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Purposes: Rapid coronary artery lesions (RCAL) are strongly linked to major
adverse cardiovascular events in patients with acute coronary syndrome (ACS).
This work developed a public online prediction platform for RCAL (OpRCAL)
by comparing the performance of nine machine learning models.
Methods: We retrospectively examined the clinical data of 324 patients with ACS
who received percutaneous coronary intervention (PCI). Using both univariate
and multivariate analyses, the potential independent risk factors for RCAL were
studied. Following the screening of all variables using Lasso regression,
multiple machine learning models were constructed. The optimal model was
then chosen and validated using an external cohort. Furthermore, to elucidate
the contribution of each feature to the model, the shapley additive explanation
(SHAP) values of the variables were calculated. Finally, a prediction platform
for RCAL in patients with ACS following PCI was established.
Results: The number of coronary lesions, systolic blood pressure (SBP), N-
terminal pro-brain natriuretic peptide (NT-proBNP), QRS interval, and platelet
count were found as independent risk factors for RCAL. Among the nine
machine learning models constructed after identifying twelve different
variables using Lasso regression, the random forest (RF) model performed best
in the training cohort and showed good generalization in the external test
cohort, with area under curve of 0.774 (95%CI: 0.640–0.909). Finally, we
constructed an online platform named OpRCAL for clinicians to predict RCAL
in patients with ACS following PCI based on the RF model.
Conclusions: The RF model exhibits high accuracy and generalizability in
predicting RCAL, thereby providing a valuable instrument to assist clinical
decision-making.
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1 Introduction

Acute coronary syndrome (ACS) is a clinical syndrome caused

by acute myocardial ischemia, with the pathological basis being the

rupture of atherosclerotic plaques in the coronary arteries, leading

to complete or incomplete occlusive thrombosis (1). The global

registry of acute coronary events (GRACE) study showed that the

mortality rate for ACS patients within one year of onset is

approximately 15%, while the cumulative mortality rate over five

years reaches as high as 20% (2, 3).

Nowadays, patients suffering from ACS have considerably

better long-term prognoses owing to the widespread application

of percutaneous coronary intervention (PCI). Nevertheless,

coronary restenosis and progression of noncriminal vasculopathy

can still develop in certain patients undergoing PCI, resulting in

rapid coronary artery lesions (RCAL) (4, 5). The pathophysiology

of restenosis following PCI, begins with endothelial injury

produced by stent and balloon insertion. This injury triggers

platelets activation, neointima proliferation, extracellular matrix

formation, and vascular smooth muscle cells proliferation and

migration (6). Microcalcification, extracellular matrix breakdown,

and intra-plaque hemorrhage (IPH) are other mechanisms that

may contribute to RCAL in non-target arteries. Previous studies

have found that RCAL after PCI, whether occurring in target or

non-target vessels, can lead to serious major adverse

cardiovascular events (MACEs) (7). Therefore, a major problem

for cardiologists is to reveal risk factors for RCAL as well as to

identify the patients at high risk of developing RCAL.

Traditional risk factors for atherosclerosis, such as smoking,

hypertension, diabetes, hyperlipidemia, and obese eating habits, are

closely related to the occurrence of RCAL (8–10). Furthermore,

both the severity of the lesion and the condition of the coronary

artery are associated with RCAL development. For instance, clinical

studies have shown that complex coronary artery morphology,

intramural bleeding, and punctate calcification due to coronary

spasm tend to advance more rapidly and severely than general

lesions (11). In clinical practice, however, RCAL prediction and

evaluation methods remain insufficient, as most studies on the

subject have mainly focused on its related risk factors, with

inconsistent results. Machine learning (ML) technology has found

extensive usage in clinical practice due to its ability to fully exploit a

variety of clinical variables for the purposes of disease screening,

diagnosis, risk stratification, and prognosis evaluation (12–16).

In this study, we conducted a multicenter retrospective study

that included clinical data from patients with ACS undergoing

PCI, as well as follow-up visits. Our goal was to develop an

easily accessible clinical tool to predict the incidence of RCAL

following PCI using ML’s algorithm.

2 Methods

2.1 Study population

This continuous retrospective cohort study included patients

with ACS who received PCI treatment between June 2018 and

June 2023 from two different centers. One center was Sun Yat-

sen Memorial Hospital at Sun Yat-sen University, where the

patients were enrolled in the training cohort, and another was

the Haikou Affiliated Hospital of Central South University

Xiangya School of Medicine, where the data were incorporated

into the external test cohort. The study complied with all

applicable regulations and standards, including those outlined in

the requirements of the Declaration of Helsinki and the

International Ethical Guidelines for Research Involving Human

Health. It was approved by the Ethics Committee of Sun Yat-Sen

Memorial Hospital (Ethics approval number: SYSEC-KY-KS-

2023-253) and the Haikou Affiliated Hospital of Central South

University Xiangya School of Medicine (Ethics approval number:

SC20240504). Due to the retrospective nature of our

methodology, the ethics committees waived the necessity for

informed consent.

2.2 Inclusion-exclusion criteria

All patients with ACS in both the training and test cohorts

required to meet the following criterion concurrently: (1) Study

participants must meet the diagnostic criteria for ACS. (2)

Patients had their first PCI and postoperative follow-up coronary

angiography (CAG) examinations at the same medical

institution. We excluded patients using the following criteria: (1)

Age <18 years; (2) Missing or poor quality images; (3)

Incomplete clinical data; (4) Intervals between first PCI and

subsequent CAG examination <3 months; (5) Comorbidities with

other structural cardiac disorders (e.g., congenital heart disease,

cardiac large-vessel disease, cardiomyopathy, and valvular heart

disease); and (6) A history of previous cardiac surgery (e.g.,

coronary artery bypass grafting, heart valve replacement, and

transcatheter radiofrequency ablation).

2.3 Data collection

We collected 52 variables from each participant and divided

them into four domains. The specifics are as follows: (1) General

demographic characteristics, such as age, gender, body mass

index, blood pressure, heart rate, and so forth; (2) Medications

taken, including nitrates, calcium channel blockers, antiplatelet

agents, lipid-regulating medications, etc.; (3) Laboratory blood

tests, including red blood cell count, platelet count (PLT),

creatinine, uric acid, lipids, fasting blood sugar, etc.; (4)

Cardiovascular auxiliary examination, including

echocardiography, CAG, and electrocardiogram.

2.4 Analysis of independent risk factors for
RCAL

The diagnostic criteria for RCAL were derived from the

references presented by Kaski and Zouridakis et al. (17, 18).

Specifically, during the one-year follow-up period after PCI, one
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of the following requirements had to be satisfied: (1) A diameter

reduction of 50% or more in previously successfully dilated

lesions; (2) A diameter reduction of at least 10% in lesions with

a pre-existing stenosis of 50% or more; (3) A diameter reduction

of at least 30% in lesions with a pre-existing stenosis less than

50%; (4) New stenosis detected with a diameter reduction of 30%

or more in segments of the vessel that were normal at the time

of the first examination; and (5) Any lesion that progressed to

complete occlusion on the second examination. The quantitative

evaluation of the first and follow-up CAG images was conducted

by a cardiologist with extensive experience in the evaluation of

coronary lesion progression. According to the RCAL diagnosis,

participants in the training cohort were divided into progressive

and non-progressive groups. Subsequent univariate and

multivariate regression analyses were conducted to identify the

independent risk factors for RCAL.

2.5 Variable selection

Lasso regression was used to automatically identify the most

significant features by reducing the coefficients of irrelevant

features to zero. This prevented overfitting, which improved the

model’s generalization, and made the model more concise and

comprehensible. After acquiring the variables for model fitting

using Lasso regression, we employed the variance inflation factor

(VIF) to check for multicollinearity between variables.

2.6 Construction and evaluation of ML
models

In this study, the training cohort was split into an internal

training cohort and an internal validation cohort, in a ratio of

8:2. The distribution of progressive and non-progressive instances

in the divided dataset were balanced using stratified sampling.

Continuous variables were normalized, while categorical variables

were encoded using a specific one-hot encoding approach. We

developed nine ML models, including decision trees (DT), elastic

net (ENET), k-nearest neighbor (KNN), light gradient boosting

machine (LightGBM), logistic regression (LR), multilayer

perceptron (MLP), random forest (RF), support vector machine

(SVM), and extreme gradient boosting (XGBoost). To identify

the optimal hyperparameters for each model, we used internal

5-fold cross-validation and grid search. The models’ performance

was carefully evaluated, considering the average area under the

ROC curve, accuracy, sensitivity, specificity, and other relevant

metrics. The model with the best average performance was

selected as the final prediction method and tested with an

external cohort. The mean reduction in Gini coefficient and

shapley additive explanation (SHAP) values were used to evaluate

the significance of the variables in the model we developed. The

mean Gini coefficient reduction is a metric that determines the

extent to which each variable contributes to the homogeneity of

the random forest’s nodes and leaves. A higher value indicates

that the variable is of higher precedence for inclusion in the

model. The SHAP values were then calculated to further

elucidate the contribution of each feature to the model. This

information was then used to establish a practicable and

straightforward prediction platform for RCAL after PCI.

2.7 Statistical methods

Data analysis and visualization were conducted using SPSS

(version 23.0), R Studio (version 4.2.3), and Shiny (version

1.8.1.1). Categorical variables were assessed using the chi-square

test or Fisher’s exact test, and the results were reported as

absolute numbers and percentages. Continuous variables with a

normal distribution were presented as mean ± standard deviation

and examined using t-test. Data that didn’t conform to a normal

distribution were described using quartiles and evaluated using

nonparametric tests. Multiple groups of continuous variables

with normal distributions were analyzed using one-way ANOVA,

whereas those with skewed distributions were evaluated using the

Kruskal–Wallis H test. Statistical significance was defined as a

two-sided p-value of less than 0.05.

3 Results

3.1 Distribution of clinical data of the study
population

The training cohort included 324 patients with a median age of

64 (57, 70) years, with 227 (70.06%) being male. During the follow-

up period, 84 (25.93%) patients developed RCAL (Table 1). After

allocation in an 8:2 ratio, the internal training cohort included

259 individuals (25.90% of RCAL events) and the internal

validation cohort had 65 individuals (26.20% of RCAL events).

The external test cohort included 63 patients with a median age

of 65 (58, 70) years, of whom 46 (73.00%) were males, and

RCAL occurred in 19 (30.20%) during follow-up (Table 2).

3.2 Clinically independent risk factors for
RCAL

A total of 14 clinical variables were identified as risk factors for

coronary progression in ACS in a univariate analysis, including a

history of hypertension, use of angiotensin-converting enzyme

inhibitor medication, the number of coronary lesions, systolic

blood pressure (SBP), N-terminal pro-brain natriuretic peptide

(NT-proBNP), and PLT count, and so on. The results of

multivariate analysis revealed that the number of coronary artery

lesions (HR = 1.55, 95% CI: 1.09–2.20, p = 0.014), SBP

(HR = 1.02, 95% CI: 1.01–1.04, p = 0.006), NT-proBNP

(HR = 1.01, 95% CI: 1.01–1.01, p = 0.001), QRS duration

(HR = 1.02, 95% CI: 1.01–1.04, p = 0.034), and PLT count

(HR = 1.02, 95% CI: 1.02–1.03, p < 0.001) were independent risk

factors for RCAL in ACS (Supplementary Table S1).
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TABLE 1 Demographic and clinical characteristics of patients in the training cohort.

Characteristic Total (n = 324) Non-progress group (n = 240) Progress group (n= 84) P-value

General Demographic Characteristics

Gender (male) 227 (70.06%) 165 (68.75%) 62 (73.81%) 0.384

Age (year) 64.00 (57.00, 70.00) 64.00 (57.00, 70.00) 65.00 (57.75, 71.00) 0.427

Weight (kg) 65.67 ± 10.90 65.57 ± 10.71 65.97 ± 11.49 0.770

Height (cm) 164.00 (156.00, 170.00) 163.50 (156.75, 169.00) 164.50 (156.00, 170.00) 0.576

BMI (kg/m2) 24.30 (22.49, 26.91) 24.37 (22.48, 26.91) 24.13 (22.57, 26.93) 0.880

SBP (mmHg) 132.50 (120.00, 145.25) 131.00 (118.75, 141.00) 140.50 (125.75, 151.25) <0.001

DBP (mmHg) 80.00 (73.00, 86.00) 80.00 (72.75, 84.00) 80.50 (74.50, 89.00) 0.066

HR (bpm) 71.00 (62.00, 79.00) 71.00 (62.00, 79.00) 71.00 (61.75, 79.25) 0.773

Hypertension (Yes) 206 (63.58%) 140 (58.33%) 66 (78.57%) <0.001

Diabetes (Yes) 80 (24.69%) 53 (22.08%) 27 (32.14%) 0.066

Hyperlipemia (Yes) 63 (19.44%) 50 (20.83%) 13 (15.48%) 0.286

Smoking (Yes) 132 (40.74%) 96 (40.00%) 36 (42.86%) 0.646

Drinking (Yes) 48 (14.81%) 37 (15.42%) 11 (13.10%) 0.606

History of Drug Use

Aspirin (Yes) 161 (49.69%) 121 (50.42%) 40 (47.62%) 0.659

Clopidogrel or Ticagrelor (Yes) 220 (67.90%) 166 (69.17%) 54 (64.29%) 0.410

Lipid-lowering drug (Yes) 247 (76.23%) 187 (77.92%) 60 (71.43%) 0.229

Nitrates (Yes) 100 (30.86%) 73 (30.42%) 27 (32.14%) 0.768

CCB (Yes) 116 (35.80%) 85 (35.42%) 31 (36.90%) 0.807

ACEI (Yes) 47 (14.51%) 28 (11.67%) 19 (22.62%) 0.014

ARB (Yes) 78 (24.07%) 57 (23.75%) 21 (25.00%) 0.818

β-blocker (Yes) 144 (44.44%) 104 (43.33%) 40 (47.62%) 0.496

Diuretic (Yes) 33 (10.19%) 20 (8.33%) 13 (15.48%) 0.062

Laboratory Blood Tests

WBC (109/L) 7.12 (6.10, 8.48) 7.12 (6.01, 8.32) 7.31 (6.47, 9.13) 0.125

RBC (1012/L) 4.56 (4.27, 4.84) 4.56 (4.27, 4.83) 4.58 (4.33, 4.94) 0.233

HGB (g/L) 137.00 (128.00, 145.00) 137.00 (128.00, 145.00) 137.00 (127.00, 146.00) 0.888

PLT (109/L) 237.00 (201.00, 270.00) 232.00 (188.00, 256.00) 273.00 (228.00, 304.25) <0.001

HCT (%) 41.00 (38.00, 43.00) 41.00 (38.00, 43.00) 41.00 (39.00, 43.00) 0.997

UA (μmol/L) 399.94 ± 109.54 398.27 ± 111.10 404.70 ± 105.44 0.644

Cr (μmol/L) 88.00 (77.00, 102.00) 88.00 (76.75, 101.00) 89.50 (78.50, 109.75) 0.295

CHOL (mmol/L) 4.87 ± 1.23 4.81 ± 1.23 5.03 ± 1.24 0.159

TG (mmol/L) 1.49 (1.07, 2.08) 1.52 (1.04, 2.08) 1.41 (1.10, 2.05) 0.923

HDL-C (mmol/L) 1.07 (0.91, 1.24) 1.08 (0.92, 1.24) 1.04 (0.88, 1.23) 0.502

LDL-C (mmol/L) 3.06 (2.44, 3.75) 3.01 (2.37, 3.67) 3.21 (2.59, 4.00) 0.081

ApoA1 (g/L) 1.14 (1.01, 1.26) 1.14 (1.01, 1.27) 1.12 (1.00, 1.23) 0.202

ApoB (g/L) 0.94 (0.75, 1.09) 0.94 (0.74, 1.08) 0.94 (0.77, 1.10) 0.252

hs-CRP (mg/L) 2.08 (1.11, 5.79) 2.08 (1.02, 5.15) 2.64 (1.25, 7.42) 0.076

FBS (mmol/L) 5.00 (4.60, 5.80) 5.10 (4.60, 5.80) 5.00 (4.50, 6.10) 0.813

NT-proBNP (pg/ml) 89.40 (42.08, 269.23) 71.90 (37.05, 178.67) 184.70 (80.40, 654.08) <0.001

FFA (mmol/L) 416.00 (334.25, 546.00) 416.00 (334.25, 546.50) 416.00 (338.75, 528.25) 0.977

CPK (U/L) 91.00 (70.00, 130.50) 91.00 (70.00, 125.25) 96.50 (68.50, 141.00) 0.721

LDH (U/L) 178.00 (159.00, 208.00) 178.00 (159.00, 207.00) 179.00 (160.00, 209.25) 0.611

CKMB (U/L) 12.00 (9.00, 16.00) 12.00 (10.00, 15.00) 11.50 (7.00, 16.00) 0.059

Cardiovascular Auxiliary Examination

LVEF (%) 67.00 (63.00, 71.25) 68.00 (63.75, 72.00) 65.00 (61.00, 70.00) 0.002

LAD (mm) 34.00 (31.00, 37.00) 33.00 (31.00, 36.00) 36.00 (32.00, 39.00) <0.001

LVDd (mm) 48.00 (45.00, 51.00) 48.00 (45.00, 50.00) 49.00 (45.00, 52.25) 0.112

LVPWd (mm) 9.00 (9.00, 10.00) 9.00 (9.00, 10.00) 10.00 (9.00, 11.00) 0.003

IVSd (mm) 10.00 (9.00, 11.00) 9.00 (9.00, 10.00) 10.00 (9.00, 11.00) 0.004

RVDd (mm) 20.00 (19.00, 22.00) 20.00 (19.00, 21.00) 21.00 (19.75, 23.00) 0.017

Number of coronary lesions 2.00 (1.00, 3.00) 2.00 (1.00, 3.00) 3.00 (2.00, 3.00) <0.001

PR interval (ms) 160.00 (150.00, 176.00) 160.00 (150.00, 178.00) 160.00 (149.00, 174.00) 0.908

QRS interval (ms) 88.00 (80.00, 95.25) 86.00 (80.00, 94.00) 90.00 (84.75, 98.00) 0.001

QT interval (ms) 380.00 (360.00, 400.00) 380.00 (360.00, 400.00) 388.00 (354.25, 408.00) 0.220

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; CCB, calcium channel blockers; ACEI, angiotensin converting enzyme inhibitors; ARB, angiotensin

receptor blockers; WBC, white blood cell; RBC, red blood cell; HGB, hemoglobin; PLT, platelet; HCT, hematocrit; UA, uric acid; Cr, greatinine; CHOL, cholesterol; TG, triglyceride; HDL-C, high density

lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; hs-CRP, high sensitivity C reactive protein; FBS, fasting blood sugar; NT-

proBNP, N-terminal pro-brain natriuretic peptide; FFA, free fatty acids; CPK, creatinine phosphkinaes; LDH, lactate dehydrogenase; CKMB, creatine kinase isoenzymes; LVEF, left ventricular

ejection fraction; LAD, left atrium diameter; LVDd, left ventricular end-diastolic diameter; LVPWd, left ventricular posterior wall diastolic thickness; IVSd, interventricular septal end-diastolic

thinkness; RVDd, right ventricular end-diastolic diameter.
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TABLE 2 Demographic and clinical characteristics of internal training cohort, internal validation cohort, and external test cohort.

Characteristic Internal training cohort
(n = 259)

Internal validation cohort
(n = 65)

External test cohort
(n= 63)

P-value

General Demographic Characteristics

Gender (male) 186 (71.80%) 41 (63.10%) 46 (73.00%) 0.346

Age (year) 65.00 (58.00, 71.00) 62.00 (57.00, 68.00) 65.00 (58.00, 70.00) 0.264

Weight (kg) 65.51 ± 10.64 66.32 ± 11.97 66.88 ± 11.76 0.635

Height (cm) 164.00 (157.00, 170.00) 162.00 (155.50, 168.50) 165.00 (160.00, 170.00) 0.056

BMI (kg/m2) 24.20 (22.49, 26.66) 25.34 (22.85, 27.91) 24.49 (21.89, 26.43) 0.225

SBP (mmHg) 132.00 (119.00, 146.00) 133.00 (124.00, 144.00) 133.00 (121.00, 145.00) 0.958

DBP (mmHg) 79.24 ± 10.71 80.42 ± 10.06 77.48 ± 11.33 0.293

HR (bpm) 71.00 (63.00, 79.00) 71.00 (61.50, 76.50) 71.00 (63.00, 82.00) 0.670

Hypertension (Yes) 165 (63.70%) 41 (63.10%) 33 (52.40%) 0.254

Diabetes (Yes) 67 (25.90%) 13 (20.00%) 23 (36.50%) 0.095

Hyperlipemia (Yes) 51 (19.70%) 12 (18.50%) 22 (34.90%) 0.023

Smoking (Yes) 109 (42.10%) 23 (35.40%) 21 (33.30%) 0.333

Drinking (Yes) 37 (14.30%) 11 (16.90%) 17 (27.00%) 0.056

Group (Progress group) 67 (25.90%) 17 (26.20%) 19 (30.20%) 0.806

History of Drug Use

Aspirin (Yes) 126 (48.60%) 35 (53.80%) 59 (93.70%) <0.001

Clopidogrel or Ticagrelor

(Yes)

175 (67.60%) 45 (69.20%) 45 (71.40%) 0.845

Lipid-lowering drug (Yes) 193 (74.50%) 54 (83.10%) 60 (95.20%) 0.001

Nitrates (Yes) 91 (35.10%) 9 (13.80%) 43 (66.70%) <0.001

CCB (Yes) 96 (37.10%) 20 (30.80%) 16 (25.40%) 0.180

ACEI (Yes) 36 (13.90%) 11 (16.90%) 17 (27.00%) 0.041

ARB (Yes) 65 (25.10%) 13 (20.00%) 20 (31.70%) 0.316

β-blocker (Yes) 111 (42.90%) 33 (50.80%) 27 (42.90%) 0.516

Diuretic (Yes) 28 (10.80%) 5 (7.70%) 17 (27.00%) 0.001

Laboratory Blood Tests

WBC (10^9/L) 7.12 (5.99, 8.56) 7.12 (6.14, 8.40) 7.46 (5.36, 10.72) 0.850

RBC (10^12/L) 4.56 (4.27, 4.84) 4.56 (4.29, 4.92) 4.53 (4.13, 4.73) 0.558

HGB (g/L) 137.00 (127.00, 145.00) 136.00 (128.50, 147.00) 131.00 (119.00, 139.00) 0.011

PLT (10^9/L) 239.00 (201.00, 271.00) 233.00 (199.50, 269.00) 223.00 (200.00, 269.00) 0.456

HCT (%) 41.00 (38.00, 43.00) 41.00 (38.00, 44.00) 39.30 (35.60, 43.00) 0.170

UA (μmol/L) 88.00 (78.00, 101.00) 87.00 (72.50, 107.50) 98.00 (77.00, 117.00) 0.327

Cr (μmol/L) 386.00 (326.00, 462.00) 402.00 (299.50, 510.00) 309.00 (261.00, 383.00) <0.001

CHOL (mmol/L) 4.70 (3.92, 5.75) 4.87 (4.06, 5.42) 4.65 (3.75, 5.61) 0.723

TG (mmol/L) 1.49 (1.04, 2.02) 1.49 (1.09, 2.29) 1.39 (0.85, 2.20) 0.794

HDL-C (mmol/L) 1.06 (0.91, 1.24) 1.08 (0.88, 1.25) 1.13 (0.94, 1.51) 0.043

LDL-C (mmol/L) 3.10 (2.44, 3.80) 3.04 (2.48, 3.53) 2.88 (2.09, 3.39) 0.153

ApoA1 (g/L) 1.14 (1.00, 1.27) 1.14 (1.02, 1.22) 1.20 (1.00, 1.40) 0.081

ApoB (g/L) 0.94 (0.74, 1.10) 0.93 (0.76, 1.04) 1.00 (0.69, 1.25) 0.350

hs-CRP (mg/L) 2.08 (1.01, 6.23) 2.10 (1.32, 5.51) 2.59 (1.12, 5.86) 0.755

FBS (mmol/L) 5.10 (4.60, 5.80) 4.80 (4.45, 5.85) 5.44 (4.57, 6.06) 0.211

NT-proBNP (pg/ml) 86.80 (42.00, 280.50) 102.00 (40.80, 241.65) 109.40 (55.10, 417.50) 0.272

FFA (mmol/L) 416.00 (338.00, 546.00) 416.00 (313.50, 559.00) 520.00 (350.00, 620.00) 0.027

CPK (U/L) 91.00 (72.00, 126.00) 91.00 (65.00, 155.00) 114.00 (83.00, 558.00) 0.009

LDH (U/L) 178.00 (159.00, 208.00) 176.00 (157.50, 204.50) 204.00 (154.00, 315.00) 0.038

CKMB (U/L) 12.00 (9.00, 15.00) 12.00 (9.00, 16.00) 11.00 (6.60, 35.30) 0.952

Cardiovascular Auxiliary Examination

LVEF (%) 67.00 (63.00, 71.00) 66.00 (62.00, 72.00) 65.00 (60.00, 69.00) 0.058

LAD (mm) 34.00 (31.00, 37.00) 34.00 (32.00, 37.00) 33.00 (31.00, 35.00) 0.116

LVDd (mm) 48.00 (45.00, 51.00) 48.00 (46.00, 51.00) 43.00 (40.00, 49.00) <0.001

LVPWd (mm) 9.00 (9.00, 10.00) 9.00 (9.00, 10.00) 10.00 (9.00, 11.00) 0.424

IVSd (mm) 10.00 (9.00, 11.00) 10.00 (8.50, 11.00) 11.00 (9.00, 12.00) 0.006

RVDd (mm) 20.00 (19.00, 22.00) 20.00 (19.00, 22.00) 25.00 (21.00, 29.00) <0.001

Number of coronary lesions 2.00 (2.00, 3.00) 2.00 (1.00, 3.00) 3.00 (1.00, 3.00) 0.125

PR interval (ms) 160.00 (150.00, 176.00) 160.00 (150.00, 176.00) 156.00 (132.00, 172.00) 0.008

(Continued)
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3.3 Variable selection

Figure 1 shows that 12 variables were discovered using Lasso

regression analysis and ten-fold cross-validation, with the lowest

mean error and the strongest coefficient matching to log (λ).

According to the results of the multiple collinearity tests using

VIF, all 12 variables were substantially independent of one

another, with each having a VIF value of less than 3 and a

tolerance greater than 0.2 (Supplementary Table S2). As a result,

12 variables were selected as features for the subsequent ML

model construction: age, a history of hypertension, a history of

hyperlipidemia, SBP, number of coronary lesions, NT-proBNP,

left ventricular ejection fraction (LVEF), left atrium diameter

(LAD), interventricular septal end-diastolic thinkness (IVSd),

right ventricular end-diastolic diameter (RVDd), QRS interval,

and PLT count.

3.4 Performance of multiple ML models

We developed 9 ML models to predict RCAL. The area under

curve (AUC) of the 9 models in the internal training cohort ranked

as follows: RF (0.973), LightGBM (0.931), DT (0.909), MLP

(0.897), XGBoost (0.874), LR (0.871), SVM (0.866), KNN (0.853)

and ENET (0.845) (Figure 2A). The internal training cohort’s top

5 accuracy rankings were: RF (0.931), LightGBM (0.880), DT

(0.822), XGBoost (0.819) and MLP (0.819). In the internal

validation cohort, the AUC of the 9 models were RF (0.844),

ENET (0.842), LightGBM (0.830), SVM (0.816), LR (0.770),

XGBoost (0.766), DT (0.759), KNN (0.749) and MLP (0.722),

respectively (Figure 2C). The internal validation cohort’s top 5

accuracy rankings were as follows: RF (0.800), LightGBM (0.800),

SVM (0.738), XGBoost (0.738) and KNN (0.738). Additional

performance metrics are presented in Table 3 and Supplementary

Figure S. RF was chosen as the final prediction model for RCAL

due to its superior performance in both the internal training and

validation cohorts. The results of decision curve analysis (DCA)

showed that the RF model had a maximum net benefit of 0.24

for threshold probability ranging from 0.03 to 0.78, highlighting

its high performance (Figure 2B). Figure 2D showed that the RF

model’s performance was stable in the external test cohort,

suggesting that it is highly generalizable (AUC = 0.774, 95% CI:

0.639–0.909).

3.5 Variable importance and variable
interpretation

Figure 2E showed that among the features used to build the

model, PLT count, NT-proBNP, SBP, LAD, and LVEF ranked

highest in terms of mean Gini coefficient reduction. The impact

of each variable on the model’s prediction was also demonstrated

using SHAP values, as shown in Figure 2F.

TABLE 2 Continued

Characteristic Internal training cohort
(n = 259)

Internal validation cohort
(n = 65)

External test cohort
(n= 63)

P-value

QRS interval (ms) 88.00 (80.00, 96.00) 88.00 (80.00, 94.00) 88.00 (82.00, 100.00) 0.777

QT interval (ms) 380.00 (359.00, 400.00) 382.00 (360.00, 402.00) 386.00 (352.00, 404.00) 0.735

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; CCB, calcium channel blockers; ACEI, angiotensin converting enzyme inhibitors; ARB,

angiotensin receptor blockers; WBC, white blood cell; RBC, red blood cell; HGB, hemoglobin; PLT, platelet; HCT, hematocrit; UA, uric acid; Cr, greatinine; CHOL, cholesterol; TG,

triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; ApoA1, apolipoprotein A1; ApoB, apolipoprotein B; hs-CRP, high sensitivity

C reactive protein; FBS, fasting blood sugar; NT-proBNP, N-terminal pro-brain natriuretic peptide; FFA, free fatty acids; CPK, creatinine phosphkinaes; LDH, lactate dehydrogenase;

CKMB, creatine kinase isoenzymes; LVEF, left ventricular ejection fraction; LAD, left atrium diameter; LVDd, left ventricular end-diastolic diameter; LVPWd, left ventricular posterior

wall diastolic thickness; IVSd, interventricular septal end-diastolic thinkness; RVDd, right ventricular end-diastolic diameter.

FIGURE 1

Variable screening with Lasso regression. (A) Lasso coefficient curves for 52 demographic and clinical features plotted from the log (λ) series. (B) The
optimal parameter (lamda) selection for Lasso used 10-fold cross validation.
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FIGURE 2

Evaluation of model performance. (A) Performance of nine machine learning models in the area under the ROC curve (AUC) of the internal training
cohort. (B) Decision curve analysis (DCA) of RF model in the internal training cohort. (C) Performance of nine machine learning models in the area
under the ROC curve (AUC) of the internal validation cohort. (D) ROC curve analysis of the RF algorithm for predicting rapid progression of
coronary lesions in the external testing cohort. (E) The importance of the features included in the construction of the RF model. (F) SHAP analysis
of the RF model for predicting rapid progression of coronary lesions. ROC, receiver operating characteristic curve; AUC, area under curve; DCA,
decision curve analysis; RF, random forest; SHAP, shapley additive explanation.
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3.6 Construction of online public platform

We achieved robust prediction outcomes using the RF model,

by factoring in the importance of the variables and their

combinations. Based on these findings, we developed a public

online platform to facilitate individualized prediction of RCAL

(OpRCAL) in patients with ACS after PCI. The platform can be

accessed at: https://cardiovascular-surgery.shinyapps.io/

progress_prediction/.

4 Discussion

In this study, we discovered five independent risk factors for

RCAL: number of lesions, SBP, NT-proBNP, QRS duration, and

PLT count, all of which were included in the 12 feature variables

chosen using Lasso regression. We selected the RF model to

predict RCAL based on the given feature variables since it

outperformed the other 8 ML algorithms in both the internal

training and validation cohorts and showed strong generalization

in the external cohort. In light of these findings, we developed

OpRCAL, a public online platform that enables individualized

prediction of RCAL in patients with ACS following PCI.

ML has distinct benefits and is hence a preferred approach to

building clinical prediction models. Our study included nine ML

algorithms, with AUC and accuracy serving as the main

measures of model performance. To reduce variability in model

performance assessment, the final model was selected using the

mean AUC value from the internal 5-fold cross-validation. The

RF model achieved superior accuracy and AUC in both the

internal training and validation cohorts. Impressively, it also

surpassed competitors in terms of F1 score, positive predictive

value, recall, and sensitivity. RF is an ensemble learning

algorithm based on decision trees, that is widely favored in

coronary artery disease research due to its excellent accuracy and

robustness. Wang et al. (19) highlighted RF’s capability in

predicting premature coronary artery disease, offering valuable

insights for early screening and clinical decision-making in

disease prevention. Additionally, Hadanny et al. (20) shown that

an RF-based survival prediction model outperformed deep

learning and traditional statistical methods for predicting one-

year mortality in patients with ACS. Our study reinforces these

findings, demonstrating RF’s effectiveness. Furthermore, we

computed SHAP values for each variable and generated SHAP

diagrams to make the RF model, which is notoriously a “black

box”, easier to understand. Our study revealed that that PLT

count, NT-proBNP, and SBP play significant roles in the RF model.

We found that PLT count is an independent risk factor for

RCAL. The progress group had significantly higher baseline PLT

count compared to the non-progress group [232.00 (188.00,

256.00) vs. 273.00 (228.00, 304.25), p < 0.05]. However, there

were no significant differences in the use of cyclo-oxygenase

inhibitor aspirin [121 (50.42%) vs. 40 (47.62%), p = 0.659], or

diphosphate receptor antagonist clopidogrel or ticagrelor [166

(69.17%) vs. 54 (64.29%), p = 0.410], when comparing the two

groups’ antiplatelet medication usage. It is currently believed that

PLT plays an important role in the evolution of atherosclerotic

plaques. Following endothelial injury, PLT adheres to the

exposed subendothelium, releases vasoactive substances, and

promotes smooth muscle cell migration and proliferation (21). In

addition, PLT can enhance foam cell formation even in patients

without hyperlipidemia (22), and it may serve as an important

lipid supply for lipid pattern formation (23). What’s more, it was

demonstrated that PLT can accelerate atherosclerosis formation

by regulating the expression levels of cytokines like SOCS3 and

IL-1β, inducing monocyte macrophages to produce inflammatory

features, and promoting monocyte recruitment at plaques (24).

TABLE 3 Performance comparison of each model in the internal training cohort and the internal validation cohort.

Cohort Model Accuracy
(%)

F1 score
(%)

NPV
(%)

PPV
(%)

Precision
(%)

Recall
(%)

AUC
(%)

Sensitivity
(%)

Specificity
(%)

Internal training

cohort

DT 82.24 72.29 95.63 60.61 60.61 89.55 90.90 89.55 79.69

ENET 77.99 65.03 91.41 55.21 55.21 79.10 84.47 79.10 77.60

KNN 74.13 63.78 94.33 50.00 50.00 88.06 85.30 88.06 69.27

LightGBM 88.03 91.60 71.95 95.48 95.48 88.02 93.14 88.02 88.06

LR 73.36 78.77 49.21 96.24 96.24 66.67 87.06 66.67 92.54

MLP 81.85 86.98 61.11 92.90 92.90 81.77 87.86 81.77 82.09

RF 93.05 95.16 81.01 98.33 98.33 92.19 97.27 92.19 95.52

SVM 80.31 85.95 59.09 91.23 91.23 81.25 86.61 81.25 77.61

XGBoost 81.85 68.46 90.96 62.20 62.20 76.12 87.39 76.12 83.85

Internal

validation cohort

DT 69.23 56.52 88.89 44.83 44.83 76.47 75.86 76.47 66.67

ENET 72.31 52.63 84.09 47.62 47.62 58.82 84.19 58.82 77.08

KNN 73.85 56.41 86.05 50.00 50.00 64.71 74.94 64.71 77.08

LightGBM 80.00 66.67 90.70 59.09 59.09 76.47 82.97 76.47 81.25

LR 69.23 77.27 44.00 85.00 85.00 70.83 76.96 70.83 64.71

MLP 72.31 55.00 85.71 47.83 47.83 64.71 72.18 64.71 75.00

RF 80.00 86.02 60.00 88.89 88.89 83.33 84.38 83.33 70.59

SVM 73.85 81.72 50.00 84.44 84.44 79.17 81.62 79.17 58.82

XGBoost 73.85 82.11 50.00 82.98 82.98 81.25 76.59 81.25 52.94

NPV, negative predictive value; PPV, positive predictive value; AUC, area under the curve.
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Our findings indicate that high blood NT-proBNP expression

at baseline is positively associated with RCAL. NT-proBNP is an

established prognostic biomarker for cardiovascular events in

patients with ACS and stable coronary artery disease (25, 26).

Several pathological conditions have been linked to higher blood

NT-proBNP levels in ACS (27, 28), including increased

ventricular wall tension from myocardial infarction, which

stimulates NT-proBNP synthesis, and hypoxia caused by ACS,

which can activate the cardiac endocrine system, resulting in

increased NT-proBNP synthesis (29–31). NT-proBNP levels at

baseline have been proved the strongest prognostic power

independent of clinical predictors and demonstrated superior

results to GRACE and thrombolysis in myocardial infarction

(TIMI) risk scores in a validation cohort in a multicenter

prospective study (32). Blood NT-proBNP levels at admission are

not only practical, but they also have considerable predictive

ability for the risk of long-term cardiovascular events.

Furthermore, ACS is significantly linked to a history of

hypertension and high SBP (33–35). Evidence from both

univariate and multivariate analyses points to a history of

hypertension [OR = 2.62 (1.47–4.68), p = 0.001] and SBP

[OR = 1.02 (1.01–1.04), p = 0.006] as risk factors for RCAL.

According to Rao et al. (36), there is a linear association between

systolic and diastolic blood pressure and cardiovascular

outcomes, with each 10 mmHg rise in SBP increasing the risk of

cardiovascular disease by 49%, coronary artery disease by 50%,

and stroke by 44%. As a modifiable risk factor for ACS,

SBP significantly affects the prognosis of patients with ACS (37).

The SPRINT study (38) showed that compared to lowering

SBP to less than 140 mmHg, controlling SBP to less than

120 mmHg significantly reduces the risk of MACEs,

cardiovascular mortality, and all-cause mortality in patients at

high cardiovascular risk.

Additionally, our study showed that the number of coronary

vascular lesions and QRS intervals were independent risk factors for

RCAL. SHAP analysis confirmed their impact on the prediction

model. Typically, a higher prevalence of coronary vascular lesions

often indicates that more heart areas are at risk of ischemia, which

increases the risk of cardiac events and accelerates heart function

decline. Pasceri et al. (39) discovered that comprehensive

revascularization at the first PCI could reduce the total mortality

and incidence of myocardial infarction compared to criminal

coronary revascularization alone. However, staged revascularization

did not substantially enhance outcomes. Thus, while assessing

coronary progress in ACS patients following PCI, it is crucial to

take the number of vascular lesions into special consideration.

Previous research has shown that QRS interval is indicative of

left ventricular systolic dysfunction and poor outcomes such as

heart failure OR death in myocardial infarction patients (40, 41).

Our findings further identified QRS as an independent risk factor

in the development of RCAL [OR = 1.02 (1.01–1.04), p = 0.001].

What’s more, our study confirmed that age, history of

hyperlipidemia, LAD, LVEF, IVDd, and RVDd were important

factors in the RCAL prediction model. These factors have been

shown to be closely related to coronary lesions and MACEs of

ACS (42–47).

The RF model was employed to predict RCAL using the

specified feature variables, demonstrating steady performance in

external test cohorts, and shown robust generalization capability

in predicting RCAL. Based on these findings, we created

OpRCAL, a public online platform that facilitates personalized

prediction of RCAL in patients with ACS after PCI.

We also acknowledge several limitations. First, this retrospective

cohort study enrolled patients from two separate centers: one served

as the training cohort and the other as an external test cohort. To

better demonstrate the stability and generalizability of the prediction

model, additional centers and a broader spectrum of clinical

characteristics should be included, such as more details on PCI.

Second, owing to the inherent quality issues of retrospective data,

some key clinical features (e.g., troponin) were excluded from model

development because of heterogeneous assay methods. Finally,

although RF performed best among the nine ML algorithms

examined, we did not investigate further algorithms or their

combinations, which could be addressed in future prospective studies.

5 Conclusions

In patients with ACS, Lasso regression efficiently and effectively

screened clinical variables linked to coronary progression following

PCI. The RF model displayed commendable performance and

robust generalization capabilities in predicting RCAL, potentially

serving as a practical and important instrument for clinical

decision-making in the domain of ACS.
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