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Background: There is currently a lack of easy-to-use tools for assessing the

severity of cardiogenic shock (CS) patients. This study aims to develop a

nomogram for evaluating severity in CS patients regardless of the

underlying cause.

Methods and results: The MIMIC-IV database was used to identify 1,923 CS

patients admitted to the ICU. A multivariate Cox model was developed in the

training cohort (70%) based on LASSO regression results. Factors such as age,

systolic blood pressure, arterial oxygen saturation, hemoglobin, serum

creatinine, blood glucose, arterial pH, arterial lactate, and norepinephrine use

were incorporated into the final model. This model was visualized as a

Cardiogenic Shock Survival Nomogram (CSSN) to predict 30-day survival rates.

The model’s c-statistic was 0.75 (95% CI: 0.73–0.77) in the training cohort and

0.73 (95% CI: 0.70–0.77) in the validation cohort, demonstrating good

predictive accuracy. The AUC of the CSSN for 30-day survival probabilities was

0.76 in the training cohort and 0.73 in the validation cohort. Calibration plots

showed strong concordance between predicted and actual survival rates, and

decision curve analysis (DCA) affirmed the model’s clinical utility. The CSSN

outperformed the Cardiogenic Shock Score (CSS) in various metrics, including

c-statistic, time-dependent ROC, calibration plots, and DCA (c-statistic: 0.75

vs. 0.72; AUC: 0.76 vs. 0.73, P < 0.01 by Delong test). Subgroup analysis

confirmed the model’s robustness across both AMI-CS and non-AMI-

CS subgroups.

Conclusions: The CSSN was developed to predict 30-day survival rates in CS

patients irrespective of the underlying cause, showing good performance and

potential clinical utility in managing CS.

KEYWORDS

nomogram, survival, cardiogenic shock, mortality, mechanical circulatory support

Introduction

Cardiogenic shock (CS) is a life-threatening medical emergency with a high mortality

rate of 40% to 60%, despite advancements in medical care, leading to prolonged suffering

for affected patients and significant healthcare costs (1–4). The causes and severity of CS

can vary widely, which results in different treatment approaches and prognoses (3, 5, 6).

Early identification of high-risk patients can help promptly implement reasonable and

practical treatment measures. Thus, assessing the severity of the condition is essential,

TYPE Original Research
PUBLISHED 29 April 2025
DOI 10.3389/fcvm.2025.1538395

Frontiers in Cardiovascular Medicine 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2025.1538395&domain=pdf&date_stamp=2020-03-12
mailto:liumeilin@pku.edu.cn
https://doi.org/10.3389/fcvm.2025.1538395
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1538395/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1538395/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1538395/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1538395/full
http://orcid.org/0000-0002-1190-668X
http://orcid.org/0000-0003-1911-4932
http://orcid.org/0000-0003-3576-7933
http://orcid.org/0000-0002-5188-0242
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2025.1538395
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


as it directly influences clinical decisions, such as whether to

administer mechanical circulatory support (MCS). Several risk

assessment tools for CS have been developed, with the most

widely accepted being the IABP-SHOCK II Score (7), CardShock

risk Score (8), and Cardiogenic Shock Score (CSS) (9). However,

these models are primarily presented as scoring systems,

which are relatively complex and thus less frequently used in

clinical practice. Nomograms are graphical representations of

mathematical models employed to forecast outcomes by assessing

clinical events and incorporating key prognostic factors

across various diseases (10, 11). They offer intuitive, fast,

straightforward, and user-friendly advantages. Currently, no

predictive model for CS uses a nomogram presentation available

for clinical use.

Moreover, the SHOCK II Score and CardShock Risk Score

mainly target the AMI-CS population, which may not apply to

non-AMI-CS patients. Recent epidemiological studies have found

that AMI as a cause of CS has decreased to approximately 30%,

indicating that AMI is no longer the predominant cause of

cardiogenic shock (3, 12). The Society for Cardiovascular

Angiography and Intervention (SCAI) classification appears to be

the most widely used risk assessment tool, but it is more focused

on staging the progression of CS rather than providing a specific

and easy-to-use risk scoring system (6, 13). Given these reasons,

our study aims to develop an easy-to-use predictive model for

CS, irrespective of the underlying cause, in the emergency

setting, which accounts for survival assessments. This model will

be presented as a Cardiogenic Shock Survival Nomogram (CSSN)

to enhance clinical applicability. The establishment of this model

will aid physicians in timely assessing the severity of CS, thereby

making appropriate clinical decisions to improve patient

survival rates.

Methods

Data source and study participants

This study utilized the MIMIC-IV database, a comprehensive

repository of critical care data (14–16). MIMIC-IV is a collection

of clinical records from patients treated in intensive care units

(ICU) at the Beth Israel Deaconess Medical Center. The first

author of this study, Dingfeng Fang, has completed the

Collaborative Institutional Training Initiative (CITI) program

course of Massachusetts Institute of Technology Affiliates

(Human Research, Data or Specimens Only Research, and

Refresher Course), granting access to the MIMIC-IV database

(Record ID: 50924352). Data retrieval from the database was

conducted using Structured Query Language (SQL). For this

study, all patients who experienced cardiogenic shock (CS)

during their hospital stay and subsequently received further

treatment in the ICU were included. Patients for this cohort were

identified by querying the MIMIC-IV database for instances of

the International Classification of Diseases, Ninth Revision (ICD-

9) code 785.51, and the Tenth Revision (ICD-10) code R57.0,

both denoting cardiogenic shock. To reduce survival and

treatment biases caused by readmissions, only patients admitted

to the ICU for the first time were included in the analysis.

Data collection

Demographic, vital signs, laboratory, clinical, and outcome

data, procedures, and therapies performed during the ICU and

hospital stay were collected from the MIMIC-IV database.

Radiographic, invasive hemodynamic, and physical examination

data were not available. Baseline characteristics included gender,

age, admission diagnosis (CS, AMI), comorbidities (previous MI,

hypertension, diabetes, renal impairment), and smoking history.

Systolic blood pressure (SBP), diastolic blood pressure (DBP),

mean arterial pressure (MAP), arterial oxygen saturation (SpO2),

and partial pressure of oxygen (PaO2) were all recorded from the

lowest values within the first 24 h of admission. The serum

creatinine level was recorded as the maximum value within the

first 24 h of admission. Other laboratory tests were defined by

the first recorded value after ICU admission or the value closest

to ICU admission. Laboratory tests included blood assays

(hemoglobin, leukocytes, platelets), arterial blood gas analysis

[pH, PaO2, partial pressure of carbon dioxide (PaCO2),

lactate, base excess, total carbon dioxide], coagulation profile,

liver function, renal function, serum albumin, electrolyte

measurements, blood glucose, low-density lipoprotein cholesterol

(LDL-C), and cardiac enzymes [troponin T, N-terminal pro-b-

type natriuretic peptide (NT-proBNP)]. Critical respiratory and

cardiovascular treatments administered to the patients, such as

norepinephrine, dopamine, dobutamine, epinephrine infusions,

invasive mechanical ventilation, IABP, and continuous renal

replacement therapy (CRRT), were also recorded. The primary

outcome was all-cause mortality within 30 days. The database

determined the date of death based on state records and hospital

documentation. In cases where data from both sources are

available, the hospital records take precedence (14–16). All

patients had access to complete follow-up data for one year.

Survival duration was calculated from the time of hospital

admission until death.

Statistical analysis

Data analysis was performed using R version 4.3.3.

A significance level of less than 0.05 was considered statistically

significant for all analyses. Variables with more than 20%

missing values were excluded. For variables with less than 20%

missing values, missing data were imputed using multiple

imputations with random forests, implemented through the mice

package in R. The data were randomly split into training (70%)

Abbreviations

CS, cardiogenic shock; CSS, cardiogenic shock score; CSSN, cardiogenic shock

survival nomogram; CRRT, continuous renal replacement therapy; LASSO,

least absolute shrinkage and selection operator; MCS, mechanical circulatory

support; MIMIC-IV, medical information mart for intensive Care IV; SCAI,

society for cardiovascular angiography and intervention.
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and validation (30%) sets for subsequent analysis. Continuous

variables were reported as the median and interquartile range

(IQR), while categorical variables were presented as frequencies

and percentages. Differences between groups were compared

using chi-square tests for categorical variables and Wilcoxon

rank-sum tests for continuous variables.

In the training cohort, LASSO regression was employed to

identify predictors of 30-day mortality in patients with CS.

Potential variables for model construction were based on readily

available point-of-care parameters and previous studies. The

most parsimonious set of variables selected by LASSO regression

was used to develop a multivariate Cox proportional hazards

model. Multicollinearity was evaluated using the variance

inflation factor (VIF). Harrell’s Concordance Index (c-statistic)

assessed the model’s predictive accuracy. Factors with prognostic

significance in the multivariate Cox regression analysis were used

to construct 30-day survival prediction models (1—mortality),

visualized using a nomogram. Factors with prognostic

significance in the multivariate Cox regression analysis were used

to construct 30-day survival prediction models (1—mortality),

visualized using a nomogram. The nomogram predicted the

30-day mortality risk for all patients, categorizing them into four

risk groups: low risk (0%–15%), moderate risk (16%–49%), high

risk (50%–84%), and very high risk (85%–100%). These

thresholds were determined based on the distribution of

predicted probabilities in the training cohort. The Kaplan–Meier

plotter was used to perform 1-year survival analysis for the four

patient groups, which confirmed significant differences in

survival outcomes across the four groups (Figure 2).

Time-dependent Receiver Operating Characteristic (ROC)

curves and Area Under the Curve (AUC) were used to evaluate

the discriminative power of the nomogram. The DeLong test is

used to compare the discriminatory performance between models.

Calibration curves assessed the difference between the actual and

nomogram-predicted event-free survival rates using bootstrap (500

resamplings). The multivariate Cox proportional hazards model

was similarly established in the validation cohort, and the

c-statistic was calculated to evaluate its predictive accuracy. In the

validation cohort, the performance of the nomogram was similarly

evaluated using ROC curves, AUC, and calibration curves. Finally,

decision curve analysis (DCA) was conducted to evaluate the

clinical utility of the prediction models over 30 days. DCA

assesses the net benefit across a range of threshold probabilities,

comparing the benefits of correctly identifying high-risk patients

with the harms of unnecessary interventions in low-risk patients,

helping to determine the optimal decision threshold. Additionally,

this study compared the accuracy and discrimination of our

model with that of the Cardiogenic Shock Score (CSS).

Subgroup analysis were conducted in two ways: (1) performing

multivariate Cox regression analysis using the variables from the

nomogram on all AMI-CS patients and calculating the c-statistic

and AUC to evaluate the predictive accuracy in AMI-CS patients;

(2) performing multivariate Cox regression analysis using the

variables from the nomogram on all non-AMI-CS patients and

calculating the c-statistic and AUC to evaluate its predictive

accuracy in non-AMI-CS patients.

Results

Study population and baseline
characteristics

A total of 2,216 patients with admission diagnosis of CS based

on ICD-9 code 785.51 and ICD-10 code R57.0. Of these, 152 were

readmissions, and 141 did not require ICU admission; these

patients were excluded from this study. The final cohort included

1,923 patients, with 1,346 randomly assigned to the training

cohort and 577 to the validation cohort. Variables with over 20%

missing data (albumin, troponin T, NT-proBNP, D-dimer, and

LDL-C) were excluded. Variables with less than 20% missing

data were imputed using the “mice” package in R, utilizing

random forest-based multiple imputation, resulting in 89

imputed datasets.

Of the 1,923 patients, the median age was 70 (IQR 60–79), and

40.46% were female. Acute myocardial infarction-related

cardiogenic shock (AMI-CS) was present in 28.13% of patients.

Medical history included 14.25% of patients with previous

myocardial infarction, 26.94% with hypertension, 40.04% with

diabetes, and 46.33% with renal impairment. During the first

24 h after ICU admission, the median minimum values for key

vital signs were 79 mmHg (IQR 68.75–87) for SBP and 91%

(IQR 87%–94%) for SpO2. Abnormal laboratory findings

included a median, minimum oxygen partial pressure of

46 mmHg (IQR 33–79), a median maximum serum creatinine of

159.12 µmol/L (IQR 106.08–247.52), and a median arterial lactate

level of 3.3 mmol/L (IQR 1.90–6.40 mmol/L). Arterial blood gas

pH was below 7.0 in 81 patients (4.21%).

Treatment and outcome

As shown in Table 1, patients received various treatments

during hospitalization, including vasopressors, respiratory and

circulatory support, and renal replacement therapy. Treatments

included dopamine (n = 465, 24.18%), dobutamine (n = 481,

25.01%), norepinephrine (n = 1,351, 70.25%), epinephrine

(n = 469, 24.39%), intra-aortic balloon pump (IABP) (n = 319,

16.59%), mechanical ventilation (n = 1,111, 57.77%), and

continuous renal replacement therapy (CRRT) (n = 306, 15.91%).

During the one-month follow-up, 1,097 patients survived

(57.05%), and 826 patients died (42.95%).

Predictor selection and nomogram
construction

LASSO regression was used to identify predictors of 30-day

mortality in CS patients from the training cohort (Supplementary

Figure S1). Potential variables for model construction were

based on readily available point-of-care parameters and previous

studies, including gender, age, admission diagnosis of AMI,

admission of cardiac arrest, comorbidities (previous MI,
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TABLE 1 Baseline characteristics, treatment, and outcomes of the study population.

Group All Training cohort Validation cohort P
a

Number 1,923 1,346 577

Age, year 70.00 (60.00–79.00) 70.00 (60.00–78.75) 71.00 (60.00–80.00) 0.179

Female 778 (40.46%) 540 (40.12%) 238 (41.25%) 0.644

Etiology

AMI 0.712

non-AMI 1,382 (71.87%) 960 (71.32%) 422 (73.14%)

NSTEMI 406 (21.11%) 289 (21.47%) 117 (20.28%)

STEMI 135 (7.02%) 97 (7.21%) 38 (6.59%)

Cardiac arrest, n (%) 238 (12.38%) 163 (12.11%) 75 (13.00%) 0.588

Comorbidities

Previous MI, n (%) 274 (14.25%) 184 (13.67%) 90 (15.60%) 0.268

Hypertension, n (%) 518 (26.94%) 363 (26.97%) 155 (26.86%) 0.962

Diabetes, n (%) 770 (40.04%) 540 (40.12%) 230 (39.86%) 0.916

Renal impairment, n (%) 891 (46.33%) 619 (45.99%) 272 (47.14%) 0.642

Smoker, n (%) 206 (10.71%) 141 (10.48%) 65 (11.27%) 0.608

Vital signs

SBP, mmHg 79.00 (68.75–87.00) 79.00 (68.12–87.00) 79.00 (69.00–87.00) 0.57

DBP, mmHg 39.00 (31.00–46.00) 39.75 (31.00–46.00) 39.00 (31.00–46.00) 0.675

MAP, mmHg 51.00 (42.00–59.00) 51.00 (42.00–59.00) 51.00 (42.00–58.50) 0.418

SpO2, % 91.00 (87.00–94.00) 92.00 (87.25–94.00) 91.00 (86.00–94.00) 0.105

GCS 15.00 (15.00–15.00) 15.00 (15.00–15.00) 15.00 (15.00–15.00) 0.759

Laboratory findings at admission

Hemoglobin, g/dl 11.20 (9.50–12.85) 11.20 (9.60–12.90) 11.10 (9.30–12.80) 0.226

Aspartate aminotransferase, U/L 70.00 (32.00–245.00) 70.50 (32.00–238.00) 69.00 (32.00–270.00) 0.993

Alanine aminotransferase, U/L 45.00 (22.00–149.50) 45.00 (21.25–147.50) 44.00 (22.00–151.00) 0.869

Serum creatinine, umol/L 159.12 (106.08–247.52) 159.12 (106.08–238.68) 159.12 (106.08–247.52) 0.804

Serum sodium, mmol/L 138.00 (134.00–141.00) 138.00 (134.00–141.00) 137.00 (135.00–140.00) 0.662

Serum potassium, mmol/L 4.30 (3.80–4.80) 4.30 (3.80–4.80) 4.20 (3.80–4.80) 0.302

Serum calcium, mg/dl 8.50 (7.90–8.90) 8.50 (7.90–8.90) 8.50 (8.00–8.90) 0.925

Blood glucose 0.281

<11.1 mmol/L 1,452 (75.51%) 1,007 (74.81%) 445 (77.12%)

≥11.1 mmol/L 471 (24.49%) 339 (25.19%) 132 (22.88%)

Arterial blood gas

pH 0.228

<7.0 81 (4.21%) 55 (4.09%) 26 (4.51%)

7.0–7.35 1,310 (68.12%) 933 (69.32%) 377 (65.34%)

>7.35 532 (27.67%) 358 (26.60%) 174 (30.16%)

PaO2, mmHg 46.00 (33.00–79.00) 46.00 (33.00–79.00) 47.00 (33.00–79.00) 0.833

PaCO2, mmHg 40.00 (34.00–47.00) 41.00 (35.00–47.75) 39.00 (34.00–46.00) 0.049

lactate, mmol/L 3.30 (1.90–6.40) 3.40 (2.00–6.50) 3.00 (1.90–5.80) 0.068

Treatments

Dopamine, n (%) 465 (24.18%) 318 (23.63%) 147 (25.48%) 0.385

Dobutamine, n (%) 481 (25.01%) 356 (26.45%) 125 (21.66%) 0.026

Norepinephrine, n (%) 1,351 (70.25%) 960 (71.32%) 391 (67.76%) 0.118

Epinephrine, n (%) 469 (24.39%) 339 (25.19%) 130 (22.53%) 0.214

IABP, n (%) 319 (16.59%) 227 (16.86%) 92 (15.94%) 0.619

Invasive ventilation, n (%) 1,111 (57.77%) 792 (58.84%) 319 (55.29%) 0.148

CRRT, n (%) 306 (15.91%) 219 (16.27%) 87 (15.08%) 0.512

Outcomes

Death during 1-month 826 (42.95%) 591 (43.91%) 235 (40.73%) 0.197

Death during 1-year 1,106 (57.51%) 776 (57.65%) 330 (57.19%) 0.852

aComparison between the training and validation cohort.

Data are presented as median (interquartile range) unless otherwise indicated.

AMI, acute myocardial infarction; Previous MI, previous myocardial infarction; NSTEMI, non-ST-elevation myocardial infarction; STEMI, ST-elevation myocardial infarction; SBP, systolic

blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; SPO2, arterial oxygen saturation; GCS, Glasgow Coma Scale; PaO2, Partial pressure of oxygen; PaCO2, partial

pressure of carbon dioxide; IABP, intra-aortic balloon pump; CRRT, continuous renal replacement therapy.
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hypertension, diabetes, renal impairment), smoking history, SBP,

heart rate, SpO2, Glasgow Coma Scale (GCS), hemoglobin,

alanine aminotransferase (ALT), aspartate aminotransferase

(AST), serum creatinine, serum sodium, serum potassium, serum

calcium, serum chloride, blood glucose, arterial blood gas (pH,

partial pressure of oxygen, lactate), and treatments (dopamine,

dobutamine, norepinephrine, epinephrine, IABP, invasive

ventilation, CRRT). The lambda.1se (λ = 0.0621) was used to

obtain the simplest model with nine predictors: Age, SBP, SpO2,

hemoglobin, serum creatinine, blood glucose, pH, arterial lactate,

and norepinephrine. These predictors were used to develop a

multivariate Cox proportional hazards model, and the result is

shown in Table 2. Higher age, serum creatinine, blood glucose,

arterial lactate, norepinephrine use, and lower SBP, SpO2,

hemoglobin, and pH were associated with increased mortality.

Multicollinearity was assessed, and variance inflation factor (VIF)

values were below the threshold, indicating no significant

multicollinearity issues. The model demonstrated good

discriminative ability, as evidenced by a c-statistic of 0.75 (95%

CI: 0.73–0.77) and an area under the curve (AUC) of 0.76.

Additionally, external validation using CSS data from the training

set yielded a c-statistic of 0.72 (95% CI: 0.70–0.74) with an AUC

of 0.73. A nomogram was constructed using the multivariate Cox

model to predict 30 survival rates (1—mortality rate) (Figure 1).

The nomogram stratified all patients into four risk categories

for 30-day mortality: low risk (0%–15%), moderate risk (16%–

49%), high risk (50%–84%), and very high risk (85%–100%).

Using Kaplan–Meier curves, a one-year survival analysis was

conducted across these four groups, revealing significant

differences in mortality within the first year (Figure 2).

Performance and validation of the model

The performance of the CSSN was evaluated using multiple

metrics, including the c-statistic, AUC, calibration plots, and

DCA. The c-statistic for the predictive model was 0.75 (95% CI:

0.73–0.77) in the training cohort and 0.733 (95% CI: 0.70–0.77)

in the validation cohort, indicating good predictive accuracy.

ROC curves for 30-day survival predictions yielded

corresponding AUC values (Figure 3). In the training cohort, the

AUC for CSSN predicting 30-day survival was 0.76, compared to

0.73 for the CSS. In the validation cohort, CSSN had an AUC of

0.73, while the CSS had an AUC of 0.72, demonstrating superior

discriminative power by CSSN (P < 0.01 by Delong test).

Calibration plots (Figure 4, panels A and B) revealed strong

agreement between nomogram-predicted and actual survival

probabilities, indicating better model calibration than CSS. DCA

also demonstrated the superior performance of the CSSN over

the CSS (Figure 5, panels A and B).

Subgroup analysis

Subgroup analysis were conducted to verify the robustness of

the model, as detailed in Table 3: (1) In the subset of patients

with AMI-CS, the model demonstrated a c-statistic of 0.77 (95%

CI: 0.74–0.80) and an AUC of 0.77 for CSSN. (2) In the subset

of non-AMI-CS patients, the model showed a c-statistic of 0.73

(95% CI: 0.71–0.76) and an AUC of 0.73 for CSSN. These

analyses confirmed the predictive capability and reliability of the

nomogram across different patient subsets, with the highest

accuracy observed in patients with AMI-CS.

Discussion

In this study, we developed a predictive model for assessing

the survival rates of CS patients at 30-day intervals to evaluate

the risk of death. Our model, constructed using easily accessible

variables from the emergency setting, demonstrated better

performance than CSS. Visualized as a Cardiogenic Shock

TABLE 2 Multivariate Cox analysis of potential prognostic factors identified by LASSO regression.

Variables VIF Coefficients HR (95%CI) P

Age, year 1.042 0.031 1.032 (1.025, 1.039) <0.0001

SBP, mmHg 1.285 −0.013 0.988 (0.982 0.993) <0.0001

SpO2, % 1.263 −0.013 0.987 (0.981, 0.993) <0.0001

Hemoglobin, g/dl 1.019 −0.088 0.916 (0.871, 0.964) 0.0007

Serum creatinine, umol/L 1.096 0.001 1.001 (1.001, 1.002) 0.0024

Blood glucose 1.098

<11.1 mmol/L Reference

≥11.1 mmol/L 0.406 1.501 (1.254, 1.796) <0.0001

pH (Arterial blood gas) 1.455

<7.1 Reference

7.1–7.35 −0.731 0.481 (0.342, 0.677) <0.0001

>7.35 −0.978 0.376 (0.249, 0.567) <0.0001

Arterial lactate, mmol/L 1.657 0.059 1.061 (1.038, 1.084) <0.0001

Norepinephrine 1.062 0.791 2.205 (1.747, 2.74) <0.0001

This multivariate Cox proportional hazards model was performed to predict 30-day mortality in patients with CS in the training cohort (N = 1,346). The Harrell’s concordance index (c-statistic)

is 0.75 (95% CI: 0.73–0.77).

Multicollinearity among variables was evaluated by calculating the variance inflation factor (VIF). A VIF greater than 10 indicates the presence of multicollinearity.

HR, hazard ratio; CI, confidence interval; SBP, systolic blood pressure; SpO2, peripheral oxygen saturation.
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Survival Nomogram (CSSN), our model is simple and user-

friendly. Furthermore, this is the first prognostic model for

cardiogenic shock mortality risk presented as a nomogram,

enhancing its clinical applicability and facilitating timely and

appropriate clinical decision-making.

The importance of risk assessment in CS
patients

Risk assessment in CS patients is crucial for guiding physicians

in making more appropriate treatment strategies, particularly in

deciding whether to use mechanical circulatory support (MCS).

MCS can somewhat mitigate the issue of insufficient cardiac

output in CS patients, but insufficient evidence remains to prove

its efficacy in reducing mortality rates (2, 17–21). This is

primarily due to the many complications associated with MCS

use, such as vascular complications, thrombosis, limb ischemia,

infection, and fatal hemorrhage (2, 20, 22). Inappropriate use of

MCS can lead to an imbalance of risks and benefits. For

example: (1) Using MCS in low-risk patients may alleviate their

insufficient cardiac output, but its complications might outweigh

the benefits, potentially reducing the patient’s quality of life and

survival rate. High-risk patients might be misclassified as low-

risk, thereby missing the opportunity for timely MCS

intervention, leading to adverse outcomes. (3) For patients with

highly severe conditions (meager survival rates), using MCS may

not provide enough survival benefits and could impose a heavy

medical burden. Thus, timely and accurate risk assessment and

appropriate treatment strategies are critical challenges clinicians

face and are crucial to benefiting patients. The CSSN stratifies

patients into four groups: low risk (0%–15% mortality), moderate

risk (16%–49% mortality), high risk (50%–84% mortality), and

very high risk (85%–100% mortality). This stratification may

guide MCS decision-making as follows: (1) Low-risk patients:

The complications of MCS may outweigh its benefits; thus,

pharmacological support should be prioritized. (2) Moderate- to

high-risk patients: Individualized assessment is required,

integrating clinical context and hemodynamic status, as MCS

may improve outcomes. (3) Very high-risk patients: MCS may

FIGURE 1

Cardiogenic shock survival nomogram (CSSN). The nomogram predicts the 30-day survival rates for patients with CS. SBP, systolic blood pressure;

SpO2, peripheral oxygen saturation. When using the nomogram, clinicians should locate the score for each patient’s parameters on the

corresponding axis, sum the scores of all variables to obtain the total score, and then determine the patient’s 30-day survival probability based on

the total score axis. For example, a male patient with acute myocardial infarction complicated by cardiogenic shock: Age: 50 years (score: 45),

Initial arterial blood pressure: 75/54 mmHg (score: 20), SpO₂: 81% (score: 10), Hemoglobin: 7.7 g/dl (score: 12.5), Serum creatinine: 200.8 µmol/L

(score: 5), Blood glucose: 13.5 mmol/L (score: 15), Arterial pH: 7.227 (score: 10), Arterial lactate: 14 mmol/L (score: 30), Norepinephrine use: yes

(score: 27.5), Total score: 175 (30-day survival probability: 25%).
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FIGURE 2

Kaplan–meier plotter for risk stratification based on nomogram.

FIGURE 3

The time-dependent ROC curve and AUC of the CSSN and CSS in the training (Panel A) and validation (Panel B) cohorts. AUC, the area under the ROC

curve; ROC, receiver operating characteristic; CSSN, cardiogenic shock survival nomogram; CSS, cardiogenic shock score.
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fail to reverse outcomes, necessitating careful consideration of

resource allocation and patient preferences. However, as this

study is still in the model development phase, clinical application

research will be the focus of subsequent work. Therefore, these

hypotheses lack evidence-based medical validation and require

further confirmation in future studies.

Risk assessment of CS patients also aids in guiding the

implementation of clinical trials. Previously, several randomized

trials investigating the use of MCS in CS patients failed to

demonstrate survival benefits. For instance, the large randomized

trial, IABP-SHOCK II, did not show that intra-aortic balloon

pump (IABP) could lower the 30-day, 1-year, and 6-year

FIGURE 4

Calibration plot of the CSSN and CSS in the training and validation cohort. Panels (A) demonstrate the calibration plots for predicting 30-day survival in

the training cohort, while panel (B) illustrates the calibration plots for predicting 30-day in the validation cohort.

FIGURE 5

Decision curve analysis of CSSN and CSS in the training (Panel A) and validation (Panel B) cohorts.
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mortality rates in patients with CS complicating acute myocardial

infarction (AMI) undergoing early revascularization (17, 21, 23).

Similarly, previous ECMO and Impella trials failed to

demonstrate survival improvements in CS (1, 19, 20, 24).

However, the latest randomized trial published by Møller and

colleagues in the New England Journal of Medicine (NEJM) has

changed this perspective (25). In this trial, 360 AMI-CS patients

were randomly assigned to either the Impella or the standard

treatment group, with all patients undergoing revascularization.

Results showed that the 180-day mortality rate in the Impella

group was 45.8%, significantly lower than the 58.5% in the

standard treatment group (hazard ratio = 0.74; 95% CI: 0.55–0.99;

P = 0.04). This marks the first MCS device proven to reduce

mortality in CS patients in an RCT since the 1999 SHOCK trial.

Notably, this trial differed from previous ones: (1) The trial

excluded patients in SCAI-CSWG stages A and B, avoiding the

imbalance of risks and benefits from using Impella in low-risk

patients. (2) Patients who had been resuscitated from out-of-

hospital cardiac arrest and remained comatose upon arrival at

the cardiac catheterization laboratory were excluded. This likely

excluded extremely critical patients who might not benefit

neurologically or survive from MCS. (3) The trial’s follow-up

period was 180 days, whereas previous studies typically had

30-day follow-ups. The SHOCK trial indicated that PCI’s effect

on 30-day mortality in AMI-CS patients was neutral, but benefits

were seen at 180 days (26). Therefore, 30 days as a primary

endpoint may be too early to assess the intervention’s effects

adequately. These findings highlight the importance of

considering both short-term and long-term outcomes, not just

short-term ones.

In summary, risk assessment and stratification of CS patients

are essential for guiding physicians in patient management and

facilitating the successful implementation of clinical trials.

Developing a simple and easy-to-use predictive model that

considers both short-term and long-term outcomes of CS will be

of significant clinical value.

Previous models

Currently, three primary models are used to predict the

prognosis of CS patients: IABP-SHOCK II risk score (7),

CardShock risk Score (8), and Cardiogenic Shock Score (CSS)

(9). These models provide tools for the management of CS

patients and the conduct of clinical trials. However, they have

not been widely used in clinical practice, possibly due to

limitations in population applicability, easy-to-use, and

consideration of long-term outcomes. Population applicability

may be the primary factor limiting the practical utility of these

models. The IABP-SHOCK II risk score was developed for AMI-

CS patients and requires post-PCI TIMI flow grades, making it

unsuitable for non-AMI-CS patients. The CardShock score was

developed in 2015 for all CS patients but included most AMI-CS

patients (81%). In addition, the sample size was only 219, which

may limit the applicability of the results to non-AMI-CS

patients. Historically, AMI has been the primary cause of CS,

constituting the majority of cases (>80%) (8). However, recent

epidemiological surveys indicate that the proportion of AMI-CS

in CS gradually decreases, now accounting for about 30% (3, 12).

In the 2017–2018 North American CCCTN study, only 30% of

CS cases were related to AMI, and among non-AMI-CS patients,

approximately two-thirds had a history of heart failure (12).

Therefore, models unsuitable for non-AMI-CS patients may limit

their clinical application.

TABLE 3 Subgroup analysis.

AMI cases non-AMI cases

Number (N = 541) (N= 1,143)

c-statistic 0.768 (0.737, 0.798) 0.734 (0.713, 0.755)

AUC 0.768 0.732

Variables HR (95%CI) P HR (95%CI) P

Age, year 1.040 (1.029, 1.052) <0.0001 1.030 (1.024, 1.037) <0.0001

SBP, mmHg 0.980 (0.971, 0.989) <0.0001 0.993 (0.988, 0.999) 0.0161

SpO2, % 0.987 (0.976, 0.996) 0.0167 0.983 (0.978, 0.989) <0.0001

Hemoglobin, g/dl 0.929 (0.855, 1.009) 0.0814 0.940 (0.893, 0.989) 0.0164

Serum creatinine, umol/L 1.001 (1.001, 1.002) 0.024 1.001 (1.001, 1.001) 0.0008

Blood glucose

<11.1 mmol/L Reference Reference

≥11.1 mmol/L 1.530 (1.177, 1.989) 0.0015 1.294 (1.067, 1.569) 0.0088

pH (Arterial blood gas)

<7.1 Reference Reference

7.1–7.35 0.424 (0.258, 0.697) 0.0007 0.535 (0.374, 0.766) 0.0006

>7.35 0.263 (0.141, 0.481) <0.0001 0.525 (0.344, 0.780) 0.0027

Arterial lactate, mmol/L 1.085 (1.051, 1.119) <0.0001 1.078 (1.054, 1.103) <0.0001

Norepinephrine 1.645 (1.178, 2.298) 0.0035 2.012 (1.607, 2.519) <0.0001

Multivariate Cox proportional hazards model for 30-day mortality in AMI and non-AMI cases.

HR, hazard ratio; CI, confidence interval; SBP, systolic blood pressure; SpO2, peripheral oxygen saturation.
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Secondly, the simplicity of the model and its consideration of

long-term outcomes also determine whether clinicians will use

them in practice. The CSS, a recent score system developed to

predict 30-day mortality in CS, has better population

applicability than the IABP-SHOCK II and CardShock risk

scores, covering all causes of CS (9). The CSS includes nine

easily obtainable parameters (age, sex, AMI-CS, systolic blood

pressure, heart rate, pH, lactate, glucose, and cardiac arrest) and

demonstrates good accuracy (c-statistic = 0.74). However, the CSS

only focuses on the 30-day mortality of CS patients and does not

consider long-term outcomes. In reality, the recovery of CS

patients within one year after discharge is not optimistic, and

survival rates continue to decline (4, 27). Currently, the in-

hospital mortality rate of CS patients is about 30%–40%, and the

one-year mortality rate can reach 50%–60% (3). Once again, the

latest Impella trial successfully demonstrated that the Impella

microaxial pump could reduce mortality in CS patients, and the

follow-up period for this trial was 180 days (6 months) rather

than 30 days (25). This indicates that the long-term outcomes of

CS patients are also worthy of our attention. This study

compared the performance of the CSS and the newly developed

CSSN using c-statistic, time-dependent ROC, calibration plots,

and decision curve analysis (DCA), indicating higher accuracy of

the CSSN. Furthermore, the study employed CSSN to predict

30-day mortality risk for all patients, grouping them based on

risk levels. Significant differences were observed in survival

curves among the groups over one year.

CSSN and its clinical contributions

A growing body of evidence suggests that several clinical

indicators can be used to predict the severity and outcomes of

patients with CS (7–9, 28). Based on the previous model, the

CSSN was developed, including the IABP-SHOCK II risk (7),

CardShock risk score (8), and CSS (9). In this study, we used

LASSO regression and the multivariable Cox model to screen and

confirm easily obtainable parameters in emergency settings and

those widely recognized in previous studies. Consequently, age,

SBP, SpO2, hemoglobin, serum creatinine, blood glucose, pH,

arterial lactate, and norepinephrine were identified and used to

develop the prognostic nomogram in our study. This nomogram

demonstrated good discrimination and calibration in predicting

patients’ 30-day probability of survival with CS, as assessed by the

c-statistic, AUC value, calibration plots, and clinical decision curve

analysis indicating good performance and high value for clinical use.

Based on previous models and after multiple refinements and

optimizations, our nomogram has several advantages (7–9):

(1) Comprehensive Application: Our model is designed for CS

resulting from any cause, and we have confirmed its accuracy in

both AMI-CS and non-AMI-CS through subgroup analysis.

(2) Simplicity and Accessibility: Our model includes only nine

parameters that are easily accessible in emergency settings, and it

is presented in the form of a nomogram, making it simple and

easy to use. Clinicians can quickly assess a patient’s risk using

our nomogram. (3) Holistic Approach: Our model performs well

even one year after discharge, enabling clinicians to provide more

appropriate treatment measures by weighing risks and benefits.

Furthermore, our model can be used with SCAI classification,

allowing physicians to assess a patient’s survival rates accurately.

SCAI divides cardiogenic shock into five stages (A-E),

corresponding to “at risk” for CS, “beginning” shock, “classic” CS,

“deteriorating”, and “extremis”, respectively (12). This staging is

based on a comprehensive evaluation of blood pressure, heart rate,

lactate levels, urine output, serum creatinine, vasopressor dose and

duration, and blood pressure response to vasopressors. Through

SCAI classification, clinicians can roughly understand the patient’s

disease progression stage and provide appropriate treatment

strategies (6). Our nomogram can complement SCAI classification

for a more precise assessment. For example, age is a critical factor

influencing the prognosis of CS patients, and patients at the same

SCAI stage may face different risks due to age differences (29, 30).

Combining CSSN with SCAI staging can enable a more precise

assessment. Moreover, our study incorporates continuous variables

into the model as much as possible to achieve more refined

predictive capabilities, greatly enhancing its usability.

Limitations

Despite the large sample size and thorough evaluation and

validation, our study has several limitations inherent to

retrospective research. The primary limitation is the inability to rule

out unknown confounding factors, a common issue in retrospective

studies. These unknown factors could potentially influence our

predictive model’s outcomes and accuracy. The 7:3 random division

(training-validation sets) used in this study is an internal validation

method, which cannot fully demonstrate the model’s

generalizability in independent external populations. Secondly, the

CSSN is based on the MIMIC database, and all patients received

ICU hospitalization, which may introduce bias when applied to

patients in other regions. Additionally, because the MIMIC database

does not include etiological diagnoses of CS, we could not obtain

specific causes of CS in patients; the diagnosis of AMI-CS was based

on the admission diagnosis. Although this study is based on a large

database, all patients were from ICUs in a single region, and their

treatment strategies and population characteristics may differ from

those in other regions. Future multicenter and multi-regional

prospective studies are needed to further validate the generalizability

of the CSSN. Despite these limitations, we believe the CSSN

remains a valuable tool for clinicians in managing cardiogenic

shock. The model’s ability to predict outcomes of CS, combined

with its simplicity, makes it a practical addition to current clinical

decision-making processes. Future prospective studies and

validation in diverse patient populations are needed further to

enhance the robustness and applicability of the CSSN.

Conclusion

In this study, we developed a prognostic model for predicting

survival rates in patients with cardiogenic shock, known as the
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Cardiogenic Shock Survival Nomogram (CSSN). The CSSN is

constructed using easily obtainable parameters in an emergency

setting. This model is straightforward, intuitive, and easy to use.

Utilizing the CSSN aids physicians in the early risk assessment of

CS patients and helps formulate targeted treatment strategies,

potentially improving patient outcomes.
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