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Background: More than half of ST-segment elevation myocardial infarction

(STEMI) patients have coronary microcirculatory dysfunction (CMD) after

percutaneous coronary intervention (PCI). This study aimed to explore the role

of CMD in the occurrence of contrast-induced acute kidney injury (CI-AKI) in

patients with STEMI.

Methods: This was a single-centre retrospective clinical observational study.

Coronary angiography–derived index of microcirculatory resistance (caIMR)

was measured and used to assess CMD. Regression analysis was used to

identify risk factors for CI-AKI. Restricted cubic splines (RCS) was employed to

examine the dose-response relationship between caIMR and CI-AKI. The

predictive accuracy of the models was assessed with net reclassification index

(NRI), and integrated discrimination improvement (IDI).

Results: This study included 745 patients, the incidence of CI-AKI was 10.6% (79/

745). Multivariate logistic regression identified caIMR (OR = 1.072, 95% CI: 1.051–

1.094) as an independent predictor of CI-AKI. RCS analysis indicated a linear

dose-response relationship between caIMR and CI-AKI. Receiver operating

characteristic (ROC) analysis demonstrated that the areas under the curve for

caIMR was 0.725, the optimal cutoff value was 25.95 U. Integration of caIMR

could significantly improve the risk model for CI-AKI in STEMI patients

(NRI = 0.721, IDI = 0.102, P < 0.001).

Conclusions: Elevated caIMR is an independent risk factor for the development

of CI-AKI after PCI in STEMI patients. Integrating caIMR significantly improves the

risk model for CI-AKI.

KEYWORDS

cardiovascular disease, contrast-induced acute kidney injury, STEMI, coronary

microvascular dysfunction, index of microcirculatory resistance

Introduction

With the acceleration of population aging, the burden of cardiovascular diseases is also

increasing. Among them, ST-segment elevation myocardial infarction (STEMI) poses a

significant challenge to human health (1). Percutaneous coronary intervention (PCI) is

currently the main treatment for STEMI patients, but 15%–35% of patients develop

contrast-induced acute kidney injury (CI-AKI) after PCI (2). Evidence suggests that
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STEMI is one of the key factors contributing to the increased

incidence of CI-AKI and the need for dialysis, which may be

related to the hemodynamic instability, neuroendocrine

activation, and intense inflammatory response in STEMI patients

(3, 4). Although CI-AKI is associated with poor prognosis, there

is currently a lack of specific clinical drugs and interventions for

preventing CI-AKI (5). Therefore, early identification of high-risk

populations and active prevention of CI-AKI is crucial.

Although PCI successfully restores coronary epicardial blood

flow, more than half of STEMI patients still experience coronary

microcirculatory dysfunction (CMD) (6, 7). The index of

microcirculatory resistance (IMR) is the “gold standard” for

quantitatively measuring coronary microcirculatory dysfunction

(8, 9). However, the additional procedure time, increased

procedural costs, and the requirement for maximal hyperemia

may hinder its use in clinical practice. This is particularly true in

STEMI patients undergoing primary PCI, as it further increases

patient risk. In recent years, coronary angiography-derived index

of microcirculatory resistance (caIMR) has been extensively

validated for accuracy and is widely used to assess CMD (10–12).

Compared to traditional IMR, caIMR does not require pressure

wires or adenosine, making it safer and more convenient.

Previous studies have shown that CMD in STEMI patients

significantly impacts prognosis (7, 13, 14). Notably, in one study,

Thrombolysis in Myocardial Infarction (TIMI) was identified as

an independent predictor of CI-AKI after PCI in STEMI patients

(15). Additionally, nicorandil has been shown to effectively

prevent CI-AKI, likely through its beneficial effects on

microcirculation (16–18). To date, the relationship between IMR

and CI-AKI remains unclear. This study aims to explore the

relationship between caIMR and CI-AKI following primary PCI

in STEMI patients.

Methods

Study population

This retrospective study included patients diagnosed with

STEMI (19) between January 2021 and November 2024. The

inclusion criteria were: (1) successful primary PCI performed

within 12 h of symptom onset (TIMI = 3); (2) availability of

complete clinical data. Patients were excluded if they met any of

the following criteria: (1) pre-admission dialysis or chronic renal

failure (eGFR <30 ml·min−1·1.73 m−2); (2) active inflammatory

conditions (such as pulmonary infection, intestinal inflammation,

or autoimmune diseases); (3) history of malignancy or

hematologic disorders; (4) exposure to other radiographic

contrast agents or nephrotoxic medications within 48 h before or

72 h after the procedure; (5) Poor CAG images or insufficient

caIMR measurements. The study was approved by the

Institutional Review Board (IRB) of the Affiliated Hospital of

Xuzhou Medical University (No. XYFY2023-KL203-01). As a

retrospective study posing no risk to patients, the requirement

for written informed consent was waived in accordance with IRB

guidelines. A total of 745 patients were enrolled in the study.

Clinical data collection

Clinical data were obtained from patient records, including age,

sex, body mass index (BMI), medical history, medications, left

ventricular ejection fraction (LVEF), and PCI-related information.

Pre-PCI serum creatinine (Scr) levels, as well as Scr measurements

taken 48–72 h after contrast agent exposure, were documented.

Contrast-induced acute kidney injury (CI-AKI) was defined as a Scr

increase of at least 50% or 0.3 mg/dl within 48–72 h following

contrast exposure (20). According to the relevant previous standards

(21, 22), chronic kidney disease (CKD) and estimated glomerular

filtration rate (eGFR) were calculated and defined. Additionally, peak

levels of C-reactive protein (CRP), high-sensitivity troponin T (hs-

TnT), and N-terminal pro B-type natriuretic peptide (NT-proBNP)

during hospitalization were recorded. Medications prescribed

included aspirin, P2Y12 inhibitors, β-blockers, statins, nitrates,

angiotensin-converting enzyme inhibitors (ACEI) or angiotensin

receptor blockers (ARB), and diuretics.

Measurement of caIMR

The caIMR was assessed using commercial software

(FlashAngio, Rainmed) (10). Two angiographic images of the

target vessel, separated by at least 30°, were selected to create a

three-dimensional reconstruction of the coronary artery. Invasive

arterial pressure data from the guide catheter were obtained and

entered into the FlashAngio console. The caIMR was calculated

through a specialized hemodynamic method, as described by the

formula: caIMR = Pdhyp × (L/K·Vdiastole). Where Pdhyp is the

mean pressure at the distal site under maximal congestion. Pdhyp
was obtained based on the pressure recorded by CAG, and it is

available for each patient. L is a constant representing the

distance from the inlet to the distal site, Vdiastole is the mean flow

rate at the distal site during diastole, and K is another constant.

Additionally, Vhyp = K·V represents the mean flow rate at the

distal site under maximal congestion. PCI was performed by a

team unaware of the study protocol, with hydration initiated

within 12 h post-angiography according to the guideline (19). All

angiograms were independently analyzed by core laboratory staff,

who were blinded to the study data (Figure 1).

Statistical analysis

Data were analyzed using SPSS (version 27.0, Chicago, USA)

and R (version 4.3.1). The Kolmogorov–Smirnov test was applied

to assess data normality. Continuous variables with a normal

distribution were presented as mean ± standard deviation and

compared using independent t-tests. Non-normally distributed

variables were reported as median (interquartile range) and

analyzed with the Mann–Whitney U-test. Categorical variables

were summarized as counts and percentages and compared using

the χ
2 test. All the variables with a p-value less than 0.10 in the

univariate analysis were included in the multivariate regression

analysis using a stepwise forward method to identify independent
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risk factors for CI-AKI. To examine the dose-response relationship

between caIMR and CI-AKI, restricted cubic splines (RCS) were

employed. The predictive accuracy of the new and baseline

models was assessed with receiver operating characteristic (ROC)

curves, net reclassification index (NRI), and integrated

discrimination improvement (IDI). A P-value of <0.05 was

considered statistically significant.

Results

Patient characteristics

This study included 745 patients, of which 27.4% were female,

with a mean age of 63.38 ± 13.10 years. The overall incidence of

CI-AKI during hospitalization was 10.6% (79/745). Patients in

the CI-AKI group were older, had higher levels of fasting blood

glucose (FBG), caIMR, CRP, hs-TnT, and NT-proBNP, and a

higher prevalence of diabetes and left anterior descending

artery (LAD) involvement. Additionally, they had a lower left

ventricular ejection fraction (LVEF) compared to those in the

control group. All differences were statistically significant

(P < 0.05) (Table 1).

Logistic regression analysis of Ci-AKI

Univariate logistic regression revealed that caIMR (OR = 1.070,

95% CI: 1.050–1.090), FBG, NT-proBNP, diabetes, LAD, and LVEF

were significantly associated with the development of CI-AKI

during hospitalization (P < 0.05). When the caIMR increases by

10 U each time, the OR was 1.965 (95% CI: 1.628–2.371)

(Supplementary Table S1). Multivariate logistic regression, which

included all variables with P < 0.10 in univariate logistic

regression, identified LVEF (OR = 0.931, 95% CI: 0.900–0.964),

FBG (OR = 1.105, 95% CI: 1.019–1.198), NT-proBNP

(OR = 1.401, 95% CI: 1.132–1.735), and caIMR (OR = 1.072, 95%

CI: 1.051–1.094) as independent predictors of CI-AKI. When the

caIMR increases by 10 U each time, the OR was 2.010 (95% CI:

1.646–2.454) (Table 2). RCS analysis indicated a linear dose-

response relationship between caIMR and CI-AKI both before

and after adjustments, suggesting that higher caIMR levels are

associated with an increased risk of CI-AKI (Figure 2).

ROC analysis of CI-AKI

Receiver operating characteristic (ROC) analysis demonstrated

that the areas under the curve (AUC) for LVEF, FBG, NT-proBNP,

and caIMR in predicting CI-AKI were 0.677, 0.613, 0.671, and

0.725, respectively (P < 0.05). The optimal cutoff value for caIMR

was 25.95 U, yielding a sensitivity of 68.4% and specificity of

71.5% (Table 3 and Figure 3).

Comparison between baseline and new
models

Constructing a new model (LVEF, FBG, NT-proBNP, and

caIMR) after integrating caIMR in a baseline model (LVEF,

FIGURE 1

The measurement of coronary angiography-derived index of microcirculatory resistance in the infarct-related arteries after successful primary

percutaneous coronary intervention.
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FBG, and NT-proBNP). ROC analysis showed that the baseline

model had an AUC of 0.732 (95% CI: 0.682–0.783), with a

sensitivity of 84.8% and specificity of 57.1%. The new model

had an AUC of 0.806 (95% CI: 0.759–0.853), with a sensitivity

of 82.3% and specificity of 68.5%. NRI and IDI for the new

model were 0.721 (95% CI: 0.4968–0.9452), P < 0.001, and

0.102 (95% CI: 0.0626–0.1412), P < 0.001, respectively. These

findings indicate that the new model significantly improves the

risk model for CI-AKI in STEMI patients (Table 4, Figure 4

and Supplementary Table S2).

Discussion

To our knowledge, this is the first study on the relationship

between CMD and CI-AKI. The main findings of this study are

TABLE 1 Patient characteristics.

Variable Total
(n = 745)

No CI-AKI
(n= 666)

CI-AKI
(n = 79)

P

Age, years 63.38 ± 13.10 63.09 ± 13.33 65.89 ± 10.65 0.034

Female, n (%) 204 (27.38) 179 (26.88) 25 (31.65) 0.369

Heart rate, bpm 80.20 ± 14.41 80.03 ± 14.47 81.61 ± 13.90 0.358

SBP, mmHg 127.47 ± 20.52 127.30 ± 20.52 128.86 ± 20.60 0.524

DBP, mmHg 79.09 ± 14.09 79.08 ± 14.11 79.15 ± 13.98 0.968

BMI, kg/m2 24.69 ± 3.91 24.61 ± 3.87 25.39 ± 4.20 0.091

Smoking, n (%) 345 (46.31) 312 (46.85) 33 (41.77) 0.392

Hypertension, n (%) 338 (45.37) 297 (44.59) 41 (51.90) 0.218

Diabetes, n (%) 187 (25.10) 159 (23.87) 28 (35.44) 0.025

CKD, n (%) 21 (2.82) 20 (3.00) 1 (1.27) 0.601

MI, n (%) 44 (5.91) 39 (5.86) 5 (6.33) 1.000

HGB, g/L 140.06 ± 16.85 140.13 ± 16.84 139.51 ± 17.07 0.756

Plt,109/L 216.44 ± 59.68 217.22 ± 60.20 209.84 ± 54.92 0.298

Serum creatinine, μmol/L 67.27 ± 20.85 67.44 ± 20.97 65.81 ± 19.80 0.512

eGFR, ml/min/1.73 m2 102.07 ± 21.02 102.43 ± 20.92 99.07 ± 21.77 0.179

FBG, mmol/L 6.84 ± 2.84 6.69 ± 2.70 8.11 ± 3.62 0.001

Total cholesterol, mmol/L 4.31 ± 1.00 4.30 ± 1.01 4.34 ± 0.91 0.744

Triglycerides, mmol/L 1.50 ± 1.07 1.51 ± 1.10 1.37 ± 0.69 0.272

HDL-C, mmol/L 0.99 ± 0.24 0.98 ± 0.25 1.01 ± 0.15 0.211

LDL-C, mmol/L 2.77 ± 0.87 2.76 ± 0.88 2.85 ± 0.82 0.419

caIMR, U 23.46 ± 10.93 22.36 ± 9.96 32.69 ± 14.04 <0.001

Peak hs-CRP, mg/L 2.40 (0.60, 8.00) 2.30 (0.50, 7.77) 2.80 (1.49, 10.20) 0.008

Peak hs-TnT, ng/L 478.8 (95.0, 1,781.0) 452.2 (77.4, 1,876.3) 714.8 (167.7, 1,512.5) 0.091

Peak NT-proBNP, pg/ml 1,287.0 (522.0, 3,101.0) 1,159.5 (464.3, 2,882.4) 2,806.0 (1,348.5, 4,190.0) <0.001

LVEF, % 51.96 ± 7.00 52.43 ± 6.83 47.99 ± 7.21 <0.001

IABP, n (%) 23 (3.09) 18 (2.70) 5 (6.33) 0.156

Killip class, n (%)

I 634 (85.10) 572 (85.89) 62 (78.48) 0.180

II 36 (4.83) 32 (4.80) 4 (5.06)

III 3 (0.40) 3 (0.45) 0 (0.00)

IV 72 (9.66) 59 (8.86) 13 (16.46)

Infarct-related arteries, n (%)

LAD, n (%) 364 (48.86) 317 (47.60) 47 (59.49) 0.046

LCX n (%) 77 (10.34) 69 (10.36) 8 (10.13) 0.949

RCA, n (%) 301 (40.40) 277 (41.59) 24 (30.38) 0.055

Left main, n (%) 3 (0.40) 3 (0.45) 0 (0.00) 1.000

Aspirin, n (%) 743 (99.73) 664 (99.70) 79 (100.00) 1.000

P2Y12, n (%) 744 (99.87) 665 (99.85) 79 (100.00) 1.000

Statins, n (%) 741 (99.46) 662 (99.40) 79 (100.00) 1.000

ACEI/ARB/Sac/Val, n (%) 354 (47.52) 313 (47.00) 41 (51.90) 0.409

β-blockers, n (%) 653 (87.65) 585 (87.84) 68 (86.08) 0.653

Nitrates, n (%) 297 (39.87) 269 (40.39) 28 (35.44) 0.396

Heparin, n (%) 619 (83.09) 555 (83.33) 64 (81.01) 0.603

Diuretics, n (%) 406 (54.50) 355 (53.30) 51 (64.56) 0.058

BMI, body mass index; IABP, intra-aortic balloon pump; LVEF, left ventricular ejection fraction; CKD, chronic kidney disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; LAD,

left anterior descending; LCX, left circumflex artery; RCA, right coronary artery; ACEI, angiotensin-converting-enzyme inhibitor; ARB, angiotensin II receptor blocker; HDL-C, high-density

leptin cholesterol; LDL-C, low-density leptin cholesterol; hs-CRP, high sensitivity C-reactive protein; hs-TnT, high sensitivity troponin T; NT-proBNP, N-terminal pro-B-type natriuretic

peptide; FBG, fasting blood glucose; MI, myocardial infarction; caIMR, coronary angiography-derived index of microcirculatory resistance; CI-AKI, contrast-induced acute kidney injury.
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as follows: first, elevated caIMR is an independent risk factor for

the development of CI-AKI after PCI in STEMI patients; second,

there is a linear dose-response relationship between caIMR and

CI-AKI; and third, integrating caIMR significantly improves the

risk model for CI-AKI.

CI-AKI is characterized by kidney dysfunction occurring

within 48–72 h after the administration of contrast agents (23).

Although recent evidence suggests that the risk of CI-AKI may

have been overestimated, an important prerequisite is the

potential exclusion of high-risk patients (24). Numerous studies

have shown that CKD patients are less likely to undergo

coronary angiography or PCI due to concerns about worsening

kidney function (25, 26). In our study, 10.6% of patients still

developed CI-AKI. Given the relationship between CI-AKI and

poor outcomes (27, 28), and the limited pharmacological

treatment options (29), identifying additional risk factors and

optimizing risk stratification are essential.

Despite the successful restoration of epicardial coronary flow in

STEMI patients via PCI, more than half of STEMI patients still

experience myocardial reperfusion injury due to the presence of

coronary microcirculatory dysfunction (CMD) (6, 7). In our

study, there were 277 (37.2%) patients whose caIMR was greater

than 25 U. The reason why CMD is at a relatively low level may

be that all the patients included in our study have a TIMI flow

grade of 3. Current clinical tools for assessing CMD include

cardiac magnetic resonance imaging (CMR) and the index of

microcirculatory resistance (IMR). While CMR is non-invasive,

its use is limited by indications and high costs, meaning that not

all STEMI patients undergo this examination (30). IMR, although

the “gold standard” for evaluating microcirculatory dysfunction,

requires a pressure-temperature sensing wire and induced

maximal hyperemia, which limits its routine clinical application,

especially in STEMI patients undergoing primary PCI (8, 9).

Recently, caIMR, as an alternative to traditional IMR, has been

widely used for prognosis stratification in STEMI patients

(10–12). There is a significant correlation (R = 0.782, P < 0.001)

TABLE 2 Multivariate logistic regression analysis of CI-AKI.

Variable Model 1

OR (95% CI) P

Peak NT-proBNP, pg/ml 1.401 (1.132–1.735) 0.002

FBG, mmol/L 1.105 (1.019–1.198) 0.015

caIMR, Ua 1.072 (1.051–1.094) <0.001

caIMR, U (Increased each 10 U)b 2.010 (1.646–2.454) <0.001

LVEF, % 0.931 (0.900–0.964) <0.001

LVEF, left ventricular ejection fraction; FBG, fasting blood glucose; caIMR, coronary

angiography-derived index of microcirculatory resistance; NT-proBNP, N-terminal pro-B-

type natriuretic peptide; CI-AKI, contrast-induced acute kidney injury.
aAdjusting age, body mass index, diabetes, high sensitivity troponin T, NT-proBNP, FBG,

caIMR, LVEF, intra-aortic balloon pump, killip class, left anterior descending, and diuretics.
bAdjusting age, body mass index, diabetes, high sensitivity troponin T, NT-proBNP, FBG,

caIMR (increased each 10 U), LVEF, intra-aortic balloon pump, killip class, left anterior

descending, and diuretics.

FIGURE 2

Dose-response relationship between caIMR and CI-AKI. (A) A unadjusted dose-response relationship between caIMR and CI-AKI; (B) an adjusted

dose-response relationship between caIMR and CI-AKI. CI-AKI, contrast-induced acute kidney injury; caIMR, coronary angiography-derived index

of microcirculatory resistance.

TABLE 3 ROC analysis for CI-AKI.

Variable AUC 95% CI P cut-off Sensitivity Specificity

LVEF, % 0.677 0.617–0.737 <0.001 51.5 0.709 0.544

NT-proBNP, pg/ml 0.671 0.617–0.725 <0.001 1,249.17 0.797 0.523

FBG, mmol/L 0.613 0.549–0.678 0.001 6.82 0.532 0.692

caIMR, U 0.725 0.662–0.789 <0.001 25.95 0.684 0.715

NT-proBNP, N-terminal pro-B-type natriuretic peptide; FBG, fasting blood glucose; caIMR, coronary angiography-derived index of microcirculatory resistance; LVEF, left ventricular

ejection fraction.
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and consistency (Bias =−0.398, SD of Bias = 11.96) between caIMR

and traditional IMR (10). Given its simplicity and safety, caIMR is

particularly beneficial in STEMI patients. In a previous study,

Çınar et al. demonstrated that TIMI was independently

associated with CI-AKI in STEMI patients undergoing primary

PCI and provided better predictive value for CI-AKI than

traditional risk factors (15). Nicorandil, a commonly used drug

for improving microcirculatory dysfunction, has been shown in

prior studies to effectively prevent CI-AKI, whether administered

intravenously or orally (16–18). Consistent with these findings,

our study identified elevated caIMR as an independent risk factor

for the development of CI-AKI after PCI in STEMI patients, and

we found a linear dose-response relationship between caIMR

and CI-AKI. Given the established relationship between CMD and

poor prognosis in STEMI patients, our findings appear to be

well-founded. Previous studies have shown that CMD in STEMI

patients is associated with larger infarct sizes, worse left

ventricular remodeling, and intense inflammatory response,

which play an important role in the mechanism of CI-AKI (3, 4,

7, 13, 14). Additionally, AKI is closely associated with endothelial

dysfunction (31). It is known that endothelial dysfunction is also

an important mechanism of CMD. Therefore, systemic endothelial

dysfunction may be a potential mechanism underlying the

relationship between caIMR and CI-AKI. In our study, ROC

analysis showed that caIMR is a strong predictor of CI-AKI,

outperforming FBG, LVEF, and NT-proBNP, aligning with the

previous study (15). In previous studies, a threshold value of 25

U for either caIMR or traditional IMR has been proposed for

diagnosing microcirculatory dysfunction (8, 9, 32, 33).

Interestingly, in our study, we found that a caIMR value of 25.95

U was the cutoff for predicting CI-AKI in STEMI patients after

PCI. To our knowledge, this is the first study to establish a cutoff

for caIMR in relation to CI-AKI, potentially providing additional

insights for IMR-based prognosis assessment in STEMI patients.

Differently, in another previous study on STEMI patients, the

cutoff value of the angiography-derived IMR was higher than that

in our study. This may be attributed to the differences in the

measurement software for IMR and the end-point events (34).

Our study also demonstrates that caIMR can effectively enhance

risk models for CI-AKI. Given its simplicity and safety, caIMR

represents a valuable tool for optimizing risk stratification for

CI-AKI after PCI in STEMI patients. These findings suggest that

patients with elevated caIMR may require more clinical attention

and intervention to reduce the risk of CI-AKI.

There are several limitations to this study. First, given its

retrospective and observational design, the current study remains

inherently descriptive, hypothesis-generating, and speculative in

nature. While our study provides a compelling association

between CMD and CI-AKI, the capacity for causal inference

remains limited. The observed elevation in caIMR in these

patients may not solely reflect isolated microvascular dysfunction

but rather a broader picture of myocardial damage, impaired

reperfusion, and a generally more adverse in-hospital clinical

TABLE 4 Incremental value of caIMR for CI-AKI.

Variable NRI IDI

Estimate
(95% CI)

P Estimate
(95% CI)

P

FBG + LVEF + NT-

proBNP

Reference – Reference –

FBG + LVEF + NT-

proBNP + caIMR

0.721

(0.4968–0.9452)

<0.001 0.102

(0.0626–0.1412)

<0.001

NT-proBNP, N-terminal pro-B-type natriuretic peptide; FBG, fasting blood glucose; caIMR,

coronary angiography-derived index of microcirculatory resistance; LVEF, left ventricular

ejection fraction.

FIGURE 3

Receiver operating characteristic analysis (ROC) of caIMR for

identifying CI-AKI. CI-AKI, contrast-induced acute kidney injury;

caIMR, coronary angiography-derived index of microcirculatory

resistance; LVEF, left ventricular ejection fraction; NT-proBNP,

N-terminal pro-B-type natriuretic peptide; FBG, fasting

blood glucose.

FIGURE 4

Receiver operating characteristic analysis (ROC) of models for

identifying CI-AKI. CI-AKI, contrast-induced acute kidney injury;

caIMR, coronary angiography-derived index of microcirculatory

resistance; LVEF, left ventricular ejection fraction; NT-proBNP,

N-terminal pro-B-type natriuretic peptide; FBG, fasting

blood glucose.
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course. Consequently, caIMR might function as a surrogate marker

of overall disease severity rather than a direct mechanistic

contributor to CI-AKI. Second, the sample size is relatively small,

and some conclusions may need to be validated in larger cohorts.

Third, this study specifically involves STEMI patients who

underwent successful primary PCI, meaning the findings may

not be applicable to other patient populations. Fourth, in our

study, caIMR was evaluated after the completion of PCI, which

made strategies to reduce the use of contrast agents no longer

feasible. This limits the clinical utility of caIMR as a tool for

early risk stratification or surgical planning. For STEMI patients

undergoing primary PCI, the practical measurement of caIMR at

an earlier stage may still be a significant challenge. In addition,

the implementation of postoperative renal protection strategies

mainly based on saline hydration may precisely be restricted in

the subgroup of patients identified as high-risk, who have poorer

cardiac function. These factors highlight the importance of

considering caIMR in a way that can effectively provide a basis

for personalized treatment decisions. Fifth, given that the

application of functional coronary angiography remains limited

in clinical practice, it may still be too early to incorporate caIMR

into the prediction model for CI-AKI. Finally, CI-AKI is a

surrogate marker for adverse outcomes, but whether the elevated

caIMR is associated with persistent renal dysfunction or

mortality may require more follow-up in the future to determine.

Conclusion

Elevated caIMR is an independent risk factor for the

development of CI-AKI after PCI in STEMI patients. Integrating

caIMR significantly improves the risk model for CI-AKI.
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