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Background: Acute aortic dissection is a life-threatening condition, and
malperfusion significantly exacerbates the prognosis of patients diagnosed
with type A Acute aortic dissection (ATAAD). Current risk assessment tools
often fail to consider the impact of nutritional and inflammatory factors,
limiting their predictive accuracy. The aim of this study was to develop a
machine learning model that integrates nutritional and inflammatory indices
to predict 1-year mortality in ATAAD patients with malperfusion.

Methods: This retrospective study included 433 ATAAD patients with
malperfusion from Henan Provincial Chest Hospital (August 2020 to June
2023). Four machine learning models—logistic regression, XGBoost, random
forest, and deep neural network—were developed to predict 1-year mortality
using inflammatory and nutritional laboratory values, indices, and other
clinical variables. Model training employed stratified 5-fold cross-validation
and SMOTE for imbalanced data. The area under the receiver operating
characteristic (ROC AUC) and other performance metrics were used to
evaluate model efficacy, while SHAP values were computed to interpret
feature importance.

Results: Among 433 ATAAD patients with malperfusion, the random forest
model used inflammatory and nutritional laboratory values to achieve the
highest discrimination (AUC = 0.8242, 95% Cl 0.7095-0.9219), while the
XGBoost model performed best with inflammatory and nutritional indices
(AUC = 0.7334, 95% Cl 0.6115-0.8488). Calibration curves and Brier scores
indicated good agreement between predicted and observed outcomes.
Decision curve analysis demonstrated consistent net benefit for random
forest and XGBoost models across clinically relevant threshold probabilities.
Feature importance and SHAP analyses identified albumin, platelet count,
total cholesterol, and C-reactive protein as consistently influential predictors.
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Conclusion: Nutritional and inflammatory factors significantly contribute to the
1-year mortality risk of ATAAD patients with malperfusion. Machine learning
models that incorporate these factors, particularly random forest and XGBoost,
can effectively stratify patient risk and support clinical decision-making. These
findings underscore the importance of a comprehensive approach to risk
assessment that includes metabolic and inflammatory markers to enhance
patient outcomes and guide personalized interventions.
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Introduction

Acute aortic dissection (AAD) is a critical and potentially fatal
condition that demands immediate diagnosis and treatment. The
estimated occurrence rate of AAD is approximately 5-30 cases
per 1 million individuals annually (1). AAD results from a tear
in the layers of the aortic wall, and if left untreated, mortality
rates can increase to 50% within the initial 48 h (2). Most AADs
involve the aortic arch and occur due to a tear where the aorta
exits from the heart, and type A AADs (ATAAD) account for
70%-75% of all aortic dissections (3). Malperfusion occurs in
one-third with AAD (4-7);
furthermore, malperfusion has a substantial negative impact on

approximately of patients
patient prognosis by compromising blood flow to critical organs
and tissues, significantly influencing both short- and long-term
outcomes for affected individuals (8).
Studies that
malperfusion have a significantly higher in-hospital mortality rate
(21.5% vs. 57%) than to those without malperfusion (9).
However, the specific 1-year mortality rate for ATAAD patients

have demonstrated patients  experiencing

with malperfusion is not explicitly known. Various risk factors
such as age, genetic predisposition, hypertension, and other
comorbidities can increase a patient’s likelihood of developing
ATAAD and exacerbate their prognosis (10). Prompt recognition
of ATAAD and appropriate management of malperfusion are
crucial to improving outcomes for these critically ill patients.
Traditional risk assessment tools, such as the Stanford
classification and the DeBakey classification, have limitations in
predicting malperfusion in ATAAD patients. These traditional
risk stratification models often overlook the role of nutritional
and inflammatory factors, which are crucial in the
pathophysiology of ATAAD. Inflammatory factors are involved
in the body’s response to trauma and indicate the state of
lymphocytes, neutrophils, and other immune responses (11).
These immune responses increase the expression of proteases
and reactive oxygen species (ROS), which lead to increased
apoptosis of smooth muscle cells in the aortic artery and further
medial degradation (12). Recent studies have shown that
vital to the

development and progression of ATAAD (13, 14). However,

nutritional and inflammatory factors are
there is a lack of machine learning models that use these factors
to accurately predict the 1-year mortality rate for ATAAD

patients with malperfusion.
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Identifying predictive indicators of 1-year mortality is essential
for enhancing patient outcomes, since these patients require
vigilant monitoring even after successful interventions. This
study aimed to develop a machine learning model that
incorporates nutritional and inflammatory factors to predict
1-year mortality in ATAAD patients with malperfusion. By
integrating these critical factors, this study seeks to refine risk
assessment and care in
ATAAD patients.

support targeted post-treatment

Methods
Data set

Patients

The study included 433 ATAAD patients with malperfusion
from Henan Provincial Chest Hospital from August 2020 to June
2023. Approval for the study was obtained from the Henan
Provincial Chest Hospital Ethics Committee [Reg. No. 2024
(09-16)]; since the study was retrospective, individual informed
consent was waived. On the basis of the Diagnosis of
Aortic Dissection published by the European Society of
Cardiology (ESC) and the Stanford criterion, ATAAD was
diagnosed via symptoms, physical examination, transthoracic
echocardiography, and computed tomography angiography
(CTA). Malperfusion was diagnosed in patients on the basis of
clinical symptoms (altered consciousness, paralysis, melena,
abdominal pain, tenderness to palpation, loss of sensory or motor
function of the lower extremities), laboratory tests (elevated
cardiac enzymes, lactate, myoglobin, or creatine kinase), and
to the

radiographic findings [computed tomography angiography (CTA)

impaired blood flow corresponding arteries on
scan or ultrasound] (Supplementary Material 1). The exclusion
criteria included relapse, declined treatment, a lack of data
required to calculate inflammatory and nutritional indices, or loss

to follow-up. The workflow of this study is shown in Figure 1.

Predictors and endpoint

A total of 19 variables, including age, sex, BMI, the
(IMI), the (NT),
inflammatory and nutritional laboratory values (IMNLV), and

inflammatory  index nutritional  index

inflammatory and nutritional indices (IMNI), were collected.
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Total AAD with malperfusion
patients included: 433

Survivors: 352 patients

FIGURE 1
Flow chart of patient enrollment.

443 patients with with type A Acute aortic
dissection with malperfusion identified
(August 2020 - June 2023)

Non-Survivors: 81 patients

Exclusion Criteria (n=10):

-Repeat dissection

-Declined surgery

-Cases lack of data required to calculate
inflammatory and nutritional indices
-Loss of follow-up

The inflammatory and nutritional indices were calculated as
described in Supplementary Material 2. IMNLV, IMNI, IMI and
NI were separately used as predictors along with age, sex, and
BMI to develop the models. The variables are presented as
continuous variables, except for sex, which is represented as a
binary variable. The primary endpoint was 1-year mortality after
the diagnosis of ATAAD with malperfusion.

Data analysis

Data preprocessing

Data analysis was carried out for 1-year mortality. The full
dataset was divided into model development (70%) and model
testing (30%) datasets. The model used stratified random
sampling and resulted in approximately equal frequencies of
outcomes in both subsets.

Model development and testing

The dataset was used to establish four predictive models for
binary classification of the modeled outcome: a logistic regression
model, an XGBoost model, a random forest model and a deep
neural network. Candidate variable selection for all the models
involved all the predictors in the dataset. The models were
trained with a stratified 5-fold cross-validation method, in which
the development dataset was partitioned into five data “folds”. To
improve training, we rebalanced the training subset with respect
to the outcome via synthetic minority oversampling (SMOTE).
With the rebalanced training subset, hyperparameter tuning was
performed by applying a random grid search strategy to select an
optimal hyperparameter set. This cross-validation was repeated
five times so that each fold was used for validation exactly once.
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The receiver operating characteristic (ROC) area under the curve
(AUC) was calculated for each validation fold, and the optimal
threshold was determined by minimizing the distance from the
AUC to the (0, 1) point.

Once cross-validation was completed, the model with the
highest validation AUC was selected, and its corresponding
hyperparameters were saved. This model was then evaluated on
a holdout testing dataset. For the testing dataset, we computed
the ROC AUC and applied the optimal prediction threshold
determined during validation to predict outcomes. We also
assessed the models’ performances by calculating key metrics
such as the sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV), each with their
respective 95% confidence intervals. To evaluate clinical utility,
decision curve analysis (DCA) was used to quantify the net
benefit of each model across a range of probability thresholds.
Additionally, calibration curves were generated on the internal
test set, and brier scores were calculated to quantify the overall
accuracy of predicted probabilities.

Model interpretability

To interpret how individual features contribute to the model’s
ability to predict 1-year mortality, we computed feature
importance values via both model-specific and post hoc
explainability methods. For model-specific feature importance,
we extracted feature importance scores from the ensemble
model by analyzing their respective decision trees. Each feature’s
importance was determined on the basis of its role in tree node
splits, quantified by metrics such as information gain and Gini
index reduction. The cumulative importance values across all
trees were normalized for individual features to indicate their
relative influence on the model’s predictions.
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SHAPley additive explanations (SHAP) is a post hoc
explainability method designed as an additive feature attribution
method; it represents the contribution of each feature to the ML
model  prediction by  constructing an  interpretable
approximation of the original model. Post hoc explainability is
required to understand complex models, such as XGBoost and
random forest, that forgo simplicity and explainability for
increased model performance. SHAP values are a unified
measure of 4 feature attribution models that quantitatively
decide how important a feature is to the decision-making
process of the model. Additionally, we performed decision curve
analysis, a method that accounts for the different weights of
misclassification types, providing a direct clinical interpretation.
The net benefit of each model was calculated and graphically
displayed across a range of threshold probabilities, illustrating

the clinical utility of each model.

Statistical analysis

For comparisons between the survivor and non-survivor
groups, continuous variables were tested for normality using the
Shapiro-Wilk test. Normally distributed variables were expressed
as mean + standard deviation (SD) and compared between
groups using Student’s t-test. Non-normally distributed variables
were presented as median (interquartile range, IQR) and
compared using the Mann-Whitney U-test. Categorical variables
were summarized as counts (percentages) and compared
between groups using the Chi-square test. The classification
performance was assessed via the ROC AUC, sensitivity,
specificity, PPV, and NPV metrics. Bootstrapping was used to
estimate the variability in all the metrics, and 95% confidence
intervals were calculated. Pairwise DeLong tests were conducted
ROC AUC performance

individual models. Statistical significance was taken as P < 0.05.

to statistically compare across

Software and packages

Python version 3.12.6 was used to perform all analyses. The
1.5.2) data
development, and calculation of

scikit-learn  (version package was wused for

preprocessing, model
performance metrics. Logistic regression, random forest, and
deep neural networks were implemented in scikit-learn (version
1.5.2), SMOTE-Tomek was implemented in imblearn (version
0.12.3), and the xgboost model was implemented in the xgboost
(version 2.1.1) package. Statistical testing was performed via

scipy (version 1.14.1).

Results

Of the 443 consecutive patients screened, 10 were excluded,
and the 97.74%. Table 1
summarizes the baseline characteristics of included 433 patients
stratified by 1-year survival status. Of the cohort, 352 (81.3%)

follow-up completeness was
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were survivors and 81 (18.7%) were non-survivors. The median
age was 48 years (IQR: 40-57) overall, 47 years (40-57) in
survivors, and 51 years (42-58) in non-survivors (P =0.06).
Males comprised 65.1% of the cohort, with a similar distribution
between survivors (65.1%) and non-survivors (65.4%) (P=0.95).
The median BMI was 21 (IQR: 18-25) with no significant group
(P=0.18). Most
markers, including C-reactive protein, white blood cell count,

difference inflammatory and nutritional
and lymphocyte count, did not differ significantly between
groups; however, platelet count was significantly lower in non-
survivors (P =0.02). Prognostic nutritional index was also lower
(P<0.01) and instant nutritional assessment score higher
(P=0.02) in non-survivors. Coronary malperfusion was more
common in non-survivors (58.0% vs. 5.4%, P<0.01). Non-
survivors also had a higher prevalence of aortic atherosclerosis
(9.9% vs. 4.0%, P=0.04) and a longer median time from
symptom onset to surgery [7 (IQR: 4-10) vs. 4 (IQR: 2-6)
hours, P<0.01] (Supplementary Table S1).

The performance of four machine learning models (a logistic
regression model, an XGBoost model, a random forest model and
a deep neural network) in the prediction of 1-year mortality was
assessed via different feature sets: IMNLV, IMNI, IMI and NI. Key
metrics, including the ROC AUC, sensitivity, specificity, PPV, and
NPV, were used to evaluate the models effectiveness (Table 2).

Inflammatory and nutritional laboratory values. The random
forest model demonstrated the highest performance, with an
AUC of 0.8225 (95% CI: 0.7184-0.9136), achieving a sensitivity
of 0.7082 (95% CI: 0.5238-0.8750) and a specificity of 0.8107
(95% CI: 0.7315-0.8807). The XGBoost model showed a slightly
lower AUC of 0.7901 (95% CI: 0.6738-0.8857), with lower
sensitivity (0.4948, 95% CI: 0.2857-0.7001) but higher specificity
(0.9432, 95% CI: 0.8956-0.9818) (Figure 2A). DeLong tests
confirmed random forest model was superior to all other
models (all p<0.01). The decision curve analysis revealed that
the random forest model demonstrated the most significant net
benefit across a wide range of 10%-50% probabilities in
predicting outcomes (Figure 2B). The calibration curve further
showed that the random forest model was well calibrated (Brier
score =0.1288)
reliability in predicting 1-year mortality for type A aortic

(Supplementary Figure S1), indicating its
dissection with malperfusion.

The feature importance and SHAP value of variables in the
XGBoost and random forest models for each data source are
shown in Figures 2C-. SHAP values provide a nuanced view of
how each feature impacts individual predictions, capturing
variability and localized interactions. By comparing feature
importance of the XGBoost and random forest models, it was
clear that albumin, platelet count, C-reactive protein and total
cholesterol overlapped among the 5 most important features of
both models. In addition, albumin was also identified as a
shared top 5 feature in both models based on SHAP values,
beyond platelet count.

An albumin concentration <3.7 g/dl and >4.09 g/dl, a platelet
<1442x10°/L, a total
<157.97 mg/dl, and a C-reactive protein concentration >2.32 mg/

count cholesterol  concentration

dl were associated with an increase in model SHAP output,
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P-value

Overall (n = 433)

Non-survivors (n = 81)

Survivors (n = 352)

Age, Median (IQR) 48 (40-57) 47 (40-57) 51 (42-58) 0.06
Gender, n (%)

Male 282 (65.13) 229 (65.06) 53 (65.43) 0.95
Female 151 (34.87) 123 (34.94) 28 (34.58)

Body mass index, Median (IQR) 21 (18-25) 21 (18-24) 22 (18-26) 0.18
Albumin, Median (IQR) 3.84 (3.76-3.95) 3.85 (3.77-3.95) 3.77 (3.61-4.02) 0
C-reactive protein, Median (IQR) 2.84 (2-3.66) 2.81 (1.95-3.59) 2.90 (2.15-3.83) 0.29
Platelet count, Median (IQR) 164.42 (152.14-177.92) 165.37 (153.16-179.20) 159.69 (146.76-172.51) 0.02
Neutrophil count, Median (IQR) 5.02 (4.16-6.17) 5.01 (4.12-6.07) 5.14 (4.28-6.60) 0.15
Monocyte count, Median (IQR) 0.66 (0.50-0.81) 0.67 (0.50-0.84) 0.63 (0.48-0.75) 0.13
Lymphocyte count, Median (IQR) 1.93 (1.40-2.45) 1.90 (1.39-2.45) 1.95 (1.46-2.43) 0.62
Total cholesterol, mean (SD) 155.79 (13.31) 155.95 (13.53) 155.12 (12.40) 0.60
White blood cell count, Median (IQR) 7.96 (6.84-9.25) 7.92 (6.84-9.14) 8.18 (6.92-9.46) 0.22
Neutrophil to lymphocyte ratio, Median (IQR) 2.76 (2.02-3.61) 2.77 (1.98-3.61) 2.72 (2.16-3.54) 0.73
Monocyte to lymphocyte ratio, Median (IQR) 0.34 (0.25-0.48) 0.35 (0.25-0.49) 0.30 (0.23-0.44) 0.21
Platelet to lymphocyte ratio, Median (IQR) 86.05 (65.94-117.70) 87.75 (67.40-119.31) 84.27 (62.21-114.28) 0.30
Systemic immune inflammation index, Median (IQR) 442.04 (328.32-602.23) 443.45 (327.12-603.61) 421.77 (347.22-588.59) 0.83
Systemic inflammation response index, Median (IQR) 1.72 (1.13-2.50) 1.76 (1.14-2.56) 1.56 (1.08-2.38) 0.50
Controlling nutritional status score, Median (IQR) 1(1-2) 1(1-2) 1(1-3) 0.18
Prognostic nutritional index, Median (IQR) 38.41 (37.61-39.51) 38.51 (37.71-39.51) 37.71 (36.11-40.21) <0.01
Instant nutritional assessment, Median (IQR) 1(1-2) 1(1-2) 1(1-2) 0.02
Malperfusion, n (%)

Coronary 66 (15.24) 19 (5.40) 47 (58.02) <0.01
Cerebral 136 (31.41) 93 (26.42) 43 (53.09)

Spinal cord 9 (2.08) 8 (2.27) 1(1.23)

Mesenteric 106 (24.48) 87 (24.72) 19 (23.46)

Renal 103 (23.78) 91 (25.85) 12 (14.81)

Lower leg 180 (41.57) 160 (45.45) 20 (24.69)

Dissection site, n (%)

Above renal arteries 0 (0) 0 (0) 0 (0) 1
Below renal arteries 433 (100) 352 (100) 81 (100)

reflecting a model-detected trend toward increased mortality risk.
Also, age >65 years and male sex were associated with an increase
in the model output linked to a higher predicted risk of 1-year
mortality (Figures 2G-L).

Inflammatory and nutritional indices

When the inflammatory and nutritional indexes were used,
the XGBoost model achieved the highest performance, with an
AUC of 0.7334 (95% CI: 0.6115-0.8488), a sensitivity of 0.6688
(95% CI: 0.4737-0.8519), and a specificity of 0.7164 (95% CI:
0.6336-0.7947). The random forest model had a slightly lower
AUC of 0.7075 (95% CI: 0.5604-0.8317), with a sensitivity of
0.5032 (95% CI: 0.3041-0.7037) and a higher specificity of
0.8865 (95% CI: 0.8241-0.9439) (Figure 3A). Delong tests
confirmed the XGBoost model was superior to all other models
(all p<0.01). The XGBoost model performed exceptionally well
when the threshold probabilities were between 0.12 and 0.34
(Figure 3B). Moreover, the XGBoost model also demonstrated
score = 0.1506)  (Supplementary
Figure S1), indicating its reliability in predicting the 1-year

good calibration  (Brier

mortality of acute type A aortic dissection with malperfusion.

Frontiers in Cardiovascular Medicine

A comparison of the feature importance of the inflammatory
and nutritional indices in the XGBoost and random forest
models revealed that the prognostic nutritional index, systemic
immune inflammation index, and neutrophil-to-lymphocyte
ratio were shared among the top 5 most important features in
both models. Additionally, SHAP values indicated that these
three indices were consistently shared among the top 5 features
in both models, along with the monocyte-to-lymphocyte ratios
and systemic inflammation response index (Figures 3C-F).

A systemic inflammation response index from 1.26 to 1.62 and
>3.96, a neutrophil-to-lymphocyte ratio >4.01, a monocyte-to-
lymphocyte ratio from 0.24 to 0.23, and a prognostic nutritional
index <3722 and >40.81 were associated with higher SHAP
values, indicating a model-predicted trend toward increased
1-year mortality risk. The systemic immune inflammation index
is more scattered approximately 0, suggesting that those indices
are both positive and negative in different patients (Figures 3G-K).

Nutritional Index

For the nutritional index, the XGBoost model achieved the
highest AUC at 0.7358 (95% CI: 0.6158-0.8515), with a
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TABLE 2 Prediction ability of the 4 machine learning models in 1-year mortality of acute type A aortic dissection with malperfusion.

AUC (95% ClI)

Sensitivity

Specificity PPV (95% CI) | NPV (95% ClI)

Datasets Model Best
threshold

Inflammatory | Logistic 0.72 0.5695 (0.4186-0.7084)

and regression

nutritional XGBoost 0.76

laboratory Random forest 0.43

values Deep neural 0.61
network

Inflammatory | Logistic 0.76

and regression

nutritional | XGBoost 0.29

indexes Random forest 0.48
Deep neural 0.62
network

Nutritional Logistic 0.56

index regression
XGBoost 0.68
Random forest 0.62
Deep neural 0.63
network

Inflammatory | Logistic 0.63

index regression
XGBoost 0.4
Random forest 0.24
Deep neural 0.5
network

sensitivity of 0.4949 (95% CI: 0.2857-0.6897) and a specificity of
0.9439 (95% CI: 0.8972-0.9813). The random forest model
showed a comparable AUC of 0.7169 (95% CI: 0.5636-0.8481),
with slightly lower sensitivity of 0.4600 (95% CI: 0.2590-0.6670)
but higher specificity of 0.9628 (95% CI: 0.9223-0.9910).
DeLong tests confirmed the XGBoost model was superior to
all other p<0.01). The XGBoost
performed particularly well when the threshold probability was

models (all model
between 0.13 and 0.35, highlighting its reliability for evaluating
patients with malperfusion and ATAAD to predict 1-year
mortality (Figure 4B).

A comparison of the feature importance of the nutritional
indices in the XGBoost and random forest models revealed that
the prognostic nutritional index was a shared feature from the
top 3 most important features in both models. Furthermore, the
top 3 features according to the SHAP value were the prognostic
nutritional index, age and BMI in both models. The prognostic
nutritional index exhibited the same pattern as previously
described,
contributes significantly to an increased model-predicted trend

suggesting that an abnormal nutritional status

forl-year mortality risk. Age and BMI are more scattered
approximately 0, suggesting that those indices are both positive
and negative in different patients (Figures 4C-F).

Inflammatory indices

Among the four models evaluated for predicting the
inflammatory response in ATAAD patients with malperfusion,
all demonstrated limited

ability to distinguish between

classes, with moderate sensitivity and specificity values that
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(95% Cl)
0.2836 (0.1176-0.4828)

(95% CI)
0.9425 (0.8928-0.9810) | 0.5247 (0.2500-0.8000) | 0.8545 (0.7899-0.9138)

0.7901 (0.6738-0.8857) | 0.4948 (0.2857-0.7001) | 0.9432 (0.8956-0.9818) | 0.6608 (0.4375-0.8697) | 0.8930 (0.8291-0.9460)
0.8225 (0.7184-0.9136) | 0.7082 (0.5238-0.8750) | 0.8107 (0.7315-0.8807) | 0.4581 (0.3000-0.6216) | 0.9249 (0.8617-0.9707)
0.6422 (0.4927-0.7887) | 0.3790 (0.1923-0.6000) | 0.9440 (0.8990-0.9822) | 0.6096 (0.3333-0.8750) | 0.8683 (0.8053-0.9279)

0.6780 (0.5458-0.8160) | 0.2886 (0.1111-0.5000) | 0.9905 (0.9700-1.0000) | 0.8707 (0.5710-1.0000) | 0.8616 (0.8000-0.9187)

0.7334 (0.6115-0.8488) | 0.6688 (0.4737-0.8519) | 0.7164 (0.6336-0.7947) | 0.3466 (0.2041-0.4884) | 0.9059 (0.8434-0.9634)
0.7075 (0.5604-0.8317) | 0.5032 (0.3041-0.7037) | 0.8865 (0.8241-0.9439) | 0.5000 (0.2915-0.7201) | 0.8879 (0.8218-0.9434)
0.6285 (0.4932-0.7570) | 0.2915 (0.1303-0.4832) | 0.9626 (0.9238-0.9910) | 0.6407 (0.3333-0.9170) | 0.8562 (0.7949-0.9145)

0.6299 (0.4721-0.7786) | 0.3729 (0.1739-0.5667) | 0.9529 (0.9065-0.9904) | 0.6432 (0.3633-0.8889) | 0.8701 (0.8091-0.9244)

0.7358 (0.6158-0.8515) | 0.4949 (0.2857-0.6897) | 0.9439 (0.8972-0.9813) | 0.6637 (0.4286-0.8750) | 0.8932 (0.8349-0.9402)
0.7169 (0.5636-0.8481) | 0.4600 (0.2590-0.6670) | 0.9628 (0.9223-0.9910) | 0.7333 (0.5000-0.9333) | 0.8881 (0.8250-0.9455)
0.7036 (0.5594-0.8407) | 0.4145 (0.2174-0.6297) | 0.9810 (0.9528-1.0000) | 0.8280 (0.5556-1.0000) | 0.8818 (0.8235-0.9381)

0.6407 (0.5091-0.7657) | 0.3809 (0.1904-0.5714) | 0.8793 (0.8108-0.9386) | 0.4147 (0.2105-0.6364) | 0.8637 (0.7927-0.9266)

0.5539 (0.4250-0.6727) | 0.4181 (0.2272-0.6000) | 0.7077 (0.6226-0.7885) | 0.2430 (0.1212-0.3714) | 0.8441 (0.7683-0.9157)
0.5363 (0.4013-0.6595) | 0.8765 (0.7273-1.0000) | 0.2264 (0.1538-0.3093) | 0.2041 (0.1321-0.2788) | 0.8903 (0.7500-1.0000)
0.4981 (0.3697-0.6214) | 0.3315 (0.1429-0.5263) | 0.7526 (0.6698-0.8302) | 0.2337 (0.0968-0.3793) | 0.8317 (0.7586-0.9043)

reflect a weaker overall discriminatory power for this
application (Figures 5A,B).

A comparison of the feature importance of the inflammatory
indices in the XGBoost and random forest models revealed that
only the systemic immune inflammation index was shared by
the top 3 most important features in both models. Furthermore,
in both models, the top 3 features in terms of the SHAP value
were the systemic inflammation response index, monocyte-to-
lymphocyte ratio, and neutrophil-to-lymphocyte ratio. These
inflammation indicators may have limited predictive power in
their specific combination, which could contribute to the
model’s overall limited performance (Figures 5C-F).

Individual patients included in the random forest model.
SHAP value visualizations for three individual patients in a
waterfall plot of the random forest model illustrate the impact of
each variable on model predictions for the inflammatory and
nutritional laboratory values. As shown in Figure 6A, the level
of albumin, white blood cell count, and neutrophil count had
strong negative impacts, decreasing the predicted outcome.
Conversely, the monocyte count and body mass index had
minor positive effects. Figure 6B shows a similar trend in which
the ALB concentration and lymphocyte count are influential
negative predictors, whereas sex and monocyte count slightly
increase the prediction. Figure 6C shows that Albumin has a
notably high positive impact, indicating its significant
contribution to an elevated prediction score, alongside a smaller
Platelet Overall, these

visualizations highlight Albumin as a consistently impactful

contribution from the Count.
feature, with its effect varying between negative and positive
This

underscores the complexity of feature interactions within the

contributions, depending on the patient. variation
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FIGURE 2

(A) ROC analysis results of the four models, including logistic regression, random forest, deep neural network, and XGBoost. (B) Decision curve
analysis illustrating the potential clinical application of the prediction models (logistic regression, random forest, deep neural network, and
XGBoost) across a range of threshold probabilities. (C) Importance matrix of the XGBoost model. (D) SHAP summary plot of all the features in
the XGBoost model. (E) Importance matrix of the random forest model. (F) SHAP summary plots of all features in the random forest model.
(G-L) Beeswarm plot illustrating the SHAP values for albumin, platelet count, total cholesterol, C-reactive protein, age and gender in the random
forest model.

Frontiers in Cardiovascular Medicine 07 frontiersin.org



Zhang et al.

10.3389/fcvm.2025.1539267

Sensitivity

—— Logistic regression
—— XGBoost

—— Random forest

—— Deep neural network

015

Net Benefit
°
=
S

°
o
&

6 04 02
Specificity

Logistic regression
XGBoost

Random forest

Deep neural network

- Classifying all patients as having the outcome
-~ Classifying no patient as having the outcome

®

SHAP value for
Prognostic nutritional index

FIGURE 3

20 30 40 50 60 70 80
Threshold Probability, %
K
PR .
o
s .
*

Variable

Prognostic nutritional index

Gender

Neutrophil to lymphocyte ratio
Systemic immune inflammation index
Instant nutritional assessment
Monocyte to lymphocyte ratio
Systemic inflammation response index
Platelet to lymphocyte ratio

Body mass index

Controlling nutritional status score
Age

0

D

Prognostic nutritional index

Neutrophil to lymphocyte ratio
Monocyte to lymphocyte ratio
Systemic inflammation response index
Systemic immune inflammation index
Platelet to lymphocyte ratio

Body mass index

Gender

Age

Controlling nutritional status score

Instant nutritional assessment

XGBoost

20

40

60

80 100

Feature Importance (%)

High

Low

SHAP value (impact on model output)

Feature Value

E

Prognostic nutritional index

Systemic inflammation response index:
Systemic immune inflammation index
Monocyte to lymphocyte ratio
Neutrophil to lymphocyte ratio

Platelet to lymphocyte ratio

Variable

Age

Body mass index

Gender

Controlling nutritional status score

Instant nutritional assessment:

0 20

Feature Importance (%)

Prognostic nutritional index

Monocyte to lymphocyte ratio

Systemic inflammation response index
Neutrophil to lymphocyte ratio

2 Systemic immune inflammation index
3 Platelet to lymphocyte ratio
S Gender
Body mass index

Age

Controlling nutritional status score

Instant nutritional assessment

-0.25

Random forest

0.00

40

60

0.25
SHAP value (impact on model output)

0.50

80 100

High

Feature value

Low

-2
325 35.0 37.5 40.0 425 45.0

Prognostic nutritional index

J

o o e
<) w o

inflammation index
S
w

SHAP value for
Systemic immune

|
L
o

47.5

Systemic inflammation response index

A

SHAP value for

500

1000 1500

Systemic immune inflammation index

2
=
& 10
[
g
g os
<
[-3
£ oo
o
2
@
-0.5
g
o
§-10
$-1

0.2

0.4

0.6 0.8 1.0

Monocyte to lymphocyte ratio

2.0 o 15 -
= 8t @ e .
1.5 13 :
g g 10 R
LBx 10 3 ‘_% : ..
SEl Fl . 26 05 1 R
OEE 0.5 . os % e e dge -
&= ‘i . s 3 JNe.,,
e ’ ® sE K- ol
SEa 007 g 3> 001 % e
a0 ; ao i,
g22-0.5 q+ i
SN 5% 07| TE Y
g=-100 ¥ S 4
> o 2-10
[ £ &
Q
-2.0 Z2-15 k1
0 2 2 6 8 0 2 4 6 8 10

Neutrophil to lymphocyte ratio

(A) ROC analysis results of the four models, including logistic regression, random forest, deep neural network, and XGBoost. (B) Decision curve
analysis illustrating the potential clinical application of the prediction models (logistic regression, random forest, deep neural network, and
XGBoost) across a range of threshold probabilities. (C) Importance matrix plot of the XGBoost model. (D) SHAP summary plots of all the features
in the XGBoost model. (E) Importance matrix plot of the random forest model. (F) SHAP summary plots of all features in the random forest
model. (G-K) Beeswarm plot illustrating the SHAP values for the systemic inflammation response index, neutrophil-to-lymphocyte ratio,
monocyte-to-lymphocyte ratio, prognostic nutritional index (PNI) and systemic immune inflammation index features in the XGBoost model.
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(A) ROC analysis results of the four models, including logistic regression, random forest, deep neural network, and XGBoost. (B) Decision curve
analysis illustrating the potential clinical application of the prediction models (logistic regression, random forest, deep neural network, and
XGBoost) across a range of threshold probabilities. (C) Importance matrix plot of the XGBoost model. (D) SHAP summary plots of all the features
in the XGBoost model. (E) Importance matrix plot of the random forest model. (F) SHAP summary plots of all features in the random forest model.
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model and their individualized impact on prediction scores
(Figures 6A-C).

Discussion

In this retrospective study, we developed a predictive
machine learning model for evaluating ATAAD with a 1-year
mortality rate incorporating nutritional and inflammatory
factors. Among these factors, albumin, platelet count, total
cholesterol, and c-reactive protein had the highest predictive
value for mortality among the nutritional and inflammatory
factors. The predictive values of these factors indicate that

Frontiers in Cardiovascular Medicine

these factors are the most reliable predictors of 1-year
mortality in ATAAD patients with malperfusion. The random
forest model had excellent prediction ability: it had an AUC of
0.8225 and good discrimination and calibration power in
predicting 1-year mortality in the inflammatory and nutritional
laboratory values dataset.

Traditional risk models tend to focus on demographic and
clinical factors, such as age, sex, and disease history. However,
emerging biomarkers related to inflammation and nutrition play
significant roles in the pathophysiology of AAD (15-17).
Previous studies have demonstrated that inflammatory factors
and nutritional factors can significantly influence patient
prognosis (13, 18). The importance of inflammatory and
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FIGURE 5

(A) ROC analysis results of the four models, including logistic regression, random forest, deep neural network, and XGBoost. (B) Decision curve
analysis illustrating the potential clinical application of the prediction models (logistic regression, random forest, deep neural network, and
XGBoost) across a range of threshold probabilities. (C) Importance matrix plot of the XGBoost model. (D) SHAP summary plots of all the features
in the XGBoost model. (E) Importance matrix plot of the random forest model. (F) SHAP summary plots of all features in the random forest model.

nutritional factors in predicting patient outcomes is well Nutrition has been closely linked with AAD mortality rates,
documented in the cardiovascular disease literature, but few  especially since malnutrition has been associated with
studies have systematically integrated these parameters into ML  exacerbations of cardiovascular disorders (19). Predictors such
models for ATAAD patients with perfusion. as albumin levels, the prognostic nutritional index, and other
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tests can reflect a patient’s nutritional status as well as the severity
of their condition (20-22). Nutritional factors such as albumin
levels and the prognostic nutritional index (which reflect a
patient’s overall health and recovery capacity) are similarly
critical for predicting outcomes (23, 24). For example, a
patient’s prognostic nutritional index has been linked to surgical
outcomes and long-term mortality under cardiovascular
conditions and has been shown to be an accurate indicator of
their future recovery (25, 26). Malnutrition has been linked to
poorer outcomes in various cardiovascular conditions, and it
can exacerbate the course of diseases such as AAD by
weakening the body’s ability to recover from acute events (26).
Similarly, inflammation plays a pivotal role in the degradation
of the aortic wall, leading to complications such as aortic rupture
or malperfusion (27-29). Elevated inflammatory markers such as
neutrophils, CRP, and fibrinogen are often indicative of
heightened immune responses, which can accelerate tissue
damage and worsen prognosis. Increased inflammation is often
a sign of increased protease and ROS production, which may
lead to increased smooth muscle apoptosis and worsening of
conditions such as AAD (30-34). When used in combination,
both inflammatory and nutritional factors can create a holistic
understanding of a patient’s state of health, which can support
model-based predictions of mortality in conditions such as AAD.
The performance of the ML models, especially XGBoost and
random forest, was promising. These models achieved AUCs
around 0.80 when inflammatory and nutritional laboratory
total

cholesterol, and various inflammatory factors, such as white

values were used as predictors, such as albumin,
blood cell count, monocyte, neutrophil, and lymphocyte count,
significantly improving the predictive performance compared
with traditional models that exclude these factors. In particular,
the random forest model demonstrated excellent performance,
with an AUC of 0.8225, a sensitivity of 0.7082, and a specificity
of 0.8107, making it suitable for identifying high-risk patients
who may require more aggressive monitoring and intervention.

The inclusion of inflammatory and nutritional indices also led
to good model performance, although it was slightly lower than
when raw laboratory values were used. This suggests that while
indices provide a useful summary of a patient’s condition, the
granular data captured by individual laboratory values offer
more predictive power. These findings highlight the complexity
of AAD pathophysiology and the need for detailed biochemical
data to accurately predict outcomes. Importantly, the machine
learning models were less accurate in their predictions when
nutritional and inflammatory factors were considered separately.
The parameters of the index model consist of a controlling
nutritional index, a prognostic nutritional index, and different
inflammatory indices, utilizing evaluations of neutrophils,
platelets, monocytes, and lymphocytes, as they are recognized as
crucial mediators of inflammatory responses.

In clinical practice, these ML models could aid early-stage
AAD management by identifying patients at higher risk for
l-year mortality, enabling more intensive monitoring and
personalized interventions. SHAP analysis revealed nonlinear
relationships, including a U-shaped association between serum
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albumin and mortality risk, reflecting complex, non-monotonic
effects and potential feature interactions rather than fixed
thresholds. Clinically, low albumin indicates poor nutritional
status, systemic inflammation, and adverse surgical prognosis
(35, 36),
hemoconcentration from hypovolemia or shock (37). The

while markedly elevated levels may signal
patients with abnormal albumin could be flagged for measures
to mitigate malperfusion or control inflammation.

In our cohort, over half of the non-survivors had coronary
(58.0%) and/or cerebral malperfusion (53.1%) and often died
from acute myocardial infarction, stroke, or fatal mechanical
complications before ischemia or inflammatory markers such as
C-reactive protein and troponin I rose to clinically significant
levels, explaining the relatively low CRP and troponin I in both
groups (Supplementary Table S1). For such patients, mortality
may be driven more by mechanical and hemodynamic collapse
than by systemic derangements. These observations underscore

the
parameters—such as ischemia time, presence of tamponade, and

importance of integrating clinical and hemodynamic
brachiocephalic artery occlusion—alongside laboratory predictors
in future prognostic models to better capture the multifactorial
nature of mortality risk in ATAAD with malperfusion.

The decision curve analysis (DCA) data further emphasize the
promising potential of machine learning models in clinical
applications. The random forest, in particular, demonstrated the
highest net benefit across a range of threshold probabilities,
indicating its superior performance in balancing the risks of
false positives and false negatives. This is especially relevant in a
clinical setting where over- and undertriage can have significant
lead
increased  healthcare

consequences.  Over-triaging  may to  unnecessary

interventions  and costs, whereas
undertriaging could result in delayed treatment and increased
mortality. The ability of the random forest model to offer the
best trade-off between these two extremes makes it a valuable
tool in the clinical management of AAD patients with
malperfusion through the use of inflammatory and nutritional

laboratory values.

Limitations and future directions

While the findings of this study are promising, several
limitations should be considered. (1) The sample size of 433
patients, although sufficient for initial model development, is
relatively small for robust ML applications, particularly when
complex algorithms such as random forest and XGBoost are
used. (2) Additionally, the study was conducted at a single
center, which limits the generalizability of the findings. Larger,
the model’s
(3) Another
limitation is the retrospective nature of the study, which

multicenter studies are needed to validate

performance in diverse patient populations.
introduces potential biases related to data collection and patient
selection. Prospective studies would provide more robust
evidence and allow for real-time application of ML models in
clinical practice. (4) Moreover, the study did not explore the
mechanistic pathways linking nutritional and inflammatory
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factors to ATAAD with perfusion outcomes in detail. Future
research should aim to uncover the biological mechanisms
through which these factors influence disease progression. Future
models could also integrate quantitative malperfusion burden
scores, such as the number and extent of vascular territories
involved, to potentially improve predictive performance.

Conclusion

This study highlights the potential of machine learning models
that incorporate nutritional and inflammatory factors to evaluate
patients with malperfusion and acute type A aortic dissection to
predict 1-year mortality. The results suggest that these factors
play a significant role in patient outcomes and should be
considered in risk stratification models. While the XGBoost and
random forest models showed high predictive accuracy, further
research is needed to wvalidate these findings in larger,
multicenter studies. Additionally, integrating these models into
clinical practice could improve patient outcomes by enabling
more personalized and timely interventions. By emphasizing the
importance of nutritional and inflammatory factors, this study
paves the way for more comprehensive and individualized
treatment approaches for AAD, ultimately aiming to better
inform physicians, reduce mortality and improve the quality of
life of affected patients.
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where predicted probabilities exactly match observed outcomes. The blue
solid line (Apparent) shows the observed performance of the model, while
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