
TYPE Hypothesis and Theory
PUBLISHED 18 March 2025
DOI 10.3389/fcvm.2025.1535778
EDITED BY

Matteo Cameli,

University of Siena, Italy

REVIEWED BY

Hector Rodriguez Cetina Biefer,

University Hospital Zürich, Switzerland

Anke Smits,

Leiden University Medical Center (LUMC),

Netherlands

*CORRESPONDENCE

William D. Carlson

william.carlson@therapeuticsbydesign.com

RECEIVED 27 November 2024

ACCEPTED 27 February 2025

PUBLISHED 18 March 2025

CITATION

Carlson WD, Bosukonda D, Keck PC, Bey P,

Tessier SN and Carlson FR (2025) Cardiac

preservation using ex vivo organ perfusion:

new therapies for the treatment of heart failure

by harnessing the power of growth factors

using BMP mimetics like THR-184.

Front. Cardiovasc. Med. 12:1535778.

doi: 10.3389/fcvm.2025.1535778

COPYRIGHT

© 2025 Carlson, Bosukonda, Keck, Bey,
Tessier and Carlson. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Cardiovascular Medicine
Cardiac preservation using
ex vivo organ perfusion: new
therapies for the treatment of
heart failure by harnessing the
power of growth factors using
BMP mimetics like THR-184
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Peter C. Keck3, Philippe Bey3, Shannon N. Tessier4 and
Frederic R. Carlson3
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Medicine, Harvard Medical School, Boston, MA, United States, 3Therapeutics by Design, Weston, MA,
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As heart transplantation continues to be the gold standard therapy for end-stage heart
failure, the imbalance between the supply of hearts, and the demand for them,
continues to get worse. In the US alone, with less than 4,000 hearts suitable for
transplant and over 100,000 potential recipients, this therapy is only available to a
very few. The use of hearts Donated after Circulatory Death (DCD) and Donation
after Brain Death (DBD) using ex vivo machine perfusion (EVMP) is a promising
approach that has already increased the availability of suitable organs for heart
transplantation. EVMP offers the promise of enabling the expansion of the overall
number of heart transplants and lower rates of early graft dysfunction. These are
realized through (1) safe extension of the time between procurement and
transplantation and (2) ex vivo assessment of preserved hearts. Notably, ex vivo
perfusion has facilitated the donation of DCD hearts and improved the success of
transplantation. Nevertheless, DCD hearts suffer from serious preharvest ischemia/
reperfusion injury (IRI). Despite these developments, only 40% of hearts offered for
transplantation can be utilized. These devices do offer an opportunity to evaluate
donor hearts for transplantation, resuscitate organs previously deemed unsuitable
for transplantation, and provide a platform for the development of novel
therapeutics to limit cardiac injury. Bone Morphogenetic Protein (BMP) signaling is a
new target which holds the potential for ameliorating myocardial IRI. Recent studies
have demonstrated that BMP signaling has a significant role in blocking the
deleterious effects of injury to the heart. We have designed novel small peptide
BMP mimetics that act via activin receptor-like kinase (ALK3), a type I BMP receptor.
They are capable of (1) inhibiting inflammation and apoptosis, (2) blocking/reversing
the epithelial-mesenchymal transition (EMT) and fibrosis, and (3) promoting tissue
regeneration. In this review, we explore the promise that novel therapeutics,
including these BMP mimetics, offer for the protection of hearts against myocardial
injury during ex vivo transportation for cardiac transplantation. This protection
represents a significant advance and a promising ex vivo therapeutic approach to
expanding the donor pool by increasing the number of transplantable hearts.
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1 Introduction

Heart Disease is the leading cause of death in the USA

(National Center for Health Statistics 2023, https://www.cdc.gov/

nchs/fastats/leading-causes-of-death.htm). In the USA in 2022,

there were 702,880 deaths from heart disease and the cost of

heart failure accounted for the major sub-proportion of this

dread disease, with an annual incidence of congestive heart

failure in the US of over 300,000 and an annual mortality of over

100,000 (1). In 2018, there were 6.2 million US adults that had

heart failure and in 2020 the cost of heart failure/disease to US

society was estimated to be $252.2 billion (https://www.cdc.gov/

heart-disease/data-research/facts-stats/index.html).

Congestive heart failure can be caused by several different insults

including acute myocardial infarction and other myocardial injuries.

The annual adjusted US incidence of hospitalization for acute

myocardial infarction is approximately 550,000 for first episodes

(2) and 200,000 for recurrent episodes (3). Ultimately, these

insults lead to contractile dysfunction mediated at a cellular level

by processes including apoptosis, inflammation, and fibrosis (4). It

is a complicated pathophysiology involving many different

molecular messengers, affecting various cell types and includes

cellular differentiation and proliferation (5).

The only definitive therapy available is a heart transplant. While

this procedure is lifesaving, it has many complications and is limited

by a finite supply of donor hearts. In the US, between 2000 and 2010,

the number of heart transplant remained relatively constant at

between 3,500 and 4,000 (6). In 2022, there were 3,789 hearts

transplanted. Of the 10,000 hearts in the donor pool,

approximately 6,000 were deemed unsuitable for transplantation.

Because of this attrition in the donated heart pool, many patients

die awaiting a suitable donor heart (6). In 2019, 20 patients on the

waiting list died each day (7). If we could prevent injury and

resuscitate or regenerate some of the hearts deemed unsuitable, we

could decrease the time on the waiting list, increase the number of

transplants, and save many more lives. In this paper we examine

ex vivo therapeutic interventions and conventional interventions

that can prevent injury and promote recovery.
2 Problem—ischemic injury of the
ex vivo heart

2.1 Procurement and transport of hearts for
transplantation

The standard procedure for heart transplantation procurement

consists of a number of steps involving complex logistic

coordination. The procurement process is initiated when a donor is

identified at a donor hospital, and the patient has been declared

dead. The donor institution then contacts the United Network for

Organ Sharing (UNOS) indicating that they have a potential donor.

UNOS then screens their list of patients waiting for a heart

transplant and contacts the hospital team caring for that patient.

The potential recipient institution then initiates a “suitability

evaluation”. If the donor’s heart is deemed suitable for transplant to
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the patient selected by UNOS, a team from the recipient hospital is

assembled and travels to the donor institution to retrieve the

donor’s heart. The team then explants the donor’s heart and places

it in an ice bath for transport to the recipient’s hospital. This

storage in an ice bath is known as Static Cold Storage (SCS) and

has been the standard of care until recently (Figure 1). During SCS

the explanted heart does not have a supply of oxygen or nutrients

necessary for the generation of energy, which results in ischemic

injury. The rationale behind SCS was that hypothermia would

minimize the demand for oxygen and essential nutrients, thereby

minimizing this ischemic injury. In common medical practice, an

effort is made to limit static cold storage time to 3–4 h, beyond

which SCS has been shown to increase post-transplant graft

dysfunction with attendant medical complications and a higher

mortality of the transplant recipient (8–10).

There are several reasons for not utilizing the available hearts,

such as age >50 years, female sex, donor comorbidities like

cerebrovascular accident, hypertension, diabetes, left ventricle

dysfunction, and elevated troponin levels (11). One type of injury

that occurs in the hearts during procurement and transportation

between donor and recipient for heart transplant is known to be

ischemia-reperfusion injury (IRI) (8). IRI leads to complications

in the immediate post-transplant phase, which include injury to

the right ventricle (RV), left ventricle (LV), lungs, kidneys, and

liver. In the immediate post-operative days, recipient patients

may require inotropes, pressors and temporary Mechanical

Circulatory Support (MCS).

Ischemia-reperfusion injury is a common concern in organ

transplantation, especially when the donor heart has been

preserved for a period of time, leading to potential damage

during the reperfusion phase after transplantation (12).

Depending on the severity of the ischemia-reperfusion injury, a

patient might require temporary MCS like an intra-aortic balloon

pump or extracorporeal membrane oxygenation (ECMO) to

stabilize their blood pressure and cardiac output until the

transplanted heart recovers (Short-term mechanical circulatory

support (intra-aortic balloon pump, Impella, extracorporeal

membrane oxygenation, TandemHeart (13).

While MCS can be helpful in certain situations, it is not

routinely needed after every heart transplant and is typically only

used when the patient shows signs of significant circulatory

instability due to the reperfusion injury (14). These

complications and treatments can lead to prolonged CCU stays

and more permanent MCS and/or renal replacement therapy.

This type of injury can also increase the likelihood of organ

compromise and shorten graft survival after discharge. Data also

show that this type of injury correlates with a higher incidence of

cardiac fibrosis and higher long-term mortality (15–17).
2.2 Procurement strategies for reducing the
effects of ischemia

The advent of ex vivo devices that enable perfusion of hearts

during transportation for transplant increases the number of

donor hearts available for transplant and provides the possibility
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FIGURE 1

Revolutionizing heart transplantation: exploring donations after brain death (DBD) and donations after circulatory death (DCD).

Carlson et al. 10.3389/fcvm.2025.1535778
of developing new therapies to increase the number of hearts

available by preventing ischemic injury, which allows

resuscitating and regenerating marginal hearts. The development

of OCS®, a device for normothermic perfusion of hearts during

transport has been a major step forward towards expanding the

number of hearts available for transplant from DCD donors (18).

It has also been used to expand the number of donor hearts

available from DBD donors by resuscitating marginal hearts

(Figure 1) (19). Ex vivo preservation models can also be used for

the study of new therapies for the failing heart, which could

translate to therapies for the treatment of individuals with heart

failure. This would be a game changer for the entire field of

heart failure.
FIGURE 2

The paragonix sherpapak® cardiac transport system. The heart is
submerged in cold cardioplegic solution. The transport system
uses proprietary phase change cold packs to maintain
temperatures 4–8°C.
2.2.1 Static cold storage and devices for
transportation prior to implant

Static cold storage has been the traditional heart preservation

strategy and standard of care since the first heart transplant and

is currently considered a reliable strategy for DBD hearts. It is

simple, inexpensive, and able to preserve standard DBD hearts

for 3–4 h with acceptable transplantation outcomes (20). But

storage at 0°C has been found to be less effective than at slightly

higher temperatures—called hypothermic storage. Paragonix has

developed a controlled hypothermic static storage device called

the Shepapak® (Figure 2) that has been approved by the FDA for

the transportation of DBD hearts. The Sherpapak® device has

been shown to reduce ischemic injury compared to SCS and

extend the time for transport of the donor organ. In a pivotal

trial, Paragonix has shown that the Sherpapak® can extend the

time between explant and implant from the standard of 3 h to
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6 h. This has led to a small increase in the number of hearts

available for transplant.
2.2.2 Machine perfusion
During static cold storage there is no source of oxygen or

nutrients for the heart. Machine perfusion (MP) devices have
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been developed to address this issue. Perfusion can supply the

metabolic needs of the myocardium, thus minimizing irreversible

ischemic cell injury and death. For donor hearts, MP can provide

a platform to resuscitate, preserve, assess and even possibly

recondition the cardiac function prior to planned transplantation.

New heart perfusion systems, which are either hypothermic MP

(HMP) or normothermic MP (NMP), have been developed that

show some success in preserving animal and/or human hearts

(21). Systems are already in active clinical use with encouraging

outcomes for both DCD and extended-criteria DBD donors (22).

They are already altering clinical practice and facilitating the

utilization of donor hearts once considered marginal (19).
2.2.2.1 Organ care system (OCS)
Currently, one commercial perfusion system called the organ care

system (OCS®) (Figure 3) is available for clinical use (23, 24).

A prolonged safe preservation time allows for the utilization of

remote donor hearts and functional assessment allows for the

utilization of high-risk donor hearts.

One effective means of expanding the number of hearts available

for transplantation is to expand the source by including DCD hearts.

Because DCD hearts are more fragile than DBD hearts due to injury

inherent in the causes for circulatory death and unavoidable

ischemia during the period awaiting declaration of death, the SCS

method is not considered the best preservation strategy for DCD

hearts, as energy-depleted DCD hearts can hardly tolerate

additional cold ischemia (25). In recent years, normothermic ex

vivo heart perfusion (NMP) has become recognized as a novel

strategy for DCD heart preservation. During organ storage NMP

can supply donated hearts with oxygenated, warm, and nutrient-

enriched blood-based perfusate in a semi-physiological state (26).
FIGURE 3

This figure illustrates an organ care system (OCS®) heart machine
with the schematic diagram, breaking down the processes involved.
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Therefore, compared with static cold storage, NMP can attenuate

myocardial ischemia/reperfusion injury (IRI) injury in DCD

hearts, and be used to assess the contractile function of DCD

hearts in real-time, prolong storage time, and potentially provide a

unique platform for repairing DCD hearts. Moreover, compared

with conventional DBD heart transplantation, DCD heart

transplantation has provided a similar 30-day and 1-year

postoperative survival rate (27, 28). Nevertheless, the inevitable

warm ischemia time, which spans from the time systolic blood

pressure falls below 50 mmHg after the withdrawal of life-

sustaining therapy to the time of reperfusion or cardioplegia,

results in more serious myocardial IRI in DCD hearts (29). This

injury leads to a higher incidence of primary graft dysfunction

(PGD) for the patients undergoing DCD heart transplantation (22,

30, 31).

Transmedics has developed the Organ Care System® (OCS®)

(Figure 3), which utilizes normothermic perfusion of the beating

heart with oxygenated whole blood. The system is similar to the

system of cardiopulmonary bypass used during cardiovascular

surgery when the heart is arrested. It has been approved by the

FDA for DCD hearts. The use of this technology has increased the

number of hearts available for transplant by extending the time

for transportation and, therefore, the geographical range for

procurement. Since the OCS® device received FDA approval in

2018 for use in transporting DCD hearts, the availability of hearts

from DCD donors has steadily increased to 278 transplants in

2022 (32). The OCS® device has shown a one-month mortality

rate comparable to that of DBD hearts using static cold storage.

The effect on the rate of post-transplant graft dysfunction has not

been investigated.

2.2.2.2 Xvivo
More recently Xvivo has developed a device that uses hypothermic

perfusion with diluted whole blood in a system like the OCS®

device (33). Neither of these devices eliminate injury from

ischemia reperfusion, but they can extend the time from explant

to implant and make available DCD hearts. Minimizing the

ischemia reperfusion injury could increase the time between

explant and implant and reduce the rate of post-transplant graft

dysfunction and development of fibrosis, which would be of

significant benefit. It is important, therefore, to look beyond

mechanical strategies to reduce myocardial IRI in donor hearts.
2.3 Heart preservation solutions

To mitigate the adverse effects of IRI, a range of heart

preservation solutions have been developed, each containing

varying concentrations of cellular nutrients, metabolites,

electrolytes, and antioxidants. Studies on optimizing perfusate

contents and control of resuscitation parameters have produced

results that can be used to improve preservation systems for

donor hearts (15). The first preservation solution was the Euro

Collins solution, formulated in 1960. It was followed by the

University of Wisconsin (UW) solution in 1988 (23).

Subsequently, due to several modifications to these solutions and
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the development of new ones, the number of solutions

commercially available has grown to more than 150 (34, 35).

Currently, the three solutions most used are the HTK solution

(Perisoc, Khöler Chemie Pharmaceuticals, Germany), the UW

solution (SPS-1, Poland), and the Celsior solution (Institut

Georges Lopez, France).

With the advent of normothermic perfusion, it is now feasible

to consider an approach to the ex vivo recovery or regeneration of

diseased organs that combines the use of a machine perfusion

system with one of these ex vivo therapeutic perfusion solutions.

Using this approach with marginal donor hearts, in particular

DCD hearts that have been rejected for transplantation, could

further expand availability, especially for selected clinical

indications (36). Currently, most studies investigating ex vivo

supported organ reconditioning are executed on an experimental

level. In the future, machine perfusion combined with ex vivo

therapeutic perfusion may eventually allow the treatment of

diseased hearts either in situ or ex vivo followed by autologous

reimplantation thereby reducing the number of patients in need

of organ transplantation (37–39).

Therapies such as standard cardioplegic solutions (40),

antioxidants (41), and anti-inflammatory approaches (42) have

been researched to optimize recovery and utilization of donor

hearts. We present in section 3.8.1 below a novel therapeutic

approach that uses peptide mimetics of BMP-7 to activate the

BMP signaling pathway in order to inhibit inflammation,

apoptosis, and fibrosis.
2.4 Metabolic and other markers of
ischemia

Ex vivo machine perfusion provides the opportunity to not

only evaluate a donor heart for implantation but also offers the

possibility of rehabilitating an injured donor heart. Following

metabolic and biochemical markers in the perfusate is the

primary, and non-invasive, mode of evaluation. For perspective

on how the health of a heart is evaluated during ex vivo machine

perfusion, we review here what happens at the cellular level

during ischemia.

The lack of oxygen shuts down oxidative metabolism, the Krebs

cycle, which takes place in the mitochondria. As long as glucose is

present, glycolysis continues producing two ATP and two pyruvate

molecules per molecule of glucose. But compared to the

approximately 32 ATP effectively produced per molecule of

glucose by the complete oxidative metabolic pathway, the absence

of oxygen results in a major decrease in metabolic energy

production. In the ischemic state with oxidative metabolism shut

down, pyruvate produced by glycolysis cannot enter the blocked

Krebs cycle. Without a means to remove the pyruvate, glycolysis

would also be shut down and the two ATPs that it generates lost.

Instead, pyruvate is converted to lactate and excreted from the

cell. During SCS, the excreted lactate builds up in the interstitial

spaces of the organ tissue and diffuses into the perfusate. Because
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lactate is in equilibrium with lactic acid, depending on the

buffering capacity of the perfusate, increasing lactate concentration

results in lowered pH and the danger of acidosis damage to the

tissue (43). The CORI cycle, which is located primarily in the

liver, is the metabolic pathway that converts lactate back to

glucose, at the expense of 6 ATP. During oxidative machine

perfusion of the heart, the lactate concentration in the perfusate

will not decrease, due to the lack of tissue containing the CORI

cycle, but neither should it increase due to resumed oxidative

metabolism. Any increase is indicative of a source of continued

ischemia and of tissue damage due to damaged mitochondria (44).

Metabolic markers of improved heart health include the rate of O2

and glucose use—difference in O2 and glucose concentrations

before and after the heart container—and the rate change of

lactate concentration.

Under ischemic conditions or when glycogen and glucose

concentrations are low, the heart switches to a different source of

energy, metabolism of free fatty acids (45). Fatty acids must first

be activated by conversion to thioesters, an O2 dependent process.

Activated fatty acids are then converted to acetyl-CoA by beta-

oxidation, a process that is not dependent on O2. Acetyl-CoA can

directly enter the citric acid cycle to produce significant amounts

of ATP. Under ischemic conditions where the citric acid cycle has

shut down due to lack of O2, fatty acid metabolism ends with

acetyl-CoA. In their review, Jaswal et al. (45) note that upon

reperfusion “fatty acid β-oxidation also rapidly recovers, leading to

an inhibition of pyruvate dehydrogenase and an increased

production of lactate and protons” before oxidative metabolism in

mitochondria has recovered.

Conditions or treatments affecting circulating free fatty acids

may impair myocardial metabolism during hypoxia, ischemia,

and reperfusion (46). Fatty acid oxidation is significantly reduced

in the ischemic heart compared to a healthy heart due to the

ischemic damage sustained during the warm ischemic period

prior to procurement, leading to impaired mitochondrial

function and reduced ability to utilize fatty acids as a primary

energy source.

Upon initiation of ex vivo perfusion, a DCD heart will exhibit

low rates of fatty acid oxidation due to the metabolic disruption

caused by warm ischemia (47). As the perfusion progresses, a

significant metabolic shift occurs where the heart switches from

primarily utilizing fatty acids as an energy source to relying more

heavily on glucose and lactate, a phenomenon often referred to

as a “metabolic switch” due to the altered conditions of ischemia

and reperfusion experienced by the DCD heart (48).

Other cellular reactions to ischemia are oxidative stress,

inflammation, and apoptosis, which are evidenced by specific

biochemical markers such as: HNE (oxidative stress); increased

expression of TNF-α, IL-6, NF-κB, and MPO (inflammation);

DNA strand breaks, increased expression of Bax, cleaved caspase-

3, cytochrome C, and decreased expression of Bcl2 (apoptosis);

and expression and secretion of cytokines, chemokines and

adhesion molecules (pro-inflammatory markers). Upon organ

implantation into a recipient, proinflammatory cytokines, such as
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IL-1 and TNF-α, and chemokines are produced within hours of

reperfusion in grafts. Chemokines mediate early migration of

neutrophils and macrophages into the graft (49, 50). Inflammatory

activation of graft endothelium (51), platelets, the coagulation

cascade, and the complement (52) play important roles in early

graft injury and subsequent graft vasculopathy. This response is

separate and distinct from immune rejection of the graft.
2.5 Ex vivo therapeutic interventions

Ex vivo perfusion systems present a significant opportunity to

serve as a development platform for the administration of

therapeutic interventions on donor hearts without causing adverse

effects on other donor or recipient organs. The central objective of

these interventions is to mitigate the impact of IRI, with a

particular focus on the potential to rejuvenate marginal organs for

viable transplantation. Although these therapeutic applications are

still in the preclinical phase and have not yet undergone clinical

testing, their preliminary outcomes are promising. The prospective

integration of ex vivo therapies has the potential to not only

enhance graft viability, but also contributes to expanding the

existing donor organ pool, a prospect that has significant potential

for the field of transplantation.

Several potential therapies, such as standard cardioplegic

solutions (40) antioxidants (41) and anti-inflammatory approach

(42) have been studied to optimize recovery and utilization of

donor hearts.

Following a cardiac ischemic event, key cellular effects that are

targeted by current cell transplantation or therapeutic strategies

include: mitochondrial dysfunction (53), oxidative stress (54), cell

death pathways (apoptosis, necrosis, autophagy) (55),

inflammation (56), and extracellular matrix remodeling/fibrosis

(57), with a focus on restoring damaged cardiomyocytes and

promoting angiogenesis to revascularize the affected area.

Cardiomyocyte-like cells derived from embryonic stem cells or

induced pluripotent stem cells (iPSCs): aim to replace damaged

cardiomyocytes with functional ones (58). Mesenchymal stem

cells (MSCs) possess paracrine effects, promoting angiogenesis,

anti-inflammatory activity, and tissue repair (59). Endothelial

progenitor cells can contribute to new blood vessel formation,

improving blood flow to ischemic regions (60).

2.5.1 Therapeutic interventions employing stem
cells and microRNAs

Cardiac regeneration and functional recovery after myocardial

ischemic injury has been the focus of much study but achievement

of this goal remains elusive (4, 61). In mammals, heart injuries such

as those induced by myocardial ischemia and myocardial infarction

(MI) result in substantial loss of cardiac muscle cells

(cardiomyocytes), which are replaced by fibrotic scar tissues. This

condition coupled with the very limited regenerative capacity of

the adult mammalian heart often leads to heart failure (HF) (62,

63). Finding targets for the development of drugs or harnessing

the potential of stem cells has fostered significant scientific

endeavor and produced marked strides towards understanding
Frontiers in Cardiovascular Medicine 06
the mediators of the processes involved in myocardial injury

(64–69). A great deal of this effort has focused on using stem

cells to regenerate cardiac tissue.

A promising therapeutic strategy for cardiac regeneration

following myocardial ischemia and infarction is to initiate myocyte

regeneration through the transplantation of stem cells. However,

the major challenge for the development of such therapies is the

limited survival and function of transplanted stem cells (70, 71).

Two main cell types are currently under investigation in heart

repair from ischemic injury. Mesenchymal stromal cells (MSCs)

indirectly support endogenous regenerative capacities after

transplantation. Induced pluripotent stem cell-derived

cardiomyocytes (iPSC-CMs) directly contribute to the restoration

of function by integrating into the damaged myocardium.

Intramyocardial or intracoronary delivery of MSCs significantly

reduced cardiac scar size after myocardial ischemia in a porcine

model (72–74). Recent studies have shown that intravenously

injected MSCs can improve myocardial IRI in a porcine model by

preventing microvascular obstruction (75). Aggregates of iPSC-

CMs, which are termed cardiac spheroids, have been developed to

improve engraftment (76). The transplantation of iPSC-derived

cardiac spheroids is safe and effective for improving cardiac

function in rat and swine HF models (77).

Despite the promising outcomes of stem cell treatment against

ischemic heart disease in previous experimental and clinical

studies, current evidence supports neither the incorporation of

the infused stem cells into the injured myocardium, nor their in

vivo differentiation into functional myocytes (78, 79). The

observed stem-cell-mediated benefits have been shown to be

attributable to the paracrine functions of stem cells. When

cardiomyocytes (CM) derived from human induced pluripotent

stem cells (hiPSC) are injected in the cardiac tissue, human

iPSC-CMs have longer action potential and lower cell-to-cell

coupling than adult-like CMs (80). The electrophysiological

properties of these immature iPSC-CMs generate

electrophysiological gradients that favor arrhythmias (81, 82).

Recent evidence suggests that small extracellular vesicles, called

exosomes, appear to play a key role, particularly because they

contain microRNAs that have been found to have clinical

potential in the treatment of ischemic heart disease (83–85).

Although most studies refer to microRNAs as being responsible

for the therapeutic role of extra cellular vesicles (EVs) or

exosomes, proteins have been reported to contribute as well. For

instance, cardiac progenitor cells (CPC)-EVs administrated in the

heart 1 h after ligation reduced CD68 +macrophages in the treated

rats one month after EV injection (81). Pregnancy-associated

plasma protein-A (PAPP-A) was found to be responsible for the

therapeutic effect. PAPP-A is a protease responsible for the

cleavage of insulin growth factor-1 (IGF-1) binding protein-4,

which transports IGF-1. Once released from its complex, IGF-1

can act as an immunomodulator in the heart (82).

Considering the limited availability of autologous stem cells,

exosomes derived from their allogeneic and xenogeneic

counterparts may provide therapeutic advantages (86).

Nevertheless, there are several challenges and shortcomings, such

as observed substantial heterogeneity among studies, no significant
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differences emerged in mortality and ventricular arrhythmia risk in

iPSC-CM treatment vs. controls, that need to be abridged before

stem cell therapy becomes a norm in clinical settings. A large

clinical trial of transendocardial mesenchymal precursor cells in

patients with heart failure did not reach statistical significance for

its primary and secondary endpoints (87).

Recent animal studies have demonstrated that Normothermic

EVHP (NMP) combined with conditioned medium treatment

derived from bone marrow mesenchymal stem cells (BMSCs) can

alleviate warm IRI in the DCD animal models (88). A 25-min

warm ischemia injury significantly increased the level of

oxidative stress (increased expression of HNE), inflammation

(increased expression of TNF-α, IL-6, NF-κB, and MPO), and

apoptosis (increased expression of Bax, cleaved caspase-3,

Cytochrome C and DNA strand breaks, and decreased expression

of Bcl2) in the DCD hearts. Compared with the DCD-control

group, normothermic ex vivo heart perfusion combined with CM

treatment decreased the level of oxidative stress (decreased

expression of HNE), inflammation (decreased expression of

TNF-α, IL-6, and NF-κB), and apoptosis (decreased expression

of Bax, Cleaved caspase-3, Cytochrome c, and DNA strand

breaks) in the DCD heart after ex vivo heart perfusion, which

might alleviate the shortage of donor hearts by adopting DCD

hearts (88).

Ex vivo perfusion systems can facilitate the delivery of

therapeutic cells, such as stem cells or genetically modified cells,

directly to the donor heart. These cells have the potential to

promote tissue repair, regeneration, and immunomodulation,

further enhancing the heart’s viability, or for example, human

multipotent stromal cells (89, 90). Recent studies have

demonstrated that Normothermic EVHP combined with

conditioned medium treatment derived from bone marrow

mesenchymal stem cells (BMSCs)) can alleviate warm IRI in the

animal models of DCD hearts. Although these strategies have

shown great promise in preclinical studies, it is important to

note that translating them into clinical practice requires rigorous

testing and validation.

2.5.2 Therapeutic interventions employing
genetically modified cells

Gene transfer techniques can be utilized to introduce specific

genes into the donor heart during ex vivo perfusion in animal

models. These genes can encode protective factors or enzymes

that counteract IRI processes. By isolating the heart in a

metabolically and immunologically favorable environment and

preventing off-target effects and dilution, it is possible to directly

control factors that enhance the success rate of cardiac gene

therapy. Gene therapy research during normothermic ex vivo

heart perfusion has involved adenovirus mediated gene transfer

(91–96) using rabbit or porcine hearts. One study investigated

adeno-associated viral (AAV) mediated gene transfer in porcine

hearts (97). The most important finding was the ability to

achieve durable transgene expression using AAV-mediated gene

transfer for up to 35 days following heterotopic transplantation,

without signs of systemic off-target expression, rejection, or

inflammation in the graft. To date, local immunomodulation and
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enhanced myocardial tolerance to ischemia-reperfusion injury

have been achieved using gene transfer during ex vivo heart

perfusion in rodent models (98). Future studies will need to

focus on replicating these findings in large animal models

and humans.

2.5.3 Therapeutic interventions employing
metabolic modulation

Manipulating the metabolic pathways within the donor heart

during ex vivo perfusion could promote energy production and

reduce the negative consequences of metabolic disruption during

IRI. By restoring oxygenation and providing metabolic substrates,

machine perfusion potentially allows for the correction of

metabolic derangements caused by IRI (99).

2.5.4 Therapeutic interventions employing
pharmacological agents

Targeting specific candidates implicated in organ IRI is

challenging due to the complex molecular pathways that are

activated. Some of the activated pathways and molecules include

the complement cascade, the innate immune response and toll-

like receptors (TLRs), CD4T lymphocytes, inflammatory

cytokines propagating the post-inflammatory response, nuclear

factor κB (NF-κB) leading to production of TNF-α, adhesion

molecules, apoptotic pathway activation, and reactive oxygen

species (ROS) production and release (100, 101). Pig liver studies

rely on using a combination of therapies that block multiple,

perhaps redundant, ischemic/reperfusion injury pathways in

order to achieve a significant reduction in injury and overall

improvement in graft function (102). Various pharmacological

agents, such as antioxidants, anti-inflammatory drugs, and

vasodilators, have been administered to the donor heart during

ex vivo perfusion in animal models. These agents aim to

counteract oxidative stress, reduce inflammation, and improve

vascular function, ultimately protecting the heart from IRI-

related damage.

2.5.5 Therapeutic interventions employing growth
factors

Various growth factors such as fibroblast growth factor 1

(FGF1) (103), vascular endothelial growth factor (VEGF) (104),

bone morphogenetic protein-2 (BMP-2) (105), BMP-10 (106),

and systemic factors like thyroid hormones (107) and

glucocorticoids (108) have been shown to modulate

dedifferentiation and proliferation of endogenous cardiomyocytes,

thereby potentially modulating heart regeneration in adult

mammals. In a recent study, Vukicevic (109) found that bone

morphogenetic protein 1.3 (BMP1.3) levels were elevated in both

patients and animal models of myocardial infarction. In a cardiac

fibrosis animal model, treatment with a specific monoclonal

antibody against BMP1.3 alleviated cardiac fibrosis, reduced

collagen deposition and cross-linking, and was paralleled by

enhanced cardiomyocyte survival both in vivo and in primary

cultures of cardiac cells. Mechanistically, the monoclonal

antibody against-BMP1.3 has the effect of inhibiting the TGF-

beta pathway, thereby reducing myofibroblast activation and
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inducing cardio protection through BMP-5. BMP-7 administration

stimulated mouse cardiomyocyte cycling at postnatal-day 7, when

cardiomyocytes normally cease to proliferate, and enhanced

cardiomyocyte regeneration with functional recovery in vivo in

adult mice following myocardial infarction (110).
2.6 Therapeutic intervention by blocking
inflammatory, apoptotic and necrotic
pathways

Anti-inflammatory agents can enhance the protective effect of ex

vivo dynamic organ preservation by further curbing the

inflammatory response during perfusion. In a recent study, a

warm ischemic time of 25 min significantly up-regulated the levels

of IL-6, TNF-α and NF-κB, an inflammatory response in the

DCD heart submitted to EVHP, while treatment with melatonin

(N-acetyl-5-methoxytryptamine) led to a significant decrease in

the expression of IL-6, TNF-α, and NF-κB in the DCD heart (111).
FIGURE 4

The death receptor and mitochondrial pathways of apoptosis: DNA damage
ligands that bind to their respective receptors trigger the recruitment of ad
caspases to mediate apoptosis. Activated caspases can also cleave BID
defined by mitochondrial outer membrane permeabilization (MOMP) and i
or BIM promote BAX or BAK homo-oligomerization in the mitochondrial m
inhibit this process. De-repressor proteins BAD, PUMA or NOXA bind the a
MOMP results in cytochrome c release into the cytosol, which promotes A
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Myocardial apoptosis involves both the death domain receptor

and mitochondrial pathways (Figure 4). Both pathways converge

on caspase activation (112). The death receptor pathway is

extrinsic, involving cell surface receptors. The mitochondrial

pathway is intrinsic, using mitochondria and the endoplasmic

reticulum. Evidence indicates that the death receptor and

mitochondrial pathways are not isolated systems. Instead,

significant crosstalk and “biofeedback” regulates the apoptotic

machinery (113). Interception of the apoptosis pathway in

porcine hearts using hypothermic perfusion solutions infused

with small interfering RNA molecules targeting key apoptotic

and inflammatory enzymes has had notable outcomes in

diminishing cellular apoptosis and mitigating myocyte injury.

Furthermore, this approach has resulted in enhancement of

donor myocardial function (114, 115). In a distinct porcine

transplantation model, the introduction of oxygen-derived free

radical scavengers into the perfusion process has shown the

potential to enhance graft functionality while concurrently

ameliorating cellular edema (116).
triggers the death receptor and mitochondrial apoptotic pathways. Death
aptor molecules (FADD), and subsequent recruitment and activation of
to promote the mitochondrial pathway of apoptosis. This pathway is
s regulated by the BCL-2 proteins. Pro-apoptotic proteins such as BID
embrane, whereas anti-apoptotic proteins such as BCL-2 and BCL-xL

nti-apoptotic proteins and reduce the threshold for BAX/BAK activation.
PAF-1 oligomerization, caspase activation, and apoptosis.
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Yet another preclinical investigation unveiled the efficacy of a

therapeutic regimen that couples two inhibitors of the necrosis

pathway, resulting in a discernible reduction in IRI among rat

cardiomyocytes (114, 117). Therapies that foster angiogenesis

have also garnered attention. Examples encompass interventions

involving the inclusion of vascular endothelial growth factor

(VEGF) (118) and prokinectin receptor-1 (89). These

interventions have manifested the capacity to elevate the survival

rate of cardiomyocytes subjected to ischemia.

Melatonin, which is mainly synthesized by the pineal gland in

mammals, is regarded as an antioxidant (89), anti-inflammatory

(119), and anti-apoptotic (120) molecule. It has been shown that

the combination of normothermic EVHP and melatonin post-

conditioning could be a novel and promising donor heart

preservation strategy, which could ameliorate myocardial IRI and

improve cardiac function of DCD hearts, thereby increasing the

number of transplantable hearts in heart transplantation (111).

Given that inflammation and apoptosis lead to the development

of fibrosis, Hosseinzadeh et al. (121) have proposed that

melatonin could also protect against fibrosis. Below we describe a

growth factor mimetic that has been shown to protect against the

development of fibrosis and to reverse fibrosis (122).
2.7 Bone morphogenetic proteins (BMPs)/
signaling

Several other therapies have been investigated for the treatment

of ischemia-reperfusion and advanced decompensated heart failure

(123). Most of these therapies targeted pathways downstream in the

pathologic processes. As such, they affect only a single arm of a

multifaceted process and are therefore limited in their beneficial

effects. By looking upstream to targets that have broader effects,

we have discovered agents that are safe and block the

multifaceted cardiac cellular injury (124). Our target is a bone

morphogenic growth factor (BMP) that belongs to the TGF

beta superfamily.

BMP-7 signaling exerts important actions on fibroblasts,

cardiomyocytes and macrophages. Anti-fibrotic effects of BMP-7

have been reported in many systems and may be mediated, at

least in part, through suppression of collagen synthesis by cardiac

fibroblasts (125) and through inhibition of endothelial to

mesenchymal transition (EndMT) (126). In cardiomyocytes,

BMP-7/signaling attenuates hypertrophy by inhibiting TGF-β

responses (125). In macrophages, BMP-7 has been reported to

promote M2 polarization (127). Considering the absence of

endogenous BMP-7 induction in infarcted and remodeling

hearts, administration of exogenous BMP-7 has been suggested

as a potential strategy to attenuate fibrosis and adverse remodeling.

We have targeted a growth factor that belongs to the TGF beta

superfamily, a developmental pathway critical to the formation of

organs during embryogenesis. Bone morphogenic protein 7

(BMP-7) is involved in embryogenesis, development and the

maintenance of adult tissue homeostasis, and is a potent

antagonist of TGF beta action (128–130). It can block TGF beta-
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induced inflammation and apoptosis, and block/reverse TGF

beta-induced fibrosis (126, 131).

The transforming growth factor β (TGF-β) superfamily consists

of a large group of pleiotropic cytokines, including TGF-βs,

activins, and bone morphogenetic proteins (BMPs), which are

critically involved in embryogenesis, development and the

maintenance of adult tissue homeostasis. Alterations in BMP

signaling pathways often result in severe human diseases (132,

133) including cardiovascular diseases (134). BMP canonical

signaling in target cells involves type I and type II receptors and

the formation of tetrameric receptor complexes. BMPs

preferentially bind type I receptors and recruit type II receptors.

The constitutively active type II receptor trans-phosphorylates

and activates the type I receptor upon forming the

heterotetrameric receptor complex. Activated BMP type

I receptors (BMPR-I), often referred to as activin-like kinases

(ALKs), have serine/threonine kinase activity. Their canonical cell

effectors are the phosphorylated SMAD1/5/8/9 transcription

factors (132, 135).

There are also three type II receptors involved in BMP

signaling: BMPR-II and activin type II receptors ActR-IIA and

ActR-IIB (136–138) while TGF β interacts with the type

I receptor (ALK5) and type II receptor (TGFR-II). Activin binds

type I receptors ActR-IA (ALK2) and ActR-1B (ALK4) and type

II receptors ActR-IIA and ActR-IIB.

BMP-7 binds BMPR-IA (ALK3), BMPR-IB (ALK6), and the

activin A receptor type 1 ACVR-I (ALK2) (Figure 5). BMP

activates both canonical and non-canonical pathways (Figure 6).

In the canonical pathway, it activates BMPR-II, which leads to

phosphorylation of Smad-1/5/8, which then complexes with

Smad-4 and transmits the signal. In the signaling pathway

involving XIAP, TAK1, and TAB1, the receptor complex is

typically the first to be activated upon ligand binding, and then it

triggers the downstream activation of the TAB1-TAK1 complex,

with CIAP playing a role in modulating this activation by

interacting with TAB1, not being directly activated by the

receptor itself (141, 142).

Altogether, this activation influences the different transcription

factors and regulates the gene expression. Notably, several reports

demonstrate the involvement of BMPR-IA mediated signaling in

the protective role of BMP-7 against renal fibrosis (126, 143).

Recent preclinical investigations have demonstrated that

endogenous and exogenous rhBMP-7 protect the myocardium

against maladaptive phenotypic plasticity in experimental models

of clinically relevant heart diseases, which strongly suggests the

cardioprotective therapeutic potential of BMP-7-based

approaches (144–148).

The cell-type differential bioactivity of BMPs is dependent on

the receptors expressed (149). Therefore, whether BMPR-IA

signaling may be involved in the cardioprotective effects of

BMP-7 was explored. It was observed that BMPR-IA (BMP type

1 receptor a, ALK3) was the most abundantly expressed

receptor in the healthy LV myocardium in humans and mice;

on the other hand, ACVR1 (Activin type I receptor) was

scarcely expressed, and BMPR-IB (BMP type 1 receptor b,

ALK6) was virtually absent. The expression of Smad proteins in
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FIGURE 5

The TGF beta/BMP/activin pathways are mediated by their specific type I and type II receptors. BMP binds any of three type I receptors: BMPR-IA
(ALK3), BMPR-IB (ALK6) and a Type IA activin receptor ActR-IA (ALK2) (138–140).
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infarcted or fibrotic myocardium is different from that in the

normal myocardium. No matter whether it is assessed in early

or late-stage cardiomyopathy, the selective expression of Smad

proteins is correlated with cardiac fibrosis and elevated collagen

synthesis levels (150, 151). The expression of Smad 2, 3 and 4

is upregulated at the infarct scar as well as in the peri-ischemic

border zone (151) and is closely correlated with increased

collagen type I expression (152). Crosstalk exists between BMP

and TGF-β in their regulation of different signaling pathways.

BMP receptor-ligand (e.g., BMP-7) binding can activate Smad1/

5/8 signaling and induce the expression of inhibitors of

differentiation 2 and 3 (ID2 and ID3). ID2 and ID3 can prevent

Smad2/3 phosphorylation and thus counteract TGF-β/Smad

signaling (153).

The BMPs have some potentially beneficial therapeutic

effects on cardiac development and anti-apoptosis by acting on

the Smad proteins. BMP-2 may have therapeutic potential for

curing chronic myocardial ischemia by improving the

contractility of cardiomyocytes and preventing cardiomyocyte

cell death (105). Injection of BMP-2 reduces the infarct size in

mice in a left anterior descending artery ligation model. Mice

treated with BMP-2 are characterized by reduced

cardiomyocyte apoptosis rates. BMP-7 gene therapy limited

pathological remodeling in the diabetic heart, conferring an

improvement in cardiac function (154). The clinical use of

rhBMP-7 in tissue-engineered products has been approved by

US and EU agencies to induce localized osteogenesis in

orthopedic and maxillofacial applications (155).
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2.8 BMP mimetics

The important step in developing a BMP-7 mimetic is first

and foremost that of separating out the osteogenic activity that

has been shown to lead to the formation of ectopic bone when

treating soft tissue injury. Furthermore, the whole BMP-7

protein is subject to inhibition by natural inhibitory proteins

such as follistatin, chordin and gremlin (156). A mimetic

would likely be immune to this inhibition. Small peptide

mimetics are also less likely than biologics to induce an

immune response. Peptide mimetics of 20 residues or less are

synthesized chemically, which is a much simpler, cheaper, and

reliable form of manufacturing than fermentation, the primary

method for producing biologics. Any potential therapeutic

benefit of restoring BMP-7 function using systemic rhBMP-7 is

hampered by bioavailability, induction of neutralizing

autoantibodies against BMPs, and a range of potential adverse

effects (157).

There have been several publications describing efforts to

design and test BMP mimetics (see Table 1). Most of these

efforts have found compounds that are osteoinductive and,

therefore, have limited applications to the treatment of diseases

affecting soft tissues such as the heart, the lung, the liver, the

kidney, the pancreas, or cancers (159–161). One compound has

been found that is effective in cell-based assays indicating it

could be used to treat pulmonary hypertension (162). The

compound described is not a true mimetic since it cannot act

alone, but rather enhances the effects of BMP-9. Other efforts to
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FIGURE 6

BMP signaling pathways. BMP mimetic/BMP-7 transduces signals in target cells by binding to a specific membrane bound receptor BMPR-II and
phosphorylates BMPR-I, which activates both the canonical and the non-canonical pathways. In the canonical pathway, activated BMPR-II leads to
phosphorylation of Smad-1/5/8 which complexes with Smad-4 and translocate the signal. In the non-canonical pathway, p38, Mitogen-activated
protein kinase (MAPK), c-Jun-N terminal Kinase (JNK), ERK and NFKB were activated via the activation of X-linked inhibitor of apoptosis protein
(XIAP), TGF-beta activated kinase 1 (TAK1) and TAK1 binding protein (TAB1) whereas PI3K/Akt were activated by both BMPR-II and Smad-1/5/8.
Altogether, this influences the different transcription factors and regulates the gene expression.

TABLE 1 BMP agonists/mimetics.

BMP agonist/BMP
mimetic

Derived/designed from type
of BMP/region

Target outcome Reference

A cyclized BMP-7 derived
peptide, THR-123

Covers the beta turn that is C-terminal to
the “knuckle” of BMP-7 (see Figure 7C)

Reversed established kidney fibrosis in mouse models of chronic renal injury (149)

A cyclized BMP-7 derived
peptide, THR-123

Covers the beta turn that is C-terminal to
the “knuckle” of BMP-7 (see Figure 7C)

Induced nongenetic conversion of human pancreatic exocrine cells to insulin-
expressing and Functional (glucose-responsive) endocrine cells with a capacity
for rapid reversal of diabetes in vivo

(158)

A cyclized BMP-7 derived
peptide, THR-123, THR-184

Covers the beta turn that is C-terminal to
the “knuckle” of BMP-7 (see Figure 7C)

Function as agonists of BMPR-IA (BMP type I receptor), attenuated
overexpression of remodeling-related genes and alleviated LV dysfunction in
aortic stenosis

(122)
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find BMP pathway agonists using high throughput screening have

had limited success (163–166).

In recent years, studies have advanced our knowledge of the

cellular and systemic functions of the BMPs. Therapeutics

derived from BMPs have been developed for the treatment of

diseases such as cardiovascular and kidney diseases

(149, 167–169). The identification of BMP mimetics or BMP

agonists remains an attractive strategy (see Table 1). Peptides

that are designed from the knuckle region (Figure 7C) of
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BMP-2, BMP-7 and BMP-9 have been found to display

osteogenic activity like the corresponding BMP molecule

(159–161, 170). Peptides designed based on the BMP-9

knuckle region have been shown to induce differentiation of

murine preosteoblasts (MC3T3-E1 cells) and induce

cholinergic differentiation in human SH-SY5Y neuroblastoma

cells (171, 172). Furthermore, peptides from the prodomain of

BMP-7, namely BFP-1/2/3, have also been shown to induce

stronger alkaline phosphatase activity in multipotent bone
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marrow stromal cells (MBSCs) (173–175). In addition, a BMP-2

knuckle peptide has been shown to possess similar bone

inducing activity in vivo but did not induce the side effects

observed with BMP-2 (176).

BMP mimetic peptides have the potential for improving

specificity. For example, peptide P3 designed from the “wrist

area” of BMP-9 enhanced BMP-9-induced Smad1/5
FIGURE 7

Structure diagrams of the BMP-7 monomer and the region covered by the m
monomer, which contains three structural regions: antiparallel beta sheets o
turn), and the “Heel” alpha helix. Initial targets for mimetic development w
N-terminal loops at the ends of the heel helix. (B) The region around th
became the lead for further mimetic development. (C) The “beta-turn” reg
region covered by other BMP mimetics. Residue position numbers are bas
segments of which are labelled e.g., “b6”; beta turn (bt, tttt). Peptide disulfid
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phosphorylation selectively in human pulmonary artery

endothelial cells (hPAECs) but inhibited BMP-4-induced Smad1/

5 phosphorylation in human dermal microvascular endothelial

cells (HMEC-1) (164).

Although these findings are exciting, very few studies have

performed in-depth binding and mechanistic investigation of

how these peptides achieve their specificity.
imetic. (A) Ribbon diagram showing the secondary structure of the BMP
f “Finger 1” (with the large terminal loop), “Finger 2” (with the tight beta-
ere the terminal loops of fingers 1 and 2, loops at the C-terminal, and
e beta turn of finger 2 proved to have activity similar to BMP-7 and
ion covered by the mimetic is immediately C-terminal to the “knuckle”
ed on BMP-2 residue numbers. Secondary structure: beta sheet (>>>>),
e bond: C C.
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2.8.1 THR-123 & THR-184
As explained in Carlson et al. (177), the design of BMP-7

mimetic peptides THR-123 and THR-184 used the x-ray

structure of BMP-7 (178) to identify solvent accessible regions

likely involved in receptor binding, then identified and

optimized the best leads based on in vitro assays. These

peptides, which are anti-inflammatory, anti-apoptotic and

anti-fibrotic, cover the tight beta-turn region of finger 2

(Figure 7A). The fact that they display no osteogenic activity

and do not bind to BMPR-IB (ALK6) correlates with the fact

that osteogenic peptides identified to date (159–161, 170–172)

cover the physically separate “knuckle” region (Figure 7C),

and provides a physical explanation for the specificity of

activity (Figure 8).

The knuckle region covered by the osteogenic peptides and the

beta-turn region covered by the non-osteogenic mimetic peptides

described here are separate structural regions (see Figure 7C).

This separation allows small mimetic peptides to be designed

with specific activity. A cyclized BMP-7 derived peptide, THR-

123, located in the beta-turn that is C-terminal to the “knuckle”

region (see Figure 7B), was reported to successfully reverse

established kidney fibrosis in mouse models of acute and chronic

renal injury (149).

THR-123 selectively binds the type I receptors ALK2 and

ALK3 but does not bind ALK6. (Figure 8). It exhibits robust

anti-inflammatory, anti-apoptotic and antifibrotic and

regenerative effects in several experimental models of acute and

chronic kidney diseases (149). More recently Li et al. (120) have

shown that THR-123, effectively induced nongenetic conversion

of human pancreatic exocrine cells to insulin-expressing and

functional—glucose-responsive—endocrine cells with a capacity

for rapid reversal of diabetes in vivo (158). This work

independently demonstrates a safer and simpler alternative to
FIGURE 8

THR-123 and THR-184 binding like BMP-7, BMP mimetics THR-123 and T
I receptors actR-IA (ALK2) and BMPR-IA (ALK3). Unlike BMP-7, they do not

Frontiers in Cardiovascular Medicine 13
genetic reprogramming. Unlike BMP-7, BMP mimetic peptide

THR-123 does not induce ectopic bone formation (177).

THR-184, another mimetic peptide of BMP-7 was also designed

and optimized. The receptor binding and in vitro assay activity—half

maximal effective concentrations (EC50)—of the lead peptide

variants were used for structure/activity analysis to arrive at

THR-184 as the prime clinical candidate. Both BMP mimetics

(THR-123 and THR-184) selectively bind the BMP type

I receptors ActR-IA (ALK2) and BMPR-IA (ALK3) and type II

receptor BMPR-II. They do not bind BMPR-IB (ALK6) (Figure 8).

THR-184 was evaluated in clinical studies of Acute Kidney

injury (NIH, ClinicalTrials.gov Identifier: NCT01830920) and

found to be safe and well tolerated. There was a noticeable

reduction in the incidence of AKI in the patient subgroup with

pre-existing CKD treated with the highest dose of THR-184

(177). In a type 1 diabetes rat model where islet cells are

damaged by Tacrolimus, THR-123 regenerates the islet cells and

eliminates the diabetic condition (158). Recently, in mice

subjected to transverse aortic constriction (TAC), Salido-Medina

et al. (122) established the cardioprotective effects of the two

BMP-7 mimetics: THR-123 and THR-184. Daily i.p. injection

with either peptide during four weeks, starting on the day of TAC

surgery, (i) rescued the expression of BMPR-IA (ALK3) and

associated pSMAD1/5/(8)9 signaling in the LV, (ii) prevented

transcriptional activation of remodeling-associated genes (Col 1a1,

β-MHC, BNP and Acta-2), (iii) attenuated LV structural damage

(hypertrophy and fibrosis), and (iv) diminished LV dysfunction

(systolic and diastolic). We have shown in a rat left anterior

descending artery ligation model that treatment with THR-123

protects cardiomyocytes, and limits infarct size after myocardial

ischemic and reperfusion injuries (124). Based on the promise of

THR-184, we are currently evaluating its application to rescue

DCD hearts from IRI in a rodent model (179). The combination
HR-184 bind the BMP type II receptor BMPR-II and selective BMP type
bind BMPR-IB (ALK6).
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of a perfusate containing THR-184 and normothermic EVHP

treatment is a novel and promising donor heart preservation

strategy to ameliorate myocardial IRI and to improve cardiac

function in the DCD hearts, thereby increasing the number of

transplantable grafts in heart transplantation.
3 Conclusions & remarks

The supply-demand imbalance of heart allografts available for

transplantation continuously grows as more end-stage patients are

listed for heart transplantation. Until recently there has been little

progress in increasing the supply of hearts (29, 180). The

development of Normothermic ex vivo machine perfusion

(NEVMP), which (despite its limitations), keeps the heart in a

near physiological state is a breakthrough that has expanded the

availability of donor heart allogeafts. Coupled with other

therapeutic modalities to preserve and regenerate the heart, it

could lead to new therapies for patients with advanced heart

failure and potentially reduce the number of patients in need of

a heart transplant.

NEVMP offers protection from ischemia during transportation

and allows for evaluation of organs from DCD donors, which are

at a higher risk due to the unavoidable warm ischemic conditions

involved during determination of donor death. NEVMP allows

repeated perfusate sample monitoring of changes in biomarker

release, making possible more precise analysis of inflammatory

and injury markers such as TNF alpha, IL-6, IL-8 and IL-10 for

graft evaluation. Furthermore, this technique permits timely

biomarker evaluation to fit within the limited time of heart

transplantation protocols. Several biomarkers, such as troponins

and lactate, are rapidly and routinely measured in clinical practice

and could be implemented without difficulty. The combined use

of several biomarker measurements would likely provide a more

robust assessment of myocardial injury. Current imaging

modalities could also be used to evaluate cardiac grafts, permitting

detailed graft characterization. A high-resolution CT scan can

detect myocardial fibrosis with good reliability and sensitivity

(181). The contrast-enhanced cardiac computed tomography

(CCT) was recently demonstrated to be a potentially accurate

alternative to Cardiac Magnetic Resonance for the identification of

myocardial fibrosis (182). Of particular relevance is a real-time

and non-invasive method of assessing graft function and injury

based on mitochondrial oxygenation of heart surface tissue using

Resonance Raman Spectroscopy (183). This provides a means of

predicting the oxygenated state of mitochondrial cytochrome

C during perfusion, possibly enabling the assessment of apoptosis.

Moreover, ex vivo systems present a significant opportunity for the

administration of therapeutic interventions to donor hearts. To

this end, several new therapeutics have been explored for their

efficacy in alleviating cardiac IRI. We designed a series of novel

BMP mimetic small peptides which exhibit robust anti-

inflammatory, anti-apoptotic and anti-fibrotic and regenerative

effects to protect cardiomyocytes and alleviate cardiac IRI in vivo.

These compounds improve cardiac function and metabolic

parameters. Our lead BMP mimetic, THR-184 has been tested
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clinically and found to be safe and well tolerated by patients in

clinical trials. It could quickly enter IND status for the ex vivo

preservation of DCD hearts.

Ex vivo normothermic perfusion combined with new

therapeutics such as the BMP mimetics is a novel approach that

could overcome the major risk of cardiac ischemic injury and

provide more favorable organ utilization and potentially expand

the donor pool for heart transplantation. Studies of new

therapeutic treatments for the preservation and recovery of donor

hearts for transplant will likely serve as a path forward for the

development of compounds for the treatment of a broader

spectrum of patients with heart failure.
4 Significance

Heart Disease is the leading cause of death in the USA. In 2018,

there were 6.2 million US adults that had heart failure. In 2022,

702,880 people died from heart disease. In 2019–20 the cost of

heart failure/disease to US society was estimated to be $252.2

billion (https://www.cdc.gov/heart-disease/data-research/facts-

stats/index.html#cdcreference_3). The only definitive treatment

for heart failure is cardiac transplantation.

The development of ex vivo heart prefusion technologies has

significantly increased the number and quality of donor hearts

available for transplantation and offers a potential means for

rehabilitating hearts that would otherwise be rejected. Ischemia is

an unavoidable effect of current heart procurement protocols,

which leads to Ischemia/reperfusion injury to the transplanted

heart and other organs of the recipient and continues to limit

the potential of this technology.

This paper presents a therapeutic extension of the current and

projected near-term techniques used to preserve the heart for

transplantation. Success with this therapy could extend the time

between explant and implant from hours to days or possibly

weeks and dramatically increase the number of donor hearts

acceptable for transplantation (currently less than 40%).

The therapeutic we employ is a growth factor mimetic that has

been shown to be effective in animal models at protecting and

repairing cardiomyocytes damaged by ischemia/reperfusion

injury. Repairing this injury means we can treat heart failure and

other organs damaged during pre- and post-transplant.
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