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The epigenetic regulation of
crosstalk between cardiac
fibroblasts and other cardiac cell
types during stress
Lindsay Kraus*, Synclare Fredericks Jr and Katelyn Scheeler

Department of Biology, College of Science, Technology, Engineering, Arts, and Mathematics, Alvernia
University, Reading, PA, United States
With the global impact of cardiovascular disease, there is a dire need to
understand the mechanisms in the heart during injury and stress. It has been
shown that the regulation of the extracellular matrix via cardiac fibroblasts
plays a major role in the progression of heart failure and worsening function
of the heart. Importantly, it has been suggested that crosstalk between other
cardiac cells like cardiomyocytes, immune cells, and endothelial cells are
influenced by the pathological function of the fibroblasts. This decline in
function across all cardiac cells is seemingly irreversible. However, epigenetic
mechanisms have been shown to regulate functionality across cardiac cells
and improve outcomes during stress or injury. This epigenetic regulation has
also been shown to control communication between different cell types and
influence the role of multiple cardiac cell types during injury. The goal of this
review is to summarize and discuss the current research of epigenetic
regulation of cardiac fibroblasts and the subsequent crosstalk with other
cardiac cell types in cardiovascular disease states.
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GRAPHICAL ABSTRACT

Graphical abstract summarizing the role and mechanisms of epigenetic regulation between cardiac fibroblasts and other cardiac cell types.
1 Introduction

Cardiovascular diseases (CVDs) are the leading causes of death

worldwide, with over 17 million deaths annually (1, 2). There is a

crucial need to lessen the global impact of CVDs, and with no cure

currently, it is vital to gain understanding of the heart and its

pathologies (3). To best understand cardiac biology, it is

necessary to explore the regulation of the specific cell types

within the heart and how they communicate with each other,

particularly in times of stress, injury, or disease.

The heart is composed of many cell types including fibroblasts,

cardiomyocytes, immune cells, and endothelial cells (4). In CVDs,

these cells can be damaged, lost, or altered in a way that further

exacerbates damage in the heart (5, 6). For example, it has been

reported that as many as 25% of cardiomyocytes can be lost

irreparably after a myocardial infarction (7). Cardiac fibroblasts

can be lost as well; however, they are more often observed

differentiating into a pathological phenotype which, if not

properly regulated increases scarring and decreases overall heart

function (8). These changes often become irreversible, leading to

the inevitable decline of heart function (9).

It has been shown that cardiac fibroblasts (CFs) maintain an

important balance in the heart in both healthy and pathological

states. It is well understood that CFs regulate the cardiac

environment via the extracellular matrix (ECM). The ECM is vital to

maintain healthy heart function as well as managing the heart

during stress or injury (10). CFs modify the ECM with proteins like
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collagens and growth factors, as well as through genetic and

epigenetic modifications (11–13).

Many studies explore the isolated role of CFs or other cells

commonly found in the heart, but research has shown that many

cardiac cells are constantly communicating with each other via the

ECM (14, 15). Often, this is described as crosstalk, and has been

suggested as a pivotal mechanism for understanding cardiovascular

therapies (16). Especially in injury associated with CVDs, this

crosstalk is an important component to further understand scarring,

inflammation, and wound healing (17). To date, research and

reviews have indicated and studied this crosstalk led by CFs, but the

regulation behind this communication is still not as well understood.

Recently, research has shown that epigenetic regulation plays a

major role in crosstalk between CFs and other cardiac cells (18, 19).

Epigenetics, or external modifications to the DNA, are known to

occur throughout development and even during stress or injury. In

general, these direct epigenetic regulators are deemed writers,

readers, or erasers based on their ability to add, interpret, or remove

histone modifications such as methylation or acetylation on histones

or DNA (20, 21). Some of the most common changes of this type of

gene regulation include DNA methylation and demethylation

(DNMTs), histone methylation, acetylation or deacetylation (HMT,

HATs and HDACs) and noncoding RNA interplay (microRNAs and

long noncoding RNAs) (22). Particularly, epigenetic regulation of

CFs has been well studied in many scenarios, including CVDs, aging,

immune regulation, and cancer (23, 24). More specifically, the direct

effect of epigenetic changes has been shown to alter crosstalk
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between CFs and myocytes, endothelial cells, and immune cells (19).

Epigenetic modifications are not always dictated by direct modifiers,

like histone proteins. Epigenetic regulation can be modified via

indirect mechanisms, like small RNA molecules, signal proteins, and

reactive oxygen species. Withmore understanding of epigenetic

regulation, there is an intertwining relationship between epigenetic

and genetic influence on cell phenotype. The goal of this review is to

summarize the current role of all of these various epigenetic

mechanimsof crosstalk between cardiac fibroblasts and the most

common cardiac cells found in the heart as shown in Table 1. This

will providea novel understanding of the pathological progression as

well as the potential therapeutic approach for CVDs.
2 Epigenetic regulation cardiac
fibroblast with other cardiac cell types

2.1 Epigenetic regulation between cardiac
fibroblasts and adult cardiomyocytes

When looking at adult myocardium, cardiomyocytes (CMs) are

one of the most important cell types to understanding heart
TABLE 1 Summary of key epigenetic regulation mechanisms involved in
the crosstalk with cardiac fibroblasts and other cardiac cell types.

Cardiac Cell
Crosstalk
Interaction

Epigenetic mechanism,
modification, or

regulation

Source

Cardiac Fibroblasts and
Cardiomyocytes

Small molecules 30, 31, 32, 36, 37,
39, 40, 41, 43, 45,
47

- miR-21

Signal proteins

- TGFβ, SMAD7, CK2, LARP7,
EC-SOD, RASSF1, HIF1α,
SNAIL1, NKX2-5, GATA4,
MEF2, TBX20, TEAD, SOX9,
MEIS1, RUNX1, WNT

Epigenetic regulators

- HDACs, DNMTs, LSD1,
DOTL1, BET

Cardiac Fibroblasts and
Smooth Muscle Cells

Signal proteins 52, 53, 54, 57, 59

- TGFβ, MRTF-A

Epigenetic regulators

- DNMTs, EZH2, PRMT5

Cardiac Fibroblasts and
Immune Cells

Small molecules 63, 64, 67, 68, 69,
71- NEAT1

Signal proteins

- IL-1B, LDTFs, SDTFs, SMADs,
NLRP3, MMP2, MMP9, CCN2/
CTGF, AGT

Epigenetic regulators

- HDACs, DNMTs,

Cardiac Fibroblasts and
Endothelial Cells

Genome editing 73, 74, 78, 79, 83,
84, 85- CRISPRa-SAM

Small molecules

- MALAT1, miR-145, Meg3

Signal proteins

- TGFβ,

Epigenetic regulators

- SUMO1, KDM5B, HDACs,
BRD4
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function. Research has suggested that CMs account for about

64% of the left ventricle and about 37% of the right ventricle (4);

they account for 60%–70% of the heart volume (25). They are

the contractile cells of the myocardium that, under normal

conditions, contract and relax the heart (26). The intercellular

connection between CMs and CFs has been a heavily studied

topic to understand how the heart responds to pathogenic

stimuli. It is well known that these two cell types communicate

to each other directly through tunneling nanotubes and gap

junctions as well as indirectly via signaling pathways, paracrine

molecules, and through the ECM (27–29). The transcriptional

activity of a cell involves both epigenetic factors and genetic

material. This section will highlight which epigenetic

modifications are present in CM-CF crosstalk and how certain

molecules and signaling proteins are involved in epigenetic

regulation. Focusing on the underlying epigenetic mechanisms

will allow us to better understand the bidirectional crosstalk in

the adult human heart.

Small RNA molecules such as microRNA (miRNA) strongly

influence the communication between CFs and CMs. A study by

Pradhan et al. showed that individuals with a history of atrial

fibrillation (AF) had a high expression level of microRNA-21-5p

(miR-21). This non-coding RNA is a regulatory molecule

responsible for modifying different elements of the epigenome.

MiR-21 is released from CMs in response to stress stimuli which

induces fibrotic effects by the promotion of excessive collagen

production in CFs (30). Medium from paced cardiomyocytes

were transferred to cultured fibroblasts. After a fibrosis profiling

array, many upregulated profibrotic transcripts were related to

transforming growth factor beta (TGF-β). This cytokine is

responsible for proliferation and collagen secretion in CFs, and

myofibroblast activation (31). Abnormal regulation of the TGF-β

signaling pathway leads to maladaptive cardiac physiology (31).

The researchers also found that a specific histone deacetylase

(HDAC) inhibitor, mocetinostat, can attenuate miR-21 release in

AF cardiomyocytes by inhibiting miR-21 expression. As a result,

anti-fibrotic effects were observed from restoration of the

expression of TGF-β pathway inhibitors, suppressor of mothers

against decapentaplegic (SMAD)7 and Decorin, along with

repressing activators associated with fibrosis development (30).

Signaling proteins have a huge impact in epigenetic regulation

of crosstalk mainly through the previously mentioned TGF-β

pathway. The importance of TGF-β is exemplified in a study by

Basma et al. involving exosome signaling between CMs and CFs.

Exosomes are extracellular vesicles that transport molecules such

as proteins, metabolites, and lipids, facilitating cell to cell

communication. CFs and their exosomes treated with TGF-β

induced significant transcriptional changes resembling heart

failure phenotype. Additionally, when co-cultured with CMs,

TGF-β stimulated exosomes produced increased contraction and

hypertrophic expression (32). When looking at the genes

expressed in co-cultured cells, there was a high level of DNA

methyltransferase (DNMT)3A and DNMT3B which suggested

that exosomes from CFs produced a hypermethylation signal in

CMs (32). DNMTs are enzymes that add chemical methyl

groups to DNA which ultimately inhibits transcriptional activity.
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Exosomes signaling through CFs can serve as an important

biomarker for discovering pathogenic conditions of the heart.

Similarly, Cartledge et al. provided further evidence of the role of

epigenetic regulation associated with paracrine signaling in CFs

and CMs through soluble mediators. Co-culturing CFs with CMs

and myofibroblasts showed hypertrophic effects, specifically

altering CM viability, volume, and Ca2 + transients (33). The

soluble mediators produced by CMs drove CF proliferation. Also,

it was described that increased TGF-β secretion from CFs was by

cause of co-culturing with CMs. TGF-β proved to be the cause of

the hypertrophic expression (33). Reduction of viability and

volume in CMs was prevented by blocking the TGF-β type 1

receptor with the small molecule inhibitor SB431542 (33). This

chemical compound is potent for inhibiting the activity of TGF-β

across various cells and organ systems (34, 35).

The significance of TGF-β paracrine signaling extends to a

study by Claridge et al. revealing the importance of the

secretome in crosstalk between CMs and CFs. The CFs were

treated with TGF-β-stimulated CMs, from human induced

pluripotent stem cells, allowing them to assess the proteomic

landscape and secretome-mediated signaling processes in those

same fibroblasts (36). Disruption to their oxidative state and

hyperactivation leading to a myofibroblast phenotype was likely

due to the downregulation of antioxidant and reactive oxygen

species (ROS)-related proteins. This pathological remodeling of

the CFs created an unbalance in the proteomic landscape,

through the ECM, leading to fibrosis effects. Some of the

dysregulated components in the TGF-β-CM treated CFs included

regulators of fibrosis such as angiotensin II receptor-associated

protein, insulin-like growth factor 2, and prostaglandin F2

receptor negative regulator. Other transcriptional factors and

epigenetic regulators with alterations included C-terminal

binding protein 2, aquarius intron-binding spliceosomal factor,

and HDAC2 (36). This suggests that TGF-β stimulation creates

disruption in the signaling components and epigenetic modifiers

from CMs to CFs.

Over time, oxidative stress has been linked to many different

types of CVDs due to the harmful effects of ROS on cellular

function. One study points out how ROS is involved in the

altered expression of [La ribonucleoprotein 7] (LARP7) and how

it can lead to heart failure physiology. Ribonucleoproteins

regulate RNA processing and are involved in epigenetic

regulation. Ataxia-telangiectasia mutated (ATM) modulates

LARP7 expression in diseased neonatal and adult CMs (37).

Oxidative stress caused by ROS can lead to ATM activation

triggering the degradation of LARP7. ATM activation has also

been found in fibroblasts (38). This leads to altered expression of

proteins of an HDAC, Sirtuin 1 (SIRT1), further impairing

mitochondrial biogenesis and functionality in CMs. Collagen

genes that were abnormally expressed included type 1 collagen

alpha 2 chain (Col1a2), Col4a1, Col5a2, Col6a (37). Using

inhibitors of ATM, such as KU60019, ultimately restored levels

of LARP7, SIRT1 and mitochondrial biogenesis preventing

adverse remodeling effects of myocardial infarction (MI).

Additionally, SRT1720 (SIRT1 activator) can improve

mitochondrial function and attenuate hypertrophy and fibrosis of
Frontiers in Cardiovascular Medicine 04
the heart. Adeno-associated virus gene therapy was shown to be

a novel gateway into remediating the expression of LARP7. The

ROS-ATM-LARP7-SIRT1 axis should be further studied to

combat ROS induced cardiac dysfunction.

Continuing with the crucial impact of ROS, scientists found that

overexpression of an antioxidant enzyme, extracellular superoxide

dismutase (EC-SOD), ameliorates cardiac fibrosis and oxidative

stress. Transgenic mice (TG) were given an extra copy of EC-SOD

and put in hypoxic conditions. In the same conditions, control

wildtype mice (WT) showed increased protein levels of Collagen 1,

alpha smooth muscle actin (α-SMA), and zinc-finger protein

(SNAIL1) parallel to higher levels of ROS and hypoxia-inducible

transcription factor 1 α (HIF1α). The TG group revealed a

reduction of Col1, Col3, α-SMA, ROS and HIF1α. Additionally,

the methylation level of DNMT1 and DNMT3B were significantly

lower in the TG group. These DNMTs were found to bind to

promoter region of the tumor suppressing gene, Ras association

domain family member 1 (RASSF1), inhibiting its expression (39).

RASSF1 has been shown before to be an important factor in

paracrine mediated signaling between CFs and CMs (40). In CFs,

RASSF1 represses the transcriptional activity of nuclear factor

kappa B and inhibits the production and secretion of tumor

necrosis factor alpha. As a result, hypertrophic signaling between

CFs and CMs is prevented. Chronic hypoxic stress can lead to

methylation of RASSF1, subsequently activating the extracellular-

signal regulated kinase 1 and 2 (ERK1/2) pathway leading to CF

activation and proliferation (39). This study provides a novel

mechanism by which EC-SOD can epigenetically regulate RASSF1

and further downstream signaling in CFs and CMs by abrogating

DNA methylation.

A major factor contributing to cellular crosstalk between CFs

and CMs are transcription factors (TF) and the enhancers they

bind to. A study by Golan-Lagziel et al. highlighted critical CF/

CM-specific cis-regulatory elements (CRE) such as enhancers and

TFs to regulate gene expression. Using epigenomic sequencing

techniques, they identified histone marks such as the acetylation of

histone 3 (H3K27) which correlated to specific CREs in both CFs

and CMs, increasing gene expression. The regulation of the

transcriptional activity in these two cell types are coordinated by

CREs and their respective TFs which happen to be clustered

together combinatorically (41). In CMs they were able to identify

homeobox proteins (NKX-2-5 and MEIS2), GATA, Myocyte

enhancer factor 2, estrogen-related receptors, and TBOX 5/20 as

the major TFs that bind to CM enhancers. In CFs, the major TFs

that bind to the CF enhancers are Tea domain, SRY-box 9,

SMAD, T-cell factor, MEIS1, Recombination signal binding

protein for immunoglobulin kappa J, and Runt-related 1. Though

the TFs were not identical in each cell type it did not take away

from the fact that due to their combinatorial organization with

cell-specific enhancers, they have a major impact on gene

expression within CMs or CFs respectively. This suggests looking

further into these transcription factors and enhancers they bind to

and how they behave in response to epigenetic modifications in

certain cardiac states of health and pathology.

The epigenetic landscape between these two cell types is not

solely dependent on signaling proteins. There is evidence
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suggesting that some mitochondrial metabolic substrates play a role

in modifying the epigenetic and transcriptomic landscape of

fibroblasts and induced cardiomyocytes (iCMs) during direct

cardiac conversion. The efficiency of the converting fibroblasts

into iCMs has been shown to be influenced by mitophagy and

clearance of damaged mitochondria, disengagement of anabolic

pathways, tricarboxylic acid cycle dependency, and change in

chromatin state through nutritional manipulation (42).

Interestingly, low-lipid growth medium allowed mouse

embryonic fibroblasts to increase the expression of cardiac

muscle troponin T, a key gene expressed in CMs. Additionally,

these iCMs generated in low-lipid conditions had noticeably

more histone residues of dimethylation of histone 3 (H3K27me2)

and unmodified H3K4 resembling a CM. By understanding the

metabolic modulations that affect the environment of the

epigenome and transcriptome, we can design more efficient

methods of cardiac cell reprogramming to alleviate CVDs.

Beyond small molecules and proteins, direct epigenetic

modifiers have a pivotal role in precisely orchestrating the

crosstalk between these two cell types. Cell-specific loss of

histone lysine demethylase 1, LSD1, in CFs and CMs regulates

cardiac remodeling in distinct ways. Using short interfering RNA

or a small molecule inhibitor ORY-1001, LSD1 can be knocked

out for further evaluation in each cell type. Deficiency of LSD1

in CFs serves as a protective role of transverse aortic

constriction-induced heart failure by inhibiting the TGF-β

activation and phosphorylation of its downstream targets Smad2/

3, tumor protein 38, ERK, and c-Jun N-terminal kinases (43).

Other antifibrotic effects of LSD1 deletion in CFs resulted in

downregulation of α-SMA, Col1a1, Col3a1, and Col11a genes.

Co-culture experiments with CFs and CMs showed that LSD1

serves as a target for the crosstalk between the two cells through

TGF-β. In contrast, LSD1-specific knockout in isolated CMs

caused mild hypertrophy and cardiac dysfunction through the

downregulation of RE1-silencing transcription factor and its

corepressor which is linked to the upregulation of atrial

natriuretic peptide (ANP) and brain natriuretic peptide (43). It is

vital we continue to study LSD1 specific cell-cell interactions to

better understand its purpose in CVD.

Another class of epigenetic regulators are histonemethyltransferases

(HMT). By adding methyl groups to histone residues, HMTs can affect

the accessibility of chromatin, further impacting gene expression.

Certain expression levels of disruptor of telomeric silencing 1-like

(DOTL1) plays a role in the cardiac fibrotic response. DOTL1 is an

HMT responsible for methylating H3K79. Rat CFs were stimulated

with either TGF-β or Angiotensin II (Ang II) and the expression level

of DOTL1 was markedly higher than in control conditions (44). By

knocking out DOTL1 with small molecule inhibitor EPZ5676, fibrotic

marker genes such as Fibronectin, Col3, Matrix metalloproteinase 9

and Connective tissue growth factor were all downregulated. This

inhibitor can specifically decrease the trimethylation of H3K79which

is associated with transcriptional activation of Forkhead box O 3a.

Inhibition of DOTL1 also alleviates the cardiac remodeling response

after induced MI.

A more novel layer of epigenetic regulation of crosstalk

between CFs and CMs are Bromodomain and extraterminal
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(BET) proteins. BETs are acetyl-lysine interpreter proteins that

play a major role in pathological cardiac remodeling. It is known

that bromodomain (BRD)2/3/4 mRNA transcripts are found in

neonatal and adult rat CFs and CMs. Of this class of proteins,

BRD4 expression was elevated in CMs when given phenylephrine

to induce hypertrophic effect (45). BRD4 signaling also caused

the upregulation of pro-hypertrophic genes such as ANP. BET

inhibitors, such as thienotriazolodiazepine (JQ1), can suppress

these effects and signaling responses. In a similar study BET

proteins were shown to induce proinflammatory and TGF-β gene

networks in CFs and CMs which can result in heart failure (46).

The application of JQ1 was also associated with attenuation of

hypertrophic and fibrotic effects within the heart. Continuing to

study the regulation of other BRD4 and other BET proteins will

increase our understanding of the complex communication

happening within these two cell types.

The epigenetic regulation of crosstalk between cardiac

fibroblasts and neonatal cardiomyocytes is crucial to the

development of the postnatal heart as well as the changing

function of the heart during development. The relationship

between fibroblasts and neonatal cardiomyocytes is still not fully

understood, however, recent research has been able to determine

some connections due to epigenetic regulation. Shortly after birth,

the roles of fibroblast and neonatal cardiomyocytes quickly

change. Neonatal cardiomyocytes will binucleate, stopping the cell

cycle with the take up of hypertrophic growth. At the same time

fibroblasts undergo rapid growth and multiplication producing an

ECM which allows for the maturation of other cells through the

creation of a fibrous backbone via the ECM (47). These changes in

the components of the ECM from prenatal to postnatal

environments provides the infrastructure for the crosstalk and

epigenetic regulation of fibroblasts and neonatal cardiomyocytes.

The internal environment of the heart changes rapidly within the

first week post-birth. The amounts of cardiomyocytes and

fibroblasts, their level of maturity, and their behavior can fluctuate

within this time period. In the neonatal stage the heart has been

shown to have self-restorative properties after injury. One way the

heart can have these properties is through non-canonical Wnt

signaling between neonatal cardiomyocytes and fibroblasts (47). In

a research study investigating the restorative properties of the

neonatal heart, it was also found that the changes leading to the

maturation of the cells postnatal may be responsible for the loss of

self-restorative properties the neonatal heart has (48).

It has been hypothesized that the main reason fibroblasts and

neonatal cardiomyocytes are able to be epigenetically regulated is

through the ECM and its components (47). As the components

of the ECM change from the prenatal to postnatal environment,

cardiomyocytes and fibroblast function also change. In the fetal

heart the ECM is composed of fibronectin, immature collagen,

and proteoglycans whereas after birth it is composed of FN,

proteoglycans, an increase in fibrillar Col1 and Col3, laminin,

LOX, Periostin, and a decrease in hyaluronic acid (47). The

vastly different components of the ECM in different stages of the

development of the heart are obvious. Many of the specific

pathways for crosstalk between fibroblasts and neonatal

cardiomyocytes are still unknown.
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2.2 Epigenetic regulation between cardiac
fibroblasts and smooth muscle cells

Another vital cardiac cell type, the smooth muscle cell (SMC),

has been shown to be regulated by various epigenetic mechanisms.

It has been documented that SMCs are subject to epigenetic

modification like many other cardiac cell types. Often, these

histone regulators or DNA modifiers influence the differentiation

of the SMC (49, 50). Specifically, there is a crosstalk between

myofibroblasts and SMCs during hypoxia related stress (51, 52).

Many of the epigenetic regulatory pathways between fibroblasts

and SMCs are not widely understood. However, DNA

demethylation is one of the most well-known pathways in which

epigenetic changes are carried out on molecules in vivo and in

vitro. In a study by Watson et al., reduction of DNMT3B levels

in correlation to the expression of fibrosis-related genes was

examined. It was found that CFs with lower levels of DNMT3B

were associated with reduced expression of pro-fibrotic genes

attributed to α-SMA and Collagen 1 (52). Specifically, α-SMA

correlates with higher levels of DNMT3B and subsequently, with

fibroblasts undergoing differentiation leading to pathological

fibrosis. The epigenetic relationship of CFs and α-SMA can be

further illustrated in a study by He et al., in which CFs treated

with TGF-β1 in vitro increased the expression of α-SMA through

epigenetic modifications. In the same study, a connection was

found between TGF-β1 inhibiting DNMT1 expression while

cardiac fibroblasts were going through differentiation (53).

The specific pathways in which SMCs are upregulated are

complex and poorly understood. In a study conducted by Yang

et al., myocardin related transcription factor A (MRTF-A)

mediated the expression of proinflammatory genes through

endothelin in vascular smooth muscle cells (VSMCs). MRFT-A

was also found to promote an increase in histone modifications

on genes after the addition of endothelin in cell culture. In

silencing MRTF-A downstream effects of the expression of IL-6,

MCP-1, and IL-1 were decreased through ET-1’s (54). VSMCs

varying expressions can affect the inflammatory response in

the heart.

Interestingly, there have been connections between vascular

stiffness associated with crosstalk of CFs and SMCs, specifically

in aging mechanisms in the heart (55, 56). One study found that

the mineralocorticoid receptors on SMCs decreased epigenetic

regulation causing increased vascular stiffness. These receptors

caused a decrease in EZH2 signaling, therefore suppressing

H3K27me3 which was directly associated with this stiffness and

vascular dysfunction in the heart (57). Another study found that

the CFs related ECM dysfunction directly connected to the SMCs

decline in density. The study connected these finding specifically

to TGF-β signaling between the CFs and the SMCs (58).

In a study by Huo et al., protein arginine methyltransferase 5

(PRMT5) was found to be upregulated in VSMCs that were

treated with platelet-derived growth factors. Furthermore, the

same study found that excessive amounts of PRMT5 suppressed

SMC genes and switched to VSMC remodeling associated with

injury. This pathway was discovered to be histone dimethylation

of H3R8 and H4R3 after increased levels of PRMT5, which then
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triggered a decrease in the acetylation of H3K9 and H4, overall

causing a change in SMC gene expression (59). This research

shows a promising start to how other pathological conditions in

the heart may be attributed to, and affected by, differing

epigenetic modifications between CFs and SMCs.
2.3 Epigenetic regulation between cardiac
fibroblasts and immune cells

The balance between immune cells and cardiac fibrosis is vital

for cardiac repair mechanisms. Immune cells often work in phases

that aid in wound healing after cardiac damage, in which

macrophages, dendritic cells, mast cells, and T cells are of great

importance at different times (60). It has been identified that

cardiac fibrosis triggers an immune response (61). But further

investigation is starting to highlight the role that epigenetic

regulation plays on communication between these dynamic cell

types. For example, HDACs have been shown to regulate fibrosis

and fibroblasts through immune cell pathways involved in

apoptosis, oxidative stress, and inflammation (62). A specific

HDAC family, Sirtuin 3 (SIRT3), has been shown to regulate the

crosstalk between fibrosis and inflammation. SIRT3 works by

regulating the AP-1 pathway associated with oxidative stress. More

directly, the loss SIRT3 regulation as a histone 3 lysine 27

deacetylase caused increased fibrosis and inflammation associated

with an immune response (63). Epigenetic modifications to

pathological CFs, also called myofibroblasts, have been shown to

alter immune related responses via interleukin 1 beta (IL-1β). This

study showed the communication due to IL-1β increased

remodeling and was potential therapeutic for pulmonary arterial

hypertension (64).

A study exploring the role of crosstalk between macrophage and

CFs determined that these immune cells help with collagen deposition

during scar formation (65). More importantly, there is evidence to

suggest that epigenetic regulation strongly influences this

macrophage mechanisms via histone modifications and

transcriptions factors (66). The epigenetic landscape of

macrophages also has been shown to regulate crosstalk between

fibroblasts in atherosclerosis. It has been studied that DNA

methylation and long non coding RNAs can epigenetically alter the

function of macrophages and can dynamically alter inflammation

around plaque formation (67). Additionally, Kuznetsova et al.

describe lineage-determining transcription factors (LDTFs) and

signal-dependent transcription factors (SDTFs) as major regulators

the macrophage epigenetic landscape. It is described that these

factors contribute to the development, identity, and memory of the

immune cells, which therefore affects the response to

atherosclerosis, scarring, and pathological fibrosis (67).

The role of long noncoding RNAs (lncRNAs) has been

suggested as an epigenetic mechanism between fibroblasts and

inflammation. Specifically, a study found that DNMTA3A

methylation decreased the expression of a lncRNA named

NEAT1. This caused and increased in a CF inflammatory form

of cell death called pyroptosis (68). In addition, NEAT1 has been

shown to drive cardiac fibrosis through recruiting EZH2 to the
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promoter region of SMAD7 to ultimately inhibit its function (69).

SMAD7 along with SMAD6 are inhibitory SMADs that act to

inhibit the downstream targets of the TGF-β signaling pathway

which can reduce fibrotic gene expression (70). Knockdown or

inhibition of NEAT1 has been shown to attenuate fibrosis

remodeling while overexpression exacerbates it. Looking more

into other mechanisms that involve NEAT1 will be important in

designing therapies against cardiac dysfunction.

Another study found that epigenetic regulations of a few genes,

such as NLRP3, MMP2, MMP9, CCN2/CTGF, and AGT played a

major role in cardiac fibroblast regulation as well with monocytes

and neutrophils. Many of the regulators were described as super

enhancers of DNA hypomethylation that appeared to regulate

this crosstalk between fibroblast and various immune cells (71).
2.4 Epigenetic regulation between cardiac
fibroblasts and cardiac endothelial cells

Among the cells in the heart, cardiac endothelial cells (ECs)

make up around 60% of the total nonmyocyte cell composition

(25). In the heart, ECs are primarily responsible for regulating

angiogenesis, tissue remodeling, neovascularization, bloody

supply, and ECM composition (72). By understanding epigenetic

mechanisms between CFs and ECs, we can target specific

pathways, like angiogenesis, to better understand how the heart

functions. For example, disruption of the intercellular

connections between these two cell types within the heart results

in cardiac pathological remodeling. It was revealed that

SUMOylation (SUMO), a dynamic post-translational epigenetic

mechanism, has a significant role in cardiac function after MI

(73). Interestingly, the SUMO1 gene expression has different

effects based on the cell type. In CFs and ECs, total deletion of

the SUMO1 gene exacerbated the effects of myocardial injury,

specifically in the fibroblasts to myofibroblast transition.

Interestingly, the SUMO1 knockout (SUMO1-/-) was beneficial

for promoting neovascularization processes in ECs after MI.

Transdifferentiation from basal state CFs to terminal state

myofibroblasts is an important step for cardiac repair after

myocardial injury. SUMO1-/- also expanded the CF subset 4, an

indicator of fibroblast transition into myofibroblasts (73).

The advancement of genomic technology in the past few

decades has revolutionized the way scientists examine cell

processes and signaling. A study by Jiang et al. utilized the

epigenetic tool CRISPR-associated synergistic activation mediator

(CRISPRa-SAM) system. This tool was capable of activating

endogenous genes to induce reprogramming mechanisms in CFs.

Genome editing through CRISPR has pioneered science and

research to treat many different genetic-related diseases (74).

Researchers have exploited CRISPR technology to pave the way

for new therapeutic mechanisms such as gene regulation,

epigenome modifications and chromatin manipulation to name a

few (74). By using this tool, the scientists in this study were able

to reprogram CFs into CRISPR-induced cardiovascular

progenitor cells (ciCPCs) (75). Once in this state they had the

ability to further remodel the ciCPCs into ECs. The generated
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ECs contributed to neovascularization and increased bloody

supply in the murine hearts (75). With this discovery we can

incorporate the fibroblast-derived ciCPCs into diseased hearts to

ensure adverse cardiac remodeling effects are limited.

As mentioned before epigenetic regulation through histone

modifications significantly impacts gene transcription. The removal

of chemical residues on the histone tails modifies the chromatin

structure thereby causing gene repression. Recently, researchers

discovered a novel role of lysine-specific demethylase 5B

(KDM5B) in cardiac remodeling. It has been shown in previous

studies that abnormal regulation of KDM5B can lead to a

multitude of disorders including oncogenesis and immune system

dysfunction (76, 77). By knocking out KDM5B expression in mice,

scientists were able to study the changes in CFs and ECs (78).

After induced MI, the mice showed minimal mRNA and protein

expression of KDM5B as well as no expression in the nuclei of

KDM5B-deficient CFs. TGF-β stimulation on KDM5B-KO mice

suppressed profibrotic genes involved in collagen fibril and ECM

organization. Additionally, control wild-type mice were treated

with GSK467 (an inhibitor of KDM5B), which repressed

profibrotic genes and decreased the production of α-SMA, an

indicator of fibroblast differentiation to myofibroblast (78). Worth

noting is the ability of CFs to take on an endothelial cell state by

knocking out KDM5B. Increased expression of positive

angiogenesis-related genes, such as Vascular endothelial growth

factor A, Fibroblast growth factor 1, and Protein kinase C alpha,

and decreased expression of negative angiogenesis-related genes,

such as C-C chemokine receptor 2, Sulfatase 1, and

Thrombospondin 2, were found during the screening of KDM5B-

KO mice (78). KDM5B deficiency also enhanced endothelial

marker genes and tube formation fortifying angiogenesis in the

myocardium after MI.

Expanding on histone modifications, Class 2A HDACs are

associated with gene silencing and play an important role in

regulating angiogenesis within ECs. HDAC9 has been shown to

actively repress the transcription of miR-17-92 which promotes

angiogenesis, vascular growth, and cardiac remodeling in ECs of

mice & zebrafish (79). The silencing of this histone modifier

exacerbated the effects of miR-17-92 induce antiangiogenic

properties within these in vitro and in vivo.

Endothelial-to-mesenchymal transition (EndMT) is an

important process in cardiovascular development and

pathological conditions. Here endothelial cells have the ability to

undergo a morphological change into a fibroblast by repressing

endothelial genes and upregulating fibrotic and ECM related

genes (80). During damage and repair EndMT contributes to a

significant portion of the amount of CFs in the heart (81). This

cell fate can be driven by TGF-β and when dysregulated can lead

to pathological conditions such as atherosclerosis and cardiac

fibrosis (81, 82). Researchers have been searching for ways in

which the EndMT process can be regulated to protect the heart

during development and through disease. One study points to a

lncRNA, metastasis-associated lung adenocarcinoma transcript 1

(MALAT1), which can modulate TGF-β-induced EndMT by

regulating miR-145 and the genes of TGF-β receptor 2 and

SMAD3 (83). Interestingly, miR-145 and MALAT1 bind
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reciprocally to each other allowing for co-regulation. Another study

highlights BRD4 as a notable epigenetic reader protein that is

highly expressed in ECs which contributes to EndMT and

cardiac fibrosis (84). As mentioned before, BRD4 can be

inhibited by JQ1 which can help preserve EC cell sprouting and

attenuate pathological conditions.

Expanding on the influence of lncRNAs, the silencing of lncRNA

maternally expressed gene 3 (MEG3) serves as a cardioprotective

mechanism by regulating ECM gene expression and limiting

fibrosis and hypertrophic remodeling (85). MEG3 is highly

enriched in murine CFs after pressure overload. ECs also express

this lncRNA, although, at a much lower level. MEG3 has been

reported to have antiangiogenic properties, and its knockdown

prevents the induction of MMP-2 by regulating the transcriptional

activity of tumor protein 53 on the promoter of MMP-2.

Therefore, by understanding the epigenetic crosstalk between CFs

and ECs we can identify targets that induce profibrotic behaviors that

lead toCVDs. Among the epigeneticmechanismsmentioned between

these two cell types, there are many more that are actively being

discovered. When they arise, it will help in the development of

treatments for pathological cellular crosstalk in the heart. Also, the

use of the CRISPR system and similar technology will continue to

uncover new apparatuses that will help in cardiac regeneration.
3 Discussion

Epigenetic modifications have attracted great interest over the

recent decades allowing for the expansion of our knowledge within

the health and diseased states of the heart. Coupled with the current

understanding of intercellular communication mechanisms, we can

foresee profound advancements to cardiovascular therapies. The

significance of epigenetic regulation of CFs has been indispensable in

a variety of biological activities. Since all cardiac cell types are in

contact with CFs or the ECM, it is important that we inspect the

crosstalk between these environments and their downstream effects,

especially in times of injury or stress in the heart. Here we

summarize the vital role of epigenetic modifiers such as DMNTs,

miRNAs, lncRNAs, histone modifiers as well as other molecules that

package and transport these regulators between CFs and other

cardiac cells. Additionally, paracrine transmission mechanisms,

transcription factors and post-translational modifiers that mediate

cell signaling, fate, identity and function, were discussed.

Despite this comprehensive review, it is important to note that

epigenetic mechanisms within the heart interact with many other

biological molecules such as metabolites, carcinogens, and

senescence agents which remain to be fully elucidated. Similarly,

the efficacy of treating neonatal cell types can be difficult in

predicting errors in molecular mechanisms since many heart

diseases develop later in adulthood. Future breakthroughs within

the field of epigenetics will provide new treatments to either slow

the progression or reverse the effects of CVD.

With the development of high-throughput and single-cell

sequencing analyses in recent years it is probable that we will soon

be able to understand many more epigenetic modifications that

take place in CFs. We have provided insight into the use of
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CRISPR-Cas9 as another staple technological tool to aid in the

reprogramming of CFs into ECs to promote angiogenesis.

Similarly, another natural reprogramming process called EndMT

has been highlighted to show the importance of maintaining

cardiac homeostasis. Nevertheless, the causation and molecular

process of EndMT is merely just beginning to be expounded.

Interestingly, a recent study has provided a source of non-

canonical EndMT signaling called transient fibrotic-like phenotype

(EndoFP) in response to TAC-induced pressure overload

conditions. These ECs had a transient expression of fibrotic genes

and an oddly low expression level of α-SMA (86). Additionally,

when co-cultured with CFs and CMs, fibrotic and hypertrophic

genes were noticeably upregulated. It was concluded that insulin-

like growth factor-binding protein 5 mediated the crosstalk

between these cell types presenting a new therapeutic approach for

pressure overload. Another related process heavily studied is the

epithelial-to-mesenchymal transition in which epicardial cells can

differentiate into fibroblasts, smooth muscle cells, or endothelial

cells to develop the vasculature of the heart (87, 88).

Other avenues of therapeutic intervention include mediating

paracrine/cytokine signaling processes. In agreement with other

current studies, it is prevalent that canonical signaling pathways

such as Ang II and TGF-β drive cardiac dysfunction by activating

profibrotic and proinflammatory genes (89, 90). Although TGF-β

can promote unfavorable effects within the heart, is it essential for

maintaining homeostasis of the cardiac milieu. We have

highlighted some epigenetic factors that activate or co-regulate the

crosstalk between CFs and other cardiac cell types through such

signaling. Further studies, should explore the role of cardiac cell

crosstalk and epigenetic modifications with aging mechanisms.

With changes in cardiac cell phenotype over time, it would be

important to introduce the additional variable of age to crosstalk

in the heart. With CVD being a disease that often affects older

populations, understanding the changes in epigenetic regulation of

crosstalk in the heart over time would be extremely important for

understanding the realities of this devastating disease.

Whether under normal conditions or in response to stress

stimuli, intercellular communication is always present in the

development of the heart, and throughout our lives. Given the

important role CFs play in heart function, it is imperative to

consider the implications of epigenetic modifications. This review

has concisely highlighted and compounded the recent evidence

that supports the epigenetic mechanisms that govern the

crosstalk between CFs and multiple other cardiac cell types. As

our understanding of epigenetic regulation in cardiac cell

crosstalk increases, we can develop novel therapeutic mechanisms

to mitigate the risk and development of CVDs.
4 Conclusions

There are multiple variations in the epigenetic modifications that

regulate crosstalk between cardiac fibroblasts and other cardiac cell

types. Despite the growing bodies of literature on the crosstalk

between cardiac fibroblasts and other vital cell types within the

heart, there is still more research that needs to be done on the
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1539826
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Kraus et al. 10.3389/fcvm.2025.1539826
direct epigenetic modifiers, small RNAmolecules, and signal proteins

that lead to a pathological state in the heart. With deaths attributed to

cardiovascular disease continuing to be one of the leading causes of

death each year, it is crucial that more research is dedicated to these

mechanisms, more specifically how we may be able to reverse them

in patients who suffer from decreased cardiac function.
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