

(95% CIb)
P ORa

(95% CIb)
P ORa

(95% CIb)
P ORa

(95% CIb)
P

RAR 2.32
(1.97, 2.74)

*** 1.78
(1.52, 2.09)

*** 1.53
(1.31, 1.80)

*** 1.78
(1.25, 2.54)

***

RAR levels
Low level Ref Ref Ref Ref

High level 2.18
(1.84, 2.58)

*** 1.66
(1.39, 1.98)

*** 1.44
(1.18, 1.76)

*** 1.56
(1.17, 2.09)

**

P for trend *** *** *** **

Model 1: adjusts for Age, Gender, Race.

Model 2: adjusts for Age, Gender, Race, Education level, PIR, BMI, Smoking, Alcohol.

Model 3: adjusts for Age, Gender, Race, Education level, PIR, BMI, Smoking, Alcohol, Activity, Marital Status, HDL-C, LDL-C, DM, Triglycerides, WBC, eGFR, HbA1c.
aOR, odds ratio.
bCI, confidence interval.

*P < 0.05, **P < 0.01, ***P < 0.001.

TABLE 3 The relationship between RAR and all-cause mortality rate as well as cardiovascular mortality rate.

Characteristic Model 1 Model 2 Model 3 Model 4

HRa

(95% CI2)
P HRa

(95% CI2)
P HRa

(95% CI2)
P HRa

(95% CI2)
P

All-cause mortality rate
RAR 2.41

(2.18, 2.65)
*** 2.23

(2.05, 2.43)
*** 2.06

(1.87, 2.26)
*** 2.11

(1.87, 2.38)
***

RAR levels
Low level ref ref Ref ref

High level 2.54
(2.17, 2.97)

*** 2.15
(1.86, 2.49)

*** 1.90
(1.64, 2.20)

*** 1.98
(1.63, 2.39)

***

P for trend *** *** *** ***

Cardiovascular mortaity rate
RAR 2.83

(2.27, 3.53)
*** 2.54

(2.04, 3.17)
*** 2.11

(1.67, 2.67)
*** 2.16

(1.60, 2.92)
***

RAR levels
Low level Ref Ref Ref Ref

High level 2.87
(2.21, 3.73)

*** 2.42
(1.86, 3.14)

*** 1.96
(1.53, 2.51)

*** 2.09
(1.48, 2.95)

***

P for trend *** *** *** ***

Model 1: adjusts for Age, Gender, Race.

Model 2: adjusts for Age, Gender, Race, Education level, PIR, BMI, Smoking, Alcohol.

Model 3: adjusts for Age, Gender, Race, Education level, PIR, BMI, Smoking, Alcohol, Activity, Marital status, HDL-C,LDL-C, DM, Triglycerides, WBC, eGFR, HbA1c.
aHR, odds ratio; CI, confidence interval.

*P < 0.05, **P < 0.01, ***P < 0.001.
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analysis of different CVD subtypes revealed that there were

substantial disparities in risks between RAR and various CVD

subtypes (heart failure, stroke, angina pectoris, coronary heart

disease, and heart attack) (Supplementary Table S1), indicating

that the RAR level was also associated with different forms of CVD.

Table 3 depicts the Cox regression analysis of the association

between RAR and all—cause mortality rate as well as

cardiovascular mortality rate. The findings reveal that RAR is

positively associated with the risks of both all—cause mortality

rate and cardiovascular mortality rate. Additionally, subsequent

to further adjustment of covariates, the upward trend of these

risks continues to diminish, yet all these associations remain
Frontiers in Cardiovascular Medicine 06
statistically significant. In Model 4 subsequent to PSM, the risks

of both all-cause mortality rate and cardiovascular mortality

rate were greater than those in Model 3 prior to PSM[all-

cause mortality rate: HR(95%CI): 2.11(1.87,2.38), p < 0.001];

cardiovascular mortality rate: HR(95%CI): 2.16(1.60,2.92),

p < 0.001). Additionally, when contrasted with the lower value of

RAR, the higher value of RAR exhibited a stronger correlation

with the risks of all-cause mortality rate and cardiovascular

mortality rate. This implies that RAR represents a crucial risk

factor for both all—cause mortality rate and cardiovascular

mortality rate. Even following the adjustment for multiple

confounding factors, this relationship remains.
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FIGURE 3

The non—linear relationships between RAR and cardiovascular mortality rate (A), as well as all—cause mortality rate (B) the x-axis denotes the RAR
index, while the y-axis represents the hazard ratio (HR). The dark—blue curve depicts the fitted curve, with the shaded region representing the
95%CI. (A) illustrates the relationship between RAR and cardiovascular mortality, revealing a non—linear relationship between them (P—non—
linear = 0.0280). (B) exhibits the relationship between RAR and all—cause mortality, likewise demonstrating a non—linear relationship (P—non—
linear = 0.0322). All models are constructed on the basis of Model 3.

TABLE 4 Analysis of the threshold effect of RAR on all—cause mortality
rate and cardiovascular mortality rate.

Model RAR index HR(95%CI) P-value

All—cause mortality rate
Model 1: Fitting by standard
linear model

2.11 (1.87, 2.38) ***

Model 2: Fitting by two-
piecewise linear model

Inflection point 4.20

<4.20 2.53 (1.91, 3.36) ***

≥4.20 1.83 (1.40, 2.41) ***

Log linkelihood
ratio

0.112

Cardiovascular mortality rate
Model 1: Fitting by standard
linear model

2.16 (1.60, 2.92) ***

Model 2: Fitting by two-
piecewise linear model

Inflection point 4.11

<4.11 2.79 (1.52, 5.10) ***

≥4.11 1.87(1.32, 2.65) ***

Log linkelihood
ratio

0.380

*P < 0.05, **P < 0.01, ***P < 0.001.
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The RCS curve reveals that non—linear associations

exist between RAR and both all—cause mortality rate

and cardiovascular mortality rate(all—cause mortality rate:

p-nolinear = 0.0322; cardiovascular mortality rate:

p-nolinear = 0.0280) (Figure 3). The findings of the threshold

effect analysis revealed that the optimal turning point for all—

cause mortality rate was 4.2. In accordance with the outcomes of

the two—segment model, with each one—unit increment in

RAR below 4.2, the risk of all—cause mortality escalated to

2.53—fold[HR(95%CI): 2.53(1.91,3.36), p < 0.001]; whereas,

with each one—unit increment in RAR above 4.2, the risk of all

—cause mortality rate escalated to 1.83—fold[HR(95%CI): 1.83

(1.40,2.41), p < 0.001]. The optimal turning point for

cardiovascular mortality rate was 4.11. In like manner, with each

one—unit increment in RAR below 4.11, the risk of

cardiovascular mortality rate escalated to 2.79—fold[HR(95%CI):

2.79(1.52, 5.10), p < 0.001]; while with each one—unit increment

in RAR above 4.11, the risk of cardiovascular mortality rate

escalated to 1.87—fold[HR(95%CI): 1.87(1.32, 2.65), p < 0.001].

The likelihood outcomes of the two aforementioned RCS curves

revealed that no significant statistical disparities existed between

Model 1 and Model 2 (all—cause mortality: p = 0.112;

cardiovascular mortality: p = 0.380). In other words, when

contrasted with Model 1, the piece—wise model did not exhibit

significant improvement (Table 4).
3.3 Mediation analysis and ROC curve

Mediation analysis revealed that HbA1c partially mediated the

relationship between RAR and CVD. The mediation proportions of

HbA1c in diverse CVDs were as follows: CVD (6.15%), CAD

(9.42%), stroke (5.68%), heart failure (9.22%), angina pectoris
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(7.42%) (Figure 4). This mediating connection offers a partial

account of the relationship between RAR and CVD.

To further investigate the capacity of RAR to discriminate

the risks of all—cause mortality rate or cardiovascular

mortality rate at distinct time points, we also constructed the

ROC curves. The findings demonstrated that over time, the

discriminatory power of RAR for both cardiovascular

mortality rate and all—cause mortality rate enhanced, as

manifested by the fact that the area under the curve (AUC)
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FIGURE 4

The mediation analysis of HbA1c. In the diagram, the arrows denote the associations among variables. RAR serves as the independent variable, while
CVD [coronary artery disease (CAD), heart attack, heart failure, stroke, angina pectoris] functions as the dependent variable, and HbA1c acts as the
mediating variable. (A) depicts the mediating connection between HbA1c and CVD; (B) illustrates the mediating link between HbA1c and CAD; (C)
shows the relationship between HbA1c and Heart attack; (D) represents the mediating relationship between HbA1c and heart failure; (E) presents
the mediating relationship between HbA1c and stroke; (F) exhibits the mediating relationship between HbA1c and angina pectoris. All models are
constructed on the foundation of Model 3.

FIGURE 5

The ROC curves of all—cause mortality rate and cardiovascular mortality rate at different time points. The x-axis denotes 1—specificity, while the y-axis
indicates sensitivity. The orange hue corresponds to the ROC curve pertaining to cardiovascular mortality rate, and the green hue corresponds to the
ROC curve for all—cause mortality rate. (A) depicts the ROC curve in the first year (All-cause mortality rate: 0.751(0.696,0.806); Cardiovascular
mortality rate: 0.821(0.742,0.900); (B) illustrates the ROC curve in the second year(All-cause mortality rate: 0.809(0.787,0.832); Cardiovascular
mortality rate: 0.844(0.812,0.876); (C) shows the ROC curve in the third year(All-cause mortality rate: 0.818(0.794,0.841); Cardiovascular mortality
rate: 0.837 (0.807,0.868). All models are constructed on the basis of Model 3.
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values in the subsequent stages were greater than those in the

first year. Additionally, at the three time points of the 1st year,

the 5th year, and the 10th year, the discriminatory power of

RAR for cardiovascular mortality rate was stronger than that

for all—cause mortality rate. This finding implies that RAR

might possess a more pronounced edge in differentiating the

risk of cardiovascular mortality rate and is capable of more

efficiently pinpointing individuals at a heightened risk of

cardiovascular death (Figure 5).
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3.4 Subgroup analyses

In this study, subgroup analyses and interaction tests were

performed, stratified by age, gender, race, education, smoking,

alcohol, DM, and hypertension, aiming to assess the robustness

of the associations of RAR with both all—cause mortality rate

and cardiovascular mortality rate (Figure 6). The findings

demonstrated that age, gender, education, smoking, and alcohol

did not significantly alter the relationship between RAR and
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FIGURE 6

Associations of RAR index with both All-cause mortality rate and cardiovascular mortality rate stratified by different factors. (A) All-cause mortality rate;
(B) Cardiovascular mortality rate. All models are constructed on the foundation of Model 3.
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all—cause mortality rate (p > 0.05). Nevertheless, hypertension and

race exerted a significant influence on the associations of RAR with

both all—cause mortality rate (race: p = 0.001; hypertension:

p < 0.001) and cardiovascular mortality rate (race: p = 0.048;

hypertension: p = 0.029). This implies that in the assessment of

the associations between RAR and both all—cause mortality rate

and cardiovascular mortality rate, the influences of hypertension

status and ethnic/race factors should be comprehensively taken

into account. These factors might modify the pattern of

association between RAR and the death risk.
4 Discussion

Our study effectively established the correlation between RAR

and CVD. The research discoveries are as follows: (1) RAR

exhibited a positive correlation with both all—cause mortality

rate and cardiovascular mortality rate, and this correlation

endured even subsequent to PSM. Additionally, RCS curve

revealed that this correlation was of a non—linear nature. (2)

Mediation analysis indicated that HbA1c partially mediated the

association between RAR and the risk of CVD. (3) We observed

that as time elapsed, the discriminatory power of RAR for both

cardiovascular mortality rate and all—cause mortality rate

enhanced, as manifested by the fact that the AUC values in the

subsequent stages were greater than those in the first year.

Furthermore, at the three time points of the 1st year, the 5th

year, and the 10th year, the discriminatory power of RAR

for cardiovascular mortality rate was more robust than that for

all—cause mortality rate. (4) Simultaneously, the results of the
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subgroup analysis and interaction examinations demonstrated

that hypertension and race exerted a significant influence on the

associations of RAR with both all—cause mortality rate and

cardiovascular mortality rate.

Numerous previous studies have explored the correlation

between RAR and different diseases. For instance, Kimura et al.

encompassed 997 patients suffering from chronic kidney disease

for analysis. The findings demonstrated that patients with a

higher RAR exhibited higher occurrences of end—stage renal

disease [HR, 2.92 (95% CI, 1.44–5.94)], cardiovascular events

[HR, 2.27 (95% CI, 1.36–3.78)], and all—cause mortality rate

[HR, 3.38 (95% CI, 1.81–6.30)]compared to those with a lower

RAR (13). Simultaneouslpy, RAR serves as a robust predictor of

unfavorable outcomes among patients afflicted with rheumatoid

arthritis (14). The association between RAR and certain CVD

has likewise been evidenced in other populations. For instance,

Ni et al. revealed that elevated RAR levels were positively

associated with the mortality rate among patients suffering from

heart failure (15). Weng et al. contrasted the predictive

capabilities of RAR, RDW, and ALB regarding CAD. It was

discovered that the RAR value was likely positively associated

with the severity of CAD. Additionally, in the assessment of the

mortality rate among patients following percutaneous coronary

intervention (PCI), RAR outperformed RDW and ALB (16). In

recent years, a plethora of studies have investigated the

association between RAR and acute myocardial infarction (AMI),

These investigations revealed that the RAR level could potentially

serve as a predictor of AMI (8, 17). Functioning as an

inflammatory marker, RAR represents an independent risk factor

for mortality among patients with aneurysms (18). In our study,
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RAR was positively correlated with the risk of CVD, cardiovascular

mortality rate, and all—cause mortality rate, which was consistent

with the aforementioned results. However, previous studies were

only limited to the adverse outcomes of a specific disease, and

the research on overall CVD, cardiovascular mortality rate, and

all—cause mortality rate was limited. Therefore, our study made

up for this deficiency and provided important value for the

correlation between RAR and cardiovascular disease outcomes.

The findings of the study demonstrated that HbA1c partially

mediated the association between RAR and CVD. HbA1c

represents the product generated as a result of the binding of a

fraction of hemoglobin within red blood cells to glucose, and it is

capable of reflecting the average blood glucose level during the

preceding two to three months. Study revealed that within the

populations of diabetes and pre—diabetes, elevated blood glucose

levels are capable of influencing the permeability of albumin and

augmenting the excretion of urinary protein. Additionally, the

chronic inflammatory response in patients with type 2 diabetes

can likewise decrease the level of ALB (19, 20). Among patients

presenting with hyperglycemia, elevated HbA1c levels are likely

to be linked to enhanced variability in the size of red blood cells,

a phenomenon that potentially reflects underlying erythropoietic

stress (21). Furthermore, in the context of hyperglycemia,

endothelial injury results in an elevation of nitric oxide, thereby

influencing the function of red blood cells (22). With the

progression of diabetes, the rupture of fragile erythrocytes is also

capable of giving rise to a variety of associated complications

(23, 24). Prior investigations have demonstrated that the RDW

value is augmented in a variety of inflammatory disorders,

inclusive of inflammatory bowel disease, systemic lupus

erythematosus, rheumatoid arthritis, and psoriatic arthritis (25).

Consequently, mechanisms like potential inflammation, which

exert a significant influence in patients with diabetes, might

impact the RDW value (26). RAR demonstrates a positive

correlation with RDW and a negative correlation with ALB. It

functions as an independent predictor of diabetes (9). Within the

diabetic population, RAR holds predictive significance for the

long—term prognosis of patients (27). Additionally, in the non—

elderly population, a higher RAR value is associated with a lower

survival rate (28). In summary, HbA1c might exert a specific

function in the association between RAR and CVD.

At present, the intricate mechanisms underlying the

relationship between RAR and CVD are not well—understood.

We present the following speculations regarding this matter.

Firstly, inflammatory response and oxidative stress: The

inflammatory response has the potential to impact the structure

and function of the heart, thereby facilitating the occurrence of

adverse outcomes in cardiovascular diseases. Research has

revealed that RAR exhibits a positive correlation with CRP levels,

suggesting that RAR is intricately linked to the inflammatory

state. In addition, oxidative stress has the capacity to damage

vascular endothelial cells and influence cardiac function, being

associated with adverse outcomes in CVD. RDW shows a

connection with oxidative stress, and RAR encompasses RDW.

Consequently, RAR might indirectly impact the progression of

CVD via oxidative stress. Secondly, aberrant red blood cell
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function: RDW within RAR is capable of reflecting the

heterogeneity in red blood cell size. An elevation in heterogeneity

might suggest compromised red blood cell function.

Dysfunctional red blood cells are able to impact oxygen transport

and microcirculation perfusion, thereby aggravating the state of

cardiovascular diseases. Furthermore, factors like inflammation

are capable of influencing the production and function of red

blood cells, resulting in a reduction in red blood cell

deformability, a shortening of their lifespan, and so forth, and

consequently impacting the cardiovascular system. For instance,

inflammatory mediators can impede red blood cell maturation,

enabling immature red blood cells to enter the peripheral

bloodstream, thereby affecting their normal functionality.

Additionally, inflammation can suppress the synthesis of ALB,

and the anorexia induced by inflammation diminishes ALB

intake. These combined effects lead to a decrease in ABL, and a

lower ALB has been demonstrated to be linked to an elevated

risk of cardiovascular diseases; Thirdly, an elevated RAR level is

likely to be associated with alterations in cardiac structure and

function. Research has revealed that among patients with heart

failure, an elevated RAR is correlated with indices such as

cardiac function classification and left ventricular ejection

fraction. This implies that RAR has the potential to impact the

cardiac pumping function, resulting in the deterioration of

cardiac function and an augmented risk of adverse outcomes.

During the advancement of cardiovascular diseases, cardiac

structure undergoes remodeling, and RAR might be implicated in

this process via certain mechanisms, further influencing cardiac

function. Nevertheless, the specific mechanisms still require more

research for clarification; Ultimately, aberrant RAR levels are likely

to impact the function of vascular smooth—muscle cells, resulting

in the thickening of the vascular wall, a reduction in elasticity, and

so forth, thereby influencing hemodynamics and facilitating the

advancement of cardiovascular diseases (7, 15, 29–34).

In general, the specific mechanisms underlying the relationship

between RAR and CVD are not well—understood. Hence, more

profound research is required in the future. Nevertheless,

numerous studies have demonstrated that, as a straightforward

and cost—effective measurement indicator, RAR exhibits a

greater value in predicting the time of CVD outcomes when

compared with RDW and ALB.

Although this research further investigated the associations

between RAR and the risk of CVD, all—cause mortality rate, as

well as cardiovascular mortality rate, by means of diverse

statistical approaches. Nevertheless, certain limitations persist in

this study. Firstly, the majority of the outcome variables

employed in the study were derived from questionnaires.

Consequently, recall bias or misclassification might be induced.

Secondly, owing to the features of the NHANES database, this

research represents a cross—sectional study. Thus, it is not

possible to directly deduce the causal relationship between RAR

and CVD. Finally, despite our best efforts to adjust the potential

covariates during data analysis, there remain other unaccounted—

for factors that could influence the results. Hence, in future

investigations, we ought to further explore these issues and

endeavor to surmount these limitations.
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5 Conclusion

This research has attained significant outcomes, clearly

demonstrating a positive association between RAR and the risk

of CVD, all—cause mortality rate, as well as cardiovascular

mortality rate. Notably, in comparison to all—cause mortality

rate, RAR exhibits a more robust diagnostic capacity for

cardiovascular mortality rate. Furthermore, the study has also

discovered that HbA1c partially mediates the relationship

between RAR and CVD. This array of findings strongly indicates

that RAR might be an independent risk factor for CVD, thereby

opening up novel potential strategic avenues for the prevention

and treatment of CVD. In light of the outstanding advantages of

RAR, including its simplicity in calculation, easy accessibility,

and high cost—effectiveness, the promotion and application of

RAR in medical and health institutions at all levels possess

extensive feasibility. Particularly in regions with relatively limited

medical and economic resources, the implementation of RAR is

likely to yield more substantial social and economic benefits.

Hence, it is of great significance to further investigate the

relationship between RAR and CVD. Looking ahead, the research

can be propelled forward in the following directions: Firstly,

carry out research among diverse ethnic and regional populations

to validate the universality of the relationship between RAR and

CVD, rendering the research results more extensively applicable;

Secondly, delve deeply into the underlying mechanisms through

which RAR impacts CVD, analyzing the alterations at the

cellular and molecular levels. Through these endeavors, it is

anticipated to more comprehensively and profoundly affirm the

value of RAR, and thereby establish a solid theoretical and

practical basis for the precise prevention and treatment of CVD.
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