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Background: Acute aortic dissection is a life-threatening condition, and 

malperfusion significantly exacerbates the prognosis of patients diagnosed 

with type A Acute aortic dissection (ATAAD). Current risk assessment tools 

often fail to consider the impact of nutritional and inflammatory factors, 

limiting their predictive accuracy. The aim of this study was to develop a 

machine learning model that integrates nutritional and inflammatory indices 

to predict 1-year mortality in ATAAD patients with malperfusion.

Methods: This retrospective study included 433 ATAAD patients with 

malperfusion from Henan Provincial Chest Hospital (August 2020 to June 

2023). Four machine learning models—logistic regression, XGBoost, random 

forest, and deep neural network—were developed to predict 1-year mortality 

using inflammatory and nutritional laboratory values, indices, and other 

clinical variables. Model training employed stratified 5-fold cross-validation 

and SMOTE for imbalanced data. The area under the receiver operating 

characteristic (ROC AUC) and other performance metrics were used to 

evaluate model efficacy, while SHAP values were computed to interpret 

feature importance.

Results: Among 433 ATAAD patients with malperfusion, the random forest 

model used inflammatory and nutritional laboratory values to achieve the 

highest discrimination (AUC = 0.8242, 95% CI 0.7095–0.9219), while the 

XGBoost model performed best with inflammatory and nutritional indices 

(AUC = 0.7334, 95% CI 0.6115–0.8488). Calibration curves and Brier scores 

indicated good agreement between predicted and observed outcomes. 

Decision curve analysis demonstrated consistent net benefit for random 

forest and XGBoost models across clinically relevant threshold probabilities. 

Feature importance and SHAP analyses identified albumin, platelet count, 

total cholesterol, and C-reactive protein as consistently influential predictors.
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Conclusion: Nutritional and inflammatory factors significantly contribute to the 

1-year mortality risk of ATAAD patients with malperfusion. Machine learning 

models that incorporate these factors, particularly random forest and XGBoost, 

can effectively stratify patient risk and support clinical decision-making. These 

findings underscore the importance of a comprehensive approach to risk 

assessment that includes metabolic and inflammatory markers to enhance 

patient outcomes and guide personalized interventions.

KEYWORDS

acute aortic dissection, artificial intelligence, inflammatory factor, nutritional factor, 

mortality

Introduction

Acute aortic dissection (AAD) is a critical and potentially fatal 

condition that demands immediate diagnosis and treatment. The 

estimated occurrence rate of AAD is approximately 5–30 cases 

per 1 million individuals annually (1). AAD results from a tear 

in the layers of the aortic wall, and if left untreated, mortality 

rates can increase to 50% within the initial 48 h (2). Most AADs 

involve the aortic arch and occur due to a tear where the aorta 

exits from the heart, and type A AADs (ATAAD) account for 

70%–75% of all aortic dissections (3). Malperfusion occurs in 

approximately one-third of patients with AAD (4–7); 

furthermore, malperfusion has a substantial negative impact on 

patient prognosis by compromising blood ,ow to critical organs 

and tissues, significantly in,uencing both short- and long-term 

outcomes for affected individuals (8).

Studies have demonstrated that patients experiencing 

malperfusion have a significantly higher in-hospital mortality rate 

(21.5% vs. 5.7%) than to those without malperfusion (9). 

However, the specific 1-year mortality rate for ATAAD patients 

with malperfusion is not explicitly known. Various risk factors 

such as age, genetic predisposition, hypertension, and other 

comorbidities can increase a patient’s likelihood of developing 

ATAAD and exacerbate their prognosis (10). Prompt recognition 

of ATAAD and appropriate management of malperfusion are 

crucial to improving outcomes for these critically ill patients.

Traditional risk assessment tools, such as the Stanford 

classification and the DeBakey classification, have limitations in 

predicting malperfusion in ATAAD patients. These traditional 

risk stratification models often overlook the role of nutritional 

and in,ammatory factors, which are crucial in the 

pathophysiology of ATAAD. In,ammatory factors are involved 

in the body’s response to trauma and indicate the state of 

lymphocytes, neutrophils, and other immune responses (11). 

These immune responses increase the expression of proteases 

and reactive oxygen species (ROS), which lead to increased 

apoptosis of smooth muscle cells in the aortic artery and further 

medial degradation (12). Recent studies have shown that 

nutritional and in,ammatory factors are vital to the 

development and progression of ATAAD (13, 14). However, 

there is a lack of machine learning models that use these factors 

to accurately predict the 1-year mortality rate for ATAAD 

patients with malperfusion.

Identifying predictive indicators of 1-year mortality is essential 

for enhancing patient outcomes, since these patients require 

vigilant monitoring even after successful interventions. This 

study aimed to develop a machine learning model that 

incorporates nutritional and in,ammatory factors to predict 

1-year mortality in ATAAD patients with malperfusion. By 

integrating these critical factors, this study seeks to refine risk 

assessment and support targeted post-treatment care in 

ATAAD patients.

Methods

Data set

Patients

The study included 433 ATAAD patients with malperfusion 

from Henan Provincial Chest Hospital from August 2020 to June 

2023. Approval for the study was obtained from the Henan 

Provincial Chest Hospital Ethics Committee [Reg. No. 2024 

(09-16)]; since the study was retrospective, individual informed 

consent was waived. On the basis of the Diagnosis of 

Aortic Dissection published by the European Society of 

Cardiology (ESC) and the Stanford criterion, ATAAD was 

diagnosed via symptoms, physical examination, transthoracic 

echocardiography, and computed tomography angiography 

(CTA). Malperfusion was diagnosed in patients on the basis of 

clinical symptoms (altered consciousness, paralysis, melena, 

abdominal pain, tenderness to palpation, loss of sensory or motor 

function of the lower extremities), laboratory tests (elevated 

cardiac enzymes, lactate, myoglobin, or creatine kinase), and 

impaired blood ,ow to the corresponding arteries on 

radiographic findings [computed tomography angiography (CTA) 

scan or ultrasound] (Supplementary Material 1). The exclusion 

criteria included relapse, declined treatment, a lack of data 

required to calculate in,ammatory and nutritional indices, or loss 

to follow-up. The work,ow of this study is shown in Figure 1.

Predictors and endpoint
A total of 19 variables, including age, sex, BMI, the 

in,ammatory index (IMI), the nutritional index (NI), 

in,ammatory and nutritional laboratory values (IMNLV), and 

in,ammatory and nutritional indices (IMNI), were collected. 
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The in,ammatory and nutritional indices were calculated as 

described in Supplementary Material 2. IMNLV, IMNI, IMI and 

NI were separately used as predictors along with age, sex, and 

BMI to develop the models. The variables are presented as 

continuous variables, except for sex, which is represented as a 

binary variable. The primary endpoint was 1-year mortality after 

the diagnosis of ATAAD with malperfusion.

Data analysis

Data preprocessing
Data analysis was carried out for 1-year mortality. The full 

dataset was divided into model development (70%) and model 

testing (30%) datasets. The model used stratified random 

sampling and resulted in approximately equal frequencies of 

outcomes in both subsets.

Model development and testing

The dataset was used to establish four predictive models for 

binary classification of the modeled outcome: a logistic regression 

model, an XGBoost model, a random forest model and a deep 

neural network. Candidate variable selection for all the models 

involved all the predictors in the dataset. The models were 

trained with a stratified 5-fold cross-validation method, in which 

the development dataset was partitioned into five data “folds”. To 

improve training, we rebalanced the training subset with respect 

to the outcome via synthetic minority oversampling (SMOTE). 

With the rebalanced training subset, hyperparameter tuning was 

performed by applying a random grid search strategy to select an 

optimal hyperparameter set. This cross-validation was repeated 

five times so that each fold was used for validation exactly once. 

The receiver operating characteristic (ROC) area under the curve 

(AUC) was calculated for each validation fold, and the optimal 

threshold was determined by minimizing the distance from the 

AUC to the (0, 1) point.

Once cross-validation was completed, the model with the 

highest validation AUC was selected, and its corresponding 

hyperparameters were saved. This model was then evaluated on 

a holdout testing dataset. For the testing dataset, we computed 

the ROC AUC and applied the optimal prediction threshold 

determined during validation to predict outcomes. We also 

assessed the models’ performances by calculating key metrics 

such as the sensitivity, specificity, positive predictive value 

(PPV), negative predictive value (NPV), each with their 

respective 95% confidence intervals. To evaluate clinical utility, 

decision curve analysis (DCA) was used to quantify the net 

benefit of each model across a range of probability thresholds. 

Additionally, calibration curves were generated on the internal 

test set, and brier scores were calculated to quantify the overall 

accuracy of predicted probabilities.

Model interpretability

To interpret how individual features contribute to the model’s 

ability to predict 1-year mortality, we computed feature 

importance values via both model-specific and post hoc 

explainability methods. For model-specific feature importance, 

we extracted feature importance scores from the ensemble 

model by analyzing their respective decision trees. Each feature’s 

importance was determined on the basis of its role in tree node 

splits, quantified by metrics such as information gain and Gini 

index reduction. The cumulative importance values across all 

trees were normalized for individual features to indicate their 

relative in,uence on the model’s predictions.

FIGURE 1 

Flow chart of patient enrollment.
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SHAPley additive explanations (SHAP) is a post hoc 

explainability method designed as an additive feature attribution 

method; it represents the contribution of each feature to the ML 

model prediction by constructing an interpretable 

approximation of the original model. Post hoc explainability is 

required to understand complex models, such as XGBoost and 

random forest, that forgo simplicity and explainability for 

increased model performance. SHAP values are a unified 

measure of 4 feature attribution models that quantitatively 

decide how important a feature is to the decision-making 

process of the model. Additionally, we performed decision curve 

analysis, a method that accounts for the different weights of 

misclassification types, providing a direct clinical interpretation. 

The net benefit of each model was calculated and graphically 

displayed across a range of threshold probabilities, illustrating 

the clinical utility of each model.

Statistical analysis

For comparisons between the survivor and non-survivor 

groups, continuous variables were tested for normality using the 

Shapiro–Wilk test. Normally distributed variables were expressed 

as mean ± standard deviation (SD) and compared between 

groups using Student’s t-test. Non-normally distributed variables 

were presented as median (interquartile range, IQR) and 

compared using the Mann–Whitney U-test. Categorical variables 

were summarized as counts (percentages) and compared 

between groups using the Chi-square test. The classification 

performance was assessed via the ROC AUC, sensitivity, 

specificity, PPV, and NPV metrics. Bootstrapping was used to 

estimate the variability in all the metrics, and 95% confidence 

intervals were calculated. Pairwise DeLong tests were conducted 

to statistically compare ROC AUC performance across 

individual models. Statistical significance was taken as P < 0.05.

Software and packages

Python version 3.12.6 was used to perform all analyses. The 

scikit-learn (version 1.5.2) package was used for data 

preprocessing, model development, and calculation of 

performance metrics. Logistic regression, random forest, and 

deep neural networks were implemented in scikit-learn (version 

1.5.2), SMOTE-Tomek was implemented in imblearn (version 

0.12.3), and the xgboost model was implemented in the xgboost 

(version 2.1.1) package. Statistical testing was performed via 

scipy (version 1.14.1).

Results

Of the 443 consecutive patients screened, 10 were excluded, 

and the follow-up completeness was 97.74%. Table 1

summarizes the baseline characteristics of included 433 patients 

stratified by 1-year survival status. Of the cohort, 352 (81.3%) 

were survivors and 81 (18.7%) were non-survivors. The median 

age was 48 years (IQR: 40–57) overall, 47 years (40–57) in 

survivors, and 51 years (42–58) in non-survivors (P = 0.06). 

Males comprised 65.1% of the cohort, with a similar distribution 

between survivors (65.1%) and non-survivors (65.4%) (P = 0.95). 

The median BMI was 21 (IQR: 18–25) with no significant group 

difference (P = 0.18). Most in,ammatory and nutritional 

markers, including C-reactive protein, white blood cell count, 

and lymphocyte count, did not differ significantly between 

groups; however, platelet count was significantly lower in non- 

survivors (P = 0.02). Prognostic nutritional index was also lower 

(P < 0.01) and instant nutritional assessment score higher 

(P = 0.02) in non-survivors. Coronary malperfusion was more 

common in non-survivors (58.0% vs. 5.4%, P < 0.01). Non- 

survivors also had a higher prevalence of aortic atherosclerosis 

(9.9% vs. 4.0%, P = 0.04) and a longer median time from 

symptom onset to surgery [7 (IQR: 4–10) vs. 4 (IQR: 2–6) 

hours, P < 0.01] (Supplementary Table S1).

The performance of four machine learning models (a logistic 

regression model, an XGBoost model, a random forest model and 

a deep neural network) in the prediction of 1-year mortality was 

assessed via different feature sets: IMNLV, IMNI, IMI and NI. Key 

metrics, including the ROC AUC, sensitivity, specificity, PPV, and 

NPV, were used to evaluate the models’ effectiveness (Table 2).

In,ammatory and nutritional laboratory values. The random 

forest model demonstrated the highest performance, with an 

AUC of 0.8225 (95% CI: 0.7184–0.9136), achieving a sensitivity 

of 0.7082 (95% CI: 0.5238–0.8750) and a specificity of 0.8107 

(95% CI: 0.7315–0.8807). The XGBoost model showed a slightly 

lower AUC of 0.7901 (95% CI: 0.6738–0.8857), with lower 

sensitivity (0.4948, 95% CI: 0.2857–0.7001) but higher specificity 

(0.9432, 95% CI: 0.8956–0.9818) (Figure 2A). DeLong tests 

confirmed random forest model was superior to all other 

models (all p < 0.01). The decision curve analysis revealed that 

the random forest model demonstrated the most significant net 

benefit across a wide range of 10%–50% probabilities in 

predicting outcomes (Figure 2B). The calibration curve further 

showed that the random forest model was well calibrated (Brier 

score = 0.1288) (Supplementary Figure S1), indicating its 

reliability in predicting 1-year mortality for type A aortic 

dissection with malperfusion.

The feature importance and SHAP value of variables in the 

XGBoost and random forest models for each data source are 

shown in Figures 2C–. SHAP values provide a nuanced view of 

how each feature impacts individual predictions, capturing 

variability and localized interactions. By comparing feature 

importance of the XGBoost and random forest models, it was 

clear that albumin, platelet count, C-reactive protein and total 

cholesterol overlapped among the 5 most important features of 

both models. In addition, albumin was also identified as a 

shared top 5 feature in both models based on SHAP values, 

beyond platelet count.

An albumin concentration <3.7 g/dl and >4.09 g/dl, a platelet 

count <144.2 × 109/L, a total cholesterol concentration 

<157.97 mg/dl, and a C-reactive protein concentration >2.32 mg/ 

dl were associated with an increase in model SHAP output, 
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re,ecting a model-detected trend toward increased mortality risk. 

Also, age >65 years and male sex were associated with an increase 

in the model output linked to a higher predicted risk of 1-year 

mortality (Figures 2G–L).

Inflammatory and nutritional indices

When the in,ammatory and nutritional indexes were used, 

the XGBoost model achieved the highest performance, with an 

AUC of 0.7334 (95% CI: 0.6115–0.8488), a sensitivity of 0.6688 

(95% CI: 0.4737–0.8519), and a specificity of 0.7164 (95% CI: 

0.6336–0.7947). The random forest model had a slightly lower 

AUC of 0.7075 (95% CI: 0.5604–0.8317), with a sensitivity of 

0.5032 (95% CI: 0.3041–0.7037) and a higher specificity of 

0.8865 (95% CI: 0.8241–0.9439) (Figure 3A). DeLong tests 

confirmed the XGBoost model was superior to all other models 

(all p < 0.01). The XGBoost model performed exceptionally well 

when the threshold probabilities were between 0.12 and 0.34 

(Figure 3B). Moreover, the XGBoost model also demonstrated 

good calibration (Brier score = 0.1506) (Supplementary 

Figure S1), indicating its reliability in predicting the 1-year 

mortality of acute type A aortic dissection with malperfusion.

A comparison of the feature importance of the in,ammatory 

and nutritional indices in the XGBoost and random forest 

models revealed that the prognostic nutritional index, systemic 

immune in,ammation index, and neutrophil-to-lymphocyte 

ratio were shared among the top 5 most important features in 

both models. Additionally, SHAP values indicated that these 

three indices were consistently shared among the top 5 features 

in both models, along with the monocyte-to-lymphocyte ratios 

and systemic in,ammation response index (Figures 3C–F).

A systemic in,ammation response index from 1.26 to 1.62 and 

>3.96, a neutrophil-to-lymphocyte ratio >4.01, a monocyte-to- 

lymphocyte ratio from 0.24 to 0.23, and a prognostic nutritional 

index <37.22 and >40.81 were associated with higher SHAP 

values, indicating a model-predicted trend toward increased 

1-year mortality risk. The systemic immune in,ammation index 

is more scattered approximately 0, suggesting that those indices 

are both positive and negative in different patients (Figures 3G–K).

Nutritional Index

For the nutritional index, the XGBoost model achieved the 

highest AUC at 0.7358 (95% CI: 0.6158–0.8515), with a 

TABLE 1 Baseline characteristics of patients.

Variables Overall (n = 433) Survivors (n = 352) Non-survivors (n = 81) P-value

Age, Median (IQR) 48 (40–57) 47 (40–57) 51 (42–58) 0.06

Gender, n (%)

Male 282 (65.13) 229 (65.06) 53 (65.43) 0.95

Female 151 (34.87) 123 (34.94) 28 (34.58)

Body mass index, Median (IQR) 21 (18–25) 21 (18–24) 22 (18–26) 0.18

Albumin, Median (IQR) 3.84 (3.76–3.95) 3.85 (3.77–3.95) 3.77 (3.61–4.02) 0

C-reactive protein, Median (IQR) 2.84 (2–3.66) 2.81 (1.95–3.59) 2.90 (2.15–3.83) 0.29

Platelet count, Median (IQR) 164.42 (152.14–177.92) 165.37 (153.16–179.20) 159.69 (146.76–172.51) 0.02

Neutrophil count, Median (IQR) 5.02 (4.16–6.17) 5.01 (4.12–6.07) 5.14 (4.28–6.60) 0.15

Monocyte count, Median (IQR) 0.66 (0.50–0.81) 0.67 (0.50–0.84) 0.63 (0.48–0.75) 0.13

Lymphocyte count, Median (IQR) 1.93 (1.40–2.45) 1.90 (1.39–2.45) 1.95 (1.46–2.43) 0.62

Total cholesterol, mean (SD) 155.79 (13.31) 155.95 (13.53) 155.12 (12.40) 0.60

White blood cell count, Median (IQR) 7.96 (6.84–9.25) 7.92 (6.84–9.14) 8.18 (6.92–9.46) 0.22

Neutrophil to lymphocyte ratio, Median (IQR) 2.76 (2.02–3.61) 2.77 (1.98–3.61) 2.72 (2.16–3.54) 0.73

Monocyte to lymphocyte ratio, Median (IQR) 0.34 (0.25–0.48) 0.35 (0.25–0.49) 0.30 (0.23–0.44) 0.21

Platelet to lymphocyte ratio, Median (IQR) 86.05 (65.94–117.70) 87.75 (67.40–119.31) 84.27 (62.21–114.28) 0.30

Systemic immune in,ammation index, Median (IQR) 442.04 (328.32–602.23) 443.45 (327.12–603.61) 421.77 (347.22–588.59) 0.83

Systemic in,ammation response index, Median (IQR) 1.72 (1.13–2.50) 1.76 (1.14–2.56) 1.56 (1.08–2.38) 0.50

Controlling nutritional status score, Median (IQR) 1 (1–2) 1 (1–2) 1 (1–3) 0.18

Prognostic nutritional index, Median (IQR) 38.41 (37.61–39.51) 38.51 (37.71–39.51) 37.71 (36.11–40.21) <0.01

Instant nutritional assessment, Median (IQR) 1 (1–2) 1 (1–2) 1 (1–2) 0.02

Malperfusion, n (%)

Coronary 66 (15.24) 19 (5.40) 47 (58.02) <0.01

Cerebral 136 (31.41) 93 (26.42) 43 (53.09)

Spinal cord 9 (2.08) 8 (2.27) 1 (1.23)

Mesenteric 106 (24.48) 87 (24.72) 19 (23.46)

Renal 103 (23.78) 91 (25.85) 12 (14.81)

Lower leg 180 (41.57) 160 (45.45) 20 (24.69)

Dissection site, n (%)

Above renal arteries 0 (0) 0 (0) 0 (0) 1

Below renal arteries 433 (100) 352 (100) 81 (100)
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sensitivity of 0.4949 (95% CI: 0.2857–0.6897) and a specificity of 

0.9439 (95% CI: 0.8972–0.9813). The random forest model 

showed a comparable AUC of 0.7169 (95% CI: 0.5636–0.8481), 

with slightly lower sensitivity of 0.4600 (95% CI: 0.2590–0.6670) 

but higher specificity of 0.9628 (95% CI: 0.9223–0.9910). 

DeLong tests confirmed the XGBoost model was superior to 

all other models (all p < 0.01). The XGBoost model 

performed particularly well when the threshold probability was 

between 0.13 and 0.35, highlighting its reliability for evaluating 

patients with malperfusion and ATAAD to predict 1-year 

mortality (Figure 4B).

A comparison of the feature importance of the nutritional 

indices in the XGBoost and random forest models revealed that 

the prognostic nutritional index was a shared feature from the 

top 3 most important features in both models. Furthermore, the 

top 3 features according to the SHAP value were the prognostic 

nutritional index, age and BMI in both models. The prognostic 

nutritional index exhibited the same pattern as previously 

described, suggesting that an abnormal nutritional status 

contributes significantly to an increased model-predicted trend 

for1-year mortality risk. Age and BMI are more scattered 

approximately 0, suggesting that those indices are both positive 

and negative in different patients (Figures 4C–F).

Inflammatory indices

Among the four models evaluated for predicting the 

in,ammatory response in ATAAD patients with malperfusion, 

all demonstrated limited ability to distinguish between 

classes, with moderate sensitivity and specificity values that 

re,ect a weaker overall discriminatory power for this 

application (Figures 5A,B).

A comparison of the feature importance of the in,ammatory 

indices in the XGBoost and random forest models revealed that 

only the systemic immune in,ammation index was shared by 

the top 3 most important features in both models. Furthermore, 

in both models, the top 3 features in terms of the SHAP value 

were the systemic in,ammation response index, monocyte-to- 

lymphocyte ratio, and neutrophil-to-lymphocyte ratio. These 

in,ammation indicators may have limited predictive power in 

their specific combination, which could contribute to the 

model’s overall limited performance (Figures 5C–F).

Individual patients included in the random forest model. 

SHAP value visualizations for three individual patients in a 

waterfall plot of the random forest model illustrate the impact of 

each variable on model predictions for the in,ammatory and 

nutritional laboratory values. As shown in Figure 6A, the level 

of albumin, white blood cell count, and neutrophil count had 

strong negative impacts, decreasing the predicted outcome. 

Conversely, the monocyte count and body mass index had 

minor positive effects. Figure 6B shows a similar trend in which 

the ALB concentration and lymphocyte count are in,uential 

negative predictors, whereas sex and monocyte count slightly 

increase the prediction. Figure 6C shows that Albumin has a 

notably high positive impact, indicating its significant 

contribution to an elevated prediction score, alongside a smaller 

contribution from the Platelet Count. Overall, these 

visualizations highlight Albumin as a consistently impactful 

feature, with its effect varying between negative and positive 

contributions, depending on the patient. This variation 

underscores the complexity of feature interactions within the 

TABLE 2 Prediction ability of the 4 machine learning models in 1-year mortality of acute type A aortic dissection with malperfusion.

Datasets Model Best  
threshold

AUC (95% CI) Sensitivity 
(95% CI)

Specificity 
(95% CI)

PPV (95% CI) NPV (95% CI)

In,ammatory 

and 

nutritional 

laboratory 

values

Logistic 

regression

0.72 0.5695 (0.4186–0.7084) 0.2836 (0.1176–0.4828) 0.9425 (0.8928–0.9810) 0.5247 (0.2500–0.8000) 0.8545 (0.7899–0.9138)

XGBoost 0.76 0.7901 (0.6738–0.8857) 0.4948 (0.2857–0.7001) 0.9432 (0.8956–0.9818) 0.6608 (0.4375–0.8697) 0.8930 (0.8291–0.9460)

Random forest 0.43 0.8225 (0.7184–0.9136) 0.7082 (0.5238–0.8750) 0.8107 (0.7315–0.8807) 0.4581 (0.3000–0.6216) 0.9249 (0.8617–0.9707)

Deep neural 

network

0.61 0.6422 (0.4927–0.7887) 0.3790 (0.1923–0.6000) 0.9440 (0.8990–0.9822) 0.6096 (0.3333–0.8750) 0.8683 (0.8053–0.9279)

In,ammatory 

and 

nutritional 

indexes

Logistic 

regression

0.76 0.6780 (0.5458–0.8160) 0.2886 (0.1111–0.5000) 0.9905 (0.9700–1.0000) 0.8707 (0.5710–1.0000) 0.8616 (0.8000–0.9187)

XGBoost 0.29 0.7334 (0.6115–0.8488) 0.6688 (0.4737–0.8519) 0.7164 (0.6336–0.7947) 0.3466 (0.2041–0.4884) 0.9059 (0.8434–0.9634)

Random forest 0.48 0.7075 (0.5604–0.8317) 0.5032 (0.3041–0.7037) 0.8865 (0.8241–0.9439) 0.5000 (0.2915–0.7201) 0.8879 (0.8218–0.9434)

Deep neural 

network

0.62 0.6285 (0.4932–0.7570) 0.2915 (0.1303–0.4832) 0.9626 (0.9238–0.9910) 0.6407 (0.3333–0.9170) 0.8562 (0.7949–0.9145)

Nutritional 

index

Logistic 

regression

0.56 0.6299 (0.4721–0.7786) 0.3729 (0.1739–0.5667) 0.9529 (0.9065–0.9904) 0.6432 (0.3633–0.8889) 0.8701 (0.8091–0.9244)

XGBoost 0.68 0.7358 (0.6158–0.8515) 0.4949 (0.2857–0.6897) 0.9439 (0.8972–0.9813) 0.6637 (0.4286–0.8750) 0.8932 (0.8349–0.9402)

Random forest 0.62 0.7169 (0.5636–0.8481) 0.4600 (0.2590–0.6670) 0.9628 (0.9223–0.9910) 0.7333 (0.5000–0.9333) 0.8881 (0.8250–0.9455)

Deep neural 

network

0.63 0.7036 (0.5594–0.8407) 0.4145 (0.2174–0.6297) 0.9810 (0.9528–1.0000) 0.8280 (0.5556–1.0000) 0.8818 (0.8235–0.9381)

In,ammatory 

index

Logistic 

regression

0.63 0.6407 (0.5091–0.7657) 0.3809 (0.1904–0.5714) 0.8793 (0.8108–0.9386) 0.4147 (0.2105–0.6364) 0.8637 (0.7927–0.9266)

XGBoost 0.4 0.5539 (0.4250–0.6727) 0.4181 (0.2272–0.6000) 0.7077 (0.6226–0.7885) 0.2430 (0.1212–0.3714) 0.8441 (0.7683–0.9157)

Random forest 0.24 0.5363 (0.4013–0.6595) 0.8765 (0.7273–1.0000) 0.2264 (0.1538–0.3093) 0.2041 (0.1321–0.2788) 0.8903 (0.7500–1.0000)

Deep neural 

network

0.5 0.4981 (0.3697–0.6214) 0.3315 (0.1429–0.5263) 0.7526 (0.6698–0.8302) 0.2337 (0.0968–0.3793) 0.8317 (0.7586–0.9043)
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FIGURE 2 

(A) ROC analysis results of the four models, including logistic regression, random forest, deep neural network, and XGBoost. (B) Decision curve 

analysis illustrating the potential clinical application of the prediction models (logistic regression, random forest, deep neural network, and 

XGBoost) across a range of threshold probabilities. (C) Importance matrix of the XGBoost model. (D) SHAP summary plot of all the features in 

the XGBoost model. (E) Importance matrix of the random forest model. (F) SHAP summary plots of all features in the random forest model. 

(G–L) Beeswarm plot illustrating the SHAP values for albumin, platelet count, total cholesterol, C-reactive protein, age and gender in the random 

forest model.
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FIGURE 3 

(A) ROC analysis results of the four models, including logistic regression, random forest, deep neural network, and XGBoost. (B) Decision curve 

analysis illustrating the potential clinical application of the prediction models (logistic regression, random forest, deep neural network, and 

XGBoost) across a range of threshold probabilities. (C) Importance matrix plot of the XGBoost model. (D) SHAP summary plots of all the features 

in the XGBoost model. (E) Importance matrix plot of the random forest model. (F) SHAP summary plots of all features in the random forest 

model. (G–K) Beeswarm plot illustrating the SHAP values for the systemic inflammation response index, neutrophil-to-lymphocyte ratio, 

monocyte-to-lymphocyte ratio, prognostic nutritional index (PNI) and systemic immune inflammation index features in the XGBoost model.
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model and their individualized impact on prediction scores 

(Figures 6A–C).

Discussion

In this retrospective study, we developed a predictive 

machine learning model for evaluating ATAAD with a 1-year 

mortality rate incorporating nutritional and in,ammatory 

factors. Among these factors, albumin, platelet count, total 

cholesterol, and c-reactive protein had the highest predictive 

value for mortality among the nutritional and in,ammatory 

factors. The predictive values of these factors indicate that 

these factors are the most reliable predictors of 1-year 

mortality in ATAAD patients with malperfusion. The random 

forest model had excellent prediction ability: it had an AUC of 

0.8225 and good discrimination and calibration power in 

predicting 1-year mortality in the in,ammatory and nutritional 

laboratory values dataset.

Traditional risk models tend to focus on demographic and 

clinical factors, such as age, sex, and disease history. However, 

emerging biomarkers related to in,ammation and nutrition play 

significant roles in the pathophysiology of AAD (15–17). 

Previous studies have demonstrated that in,ammatory factors 

and nutritional factors can significantly in,uence patient 

prognosis (13, 18). The importance of in,ammatory and 

FIGURE 4 

(A) ROC analysis results of the four models, including logistic regression, random forest, deep neural network, and XGBoost. (B) Decision curve 

analysis illustrating the potential clinical application of the prediction models (logistic regression, random forest, deep neural network, and 

XGBoost) across a range of threshold probabilities. (C) Importance matrix plot of the XGBoost model. (D) SHAP summary plots of all the features 

in the XGBoost model. (E) Importance matrix plot of the random forest model. (F) SHAP summary plots of all features in the random forest model.
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nutritional factors in predicting patient outcomes is well 

documented in the cardiovascular disease literature, but few 

studies have systematically integrated these parameters into ML 

models for ATAAD patients with perfusion.

Nutrition has been closely linked with AAD mortality rates, 

especially since malnutrition has been associated with 

exacerbations of cardiovascular disorders (19). Predictors such 

as albumin levels, the prognostic nutritional index, and other 

FIGURE 5 

(A) ROC analysis results of the four models, including logistic regression, random forest, deep neural network, and XGBoost. (B) Decision curve 

analysis illustrating the potential clinical application of the prediction models (logistic regression, random forest, deep neural network, and 

XGBoost) across a range of threshold probabilities. (C) Importance matrix plot of the XGBoost model. (D) SHAP summary plots of all the features 

in the XGBoost model. (E) Importance matrix plot of the random forest model. (F) SHAP summary plots of all features in the random forest model.
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FIGURE 6 

SHAP waterfall plot illustrating the contribution of individual features, including inflammatory and nutritional laboratory values, age, BMI and sex, to a 

specific predictions generated by the random forest model in real patients. (A) Patient 1; (B) Patient 2; (C) Patient 3.
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tests can re,ect a patient’s nutritional status as well as the severity 

of their condition (20–22). Nutritional factors such as albumin 

levels and the prognostic nutritional index (which re,ect a 

patient’s overall health and recovery capacity) are similarly 

critical for predicting outcomes (23, 24). For example, a 

patient’s prognostic nutritional index has been linked to surgical 

outcomes and long-term mortality under cardiovascular 

conditions and has been shown to be an accurate indicator of 

their future recovery (25, 26). Malnutrition has been linked to 

poorer outcomes in various cardiovascular conditions, and it 

can exacerbate the course of diseases such as AAD by 

weakening the body’s ability to recover from acute events (26).

Similarly, in,ammation plays a pivotal role in the degradation 

of the aortic wall, leading to complications such as aortic rupture 

or malperfusion (27–29). Elevated in,ammatory markers such as 

neutrophils, CRP, and fibrinogen are often indicative of 

heightened immune responses, which can accelerate tissue 

damage and worsen prognosis. Increased in,ammation is often 

a sign of increased protease and ROS production, which may 

lead to increased smooth muscle apoptosis and worsening of 

conditions such as AAD (30–34). When used in combination, 

both in,ammatory and nutritional factors can create a holistic 

understanding of a patient’s state of health, which can support 

model-based predictions of mortality in conditions such as AAD.

The performance of the ML models, especially XGBoost and 

random forest, was promising. These models achieved AUCs 

around 0.80 when in,ammatory and nutritional laboratory 

values were used as predictors, such as albumin, total 

cholesterol, and various in,ammatory factors, such as white 

blood cell count, monocyte, neutrophil, and lymphocyte count, 

significantly improving the predictive performance compared 

with traditional models that exclude these factors. In particular, 

the random forest model demonstrated excellent performance, 

with an AUC of 0.8225, a sensitivity of 0.7082, and a specificity 

of 0.8107, making it suitable for identifying high-risk patients 

who may require more aggressive monitoring and intervention.

The inclusion of in,ammatory and nutritional indices also led 

to good model performance, although it was slightly lower than 

when raw laboratory values were used. This suggests that while 

indices provide a useful summary of a patient’s condition, the 

granular data captured by individual laboratory values offer 

more predictive power. These findings highlight the complexity 

of AAD pathophysiology and the need for detailed biochemical 

data to accurately predict outcomes. Importantly, the machine 

learning models were less accurate in their predictions when 

nutritional and in,ammatory factors were considered separately. 

The parameters of the index model consist of a controlling 

nutritional index, a prognostic nutritional index, and different 

in,ammatory indices, utilizing evaluations of neutrophils, 

platelets, monocytes, and lymphocytes, as they are recognized as 

crucial mediators of in,ammatory responses.

In clinical practice, these ML models could aid early-stage 

AAD management by identifying patients at higher risk for 

1-year mortality, enabling more intensive monitoring and 

personalized interventions. SHAP analysis revealed nonlinear 

relationships, including a U-shaped association between serum 

albumin and mortality risk, re,ecting complex, non-monotonic 

effects and potential feature interactions rather than fixed 

thresholds. Clinically, low albumin indicates poor nutritional 

status, systemic in,ammation, and adverse surgical prognosis 

(35, 36), while markedly elevated levels may signal 

hemoconcentration from hypovolemia or shock (37). The 

patients with abnormal albumin could be ,agged for measures 

to mitigate malperfusion or control in,ammation.

In our cohort, over half of the non-survivors had coronary 

(58.0%) and/or cerebral malperfusion (53.1%) and often died 

from acute myocardial infarction, stroke, or fatal mechanical 

complications before ischemia or in,ammatory markers such as 

C-reactive protein and troponin I rose to clinically significant 

levels, explaining the relatively low CRP and troponin I in both 

groups (Supplementary Table S1). For such patients, mortality 

may be driven more by mechanical and hemodynamic collapse 

than by systemic derangements. These observations underscore 

the importance of integrating clinical and hemodynamic 

parameters—such as ischemia time, presence of tamponade, and 

brachiocephalic artery occlusion—alongside laboratory predictors 

in future prognostic models to better capture the multifactorial 

nature of mortality risk in ATAAD with malperfusion.

The decision curve analysis (DCA) data further emphasize the 

promising potential of machine learning models in clinical 

applications. The random forest, in particular, demonstrated the 

highest net benefit across a range of threshold probabilities, 

indicating its superior performance in balancing the risks of 

false positives and false negatives. This is especially relevant in a 

clinical setting where over- and undertriage can have significant 

consequences. Over-triaging may lead to unnecessary 

interventions and increased healthcare costs, whereas 

undertriaging could result in delayed treatment and increased 

mortality. The ability of the random forest model to offer the 

best trade-off between these two extremes makes it a valuable 

tool in the clinical management of AAD patients with 

malperfusion through the use of in,ammatory and nutritional 

laboratory values.

Limitations and future directions

While the findings of this study are promising, several 

limitations should be considered. (1) The sample size of 433 

patients, although sufficient for initial model development, is 

relatively small for robust ML applications, particularly when 

complex algorithms such as random forest and XGBoost are 

used. (2) Additionally, the study was conducted at a single 

center, which limits the generalizability of the findings. Larger, 

multicenter studies are needed to validate the model’s 

performance in diverse patient populations. (3) Another 

limitation is the retrospective nature of the study, which 

introduces potential biases related to data collection and patient 

selection. Prospective studies would provide more robust 

evidence and allow for real-time application of ML models in 

clinical practice. (4) Moreover, the study did not explore the 

mechanistic pathways linking nutritional and in,ammatory 
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factors to ATAAD with perfusion outcomes in detail. Future 

research should aim to uncover the biological mechanisms 

through which these factors in,uence disease progression. Future 

models could also integrate quantitative malperfusion burden 

scores, such as the number and extent of vascular territories 

involved, to potentially improve predictive performance.

Conclusion

This study highlights the potential of machine learning models 

that incorporate nutritional and in,ammatory factors to evaluate 

patients with malperfusion and acute type A aortic dissection to 

predict 1-year mortality. The results suggest that these factors 

play a significant role in patient outcomes and should be 

considered in risk stratification models. While the XGBoost and 

random forest models showed high predictive accuracy, further 

research is needed to validate these findings in larger, 

multicenter studies. Additionally, integrating these models into 

clinical practice could improve patient outcomes by enabling 

more personalized and timely interventions. By emphasizing the 

importance of nutritional and in,ammatory factors, this study 

paves the way for more comprehensive and individualized 

treatment approaches for AAD, ultimately aiming to better 

inform physicians, reduce mortality and improve the quality of 

life of affected patients.
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