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Gut microbiota and atrial
cardiomyopathy
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Atrial cardiomyopathy is a multifaceted heart disease characterized by structural
and functional abnormalities of the atria and is closely associated with atrial
fibrillation and its complications. Its etiology involves a number of factors,
including genetic, infectious, immunologic, and metabolic factors. Recent
research has highlighted the critical role of the gut microbiota in the
pathogenesis of atrial cardiomyopathy, and this is consistent with the gut–
heart axis having major implications for cardiac health. The aim of this work is
to bridge the knowledge gap regarding the interactions between the gut
microbiota and atrial cardiomyopathy, with a particular focus on elucidating
the mechanisms by which gut dysbiosis may induce atrial remodeling and
dysfunction. This article provides an overview of the role of the gut microbiota
in the pathogenesis of atrial cardiomyopathy, including changes in the
composition of the gut microbiota and the effects of its metabolites. We also
discuss how diet and exercise affect atrial cardiomyopathy by influencing the
gut microbiota, as well as possible future therapeutic approaches targeting the
gut–heart axis. A healthy gut microbiota can prevent disease, but ecological
dysbiosis can lead to a variety of symptoms, including the induction of heart
disease. We focus on the pathophysiological aspects of atrial cardiomyopathy,
the impact of gut microbiota dysbiosis on atrial structure and function, and
therapeutic strategies exploring modulation of the microbiota for the
treatment of atrial cardiomyopathy. Finally, we discuss the role of gut
microbiota in the treatment of atrial cardiomyopathy, including fecal
microbiota transplantation and oral probiotics or prebiotics. Our study
highlights the importance of gut microbiota homeostasis for cardiovascular
health and suggests that targeted interventions on the gut microbiota may
pave the way for innovative preventive and therapeutic strategies targeting
atrial cardiomyopathy.
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1 Introduction

Atrial cardiomyopathy (ACM) is a myocardial disease that primarily affects the atria.

It typically presents as structural changes, dysfunction, and abnormal electrophysiological

features of the atria (1–3). The etiology of ACM is complex and includes genetic factors,

infection, immune dysregulation, and metabolic abnormalities. Regardless of the etiology,

atrial systolic dysfunction results in atrial enlargement and fibrosis, and the clinical

features of ACM are usually closely associated with atrial fibrillation and its

complications, which are characterized by an increased risk of arrhythmias and stroke.

The gut microbiota (GM) is a complex ecosystem containing trillions of bacteria,

viruses, fungi, and other microorganisms (4–6). These organisms play important roles
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in digestion, immunity, and metabolism. Metabolites from the

GM can exert effects independently or through pathways

involving host metabolism, thereby contributing to either the

maintenance of health or the progression of disease (7), such as

atherosclerotic cardiovascular disease (CVD) (8). Indeed,

improving human health by modulating the biosynthesis of

microbial metabolites is an emerging frontier in pharmaceutical

research (9).

Gut dysbiosis is a disorder of the intestinal microbiota

characterized by a decrease in the number and diversity of

beneficial bacteria and an increase in the number of harmful

bacteria (10). This microbial imbalance has been linked to the

etiology of a range of health disorders, including gastrointestinal

disorders, metabolic syndrome, and cardiovascular disease

(11–15). Dysbiosis can be caused by a variety of pathogenic

factors, such as inadequate dietary intake, use of antibiotics,

psychological stress, and chronic diseases (16). Many metabolites,

such as short-chain fatty acids (SCFAs) (17, 18), bile acids (19,

20), and trimethylamine N-oxides (TMAO) (21–23), are affected

by gut microbial–host interactions, which in turn affect intestinal

health and function, as well as various metabolic pathways in the

host (24–26) (Figure 1).

ACM is a disease that affects the structure and function of the

heart. In recent years, research has focused on the relationship

between gut health and heart disease. Dysbiosis of the gut

microbiota may influence the development of ACM through

several mechanisms: inflammatory responses, changes in

metabolites, and effects of the immune system. Certain

circulating metabolites may increase the risk of cardiovascular

events and subsequent pathological responses due to changes in

the microbiota (27, 28). Several studies have confirmed the
FIGURE 1

Associations between the gut microbiota, atrial cardiomyopathy, and cardiov
lead to an increase in opportunistic pathogens or a decrease in SCFA-produc
in SCFA, all of which may contribute to the development of atrial cardiomyo
such as healthy diet, moderate exercise, prebiotic/probiotic use, and fecal m
progression. SCFA, short chain fatty acid; TMAO, trimethylamine-N-oxide; L
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existence of a gut–heart axis (29, 30). Thus, the relationship

between the GM and underlying cardiac disease has been well

studied. However, the relationship between the GM and the

cardiac pathological condition ACM has not been characterized

to date. To address this issue, we review the existing literature

and discuss the role of the GM in the occurrence and

development of ACM. Based on our findings, modification of the

microbiota appears to be a potential therapeutic approach to

prevent the progression of ACM.
2 Pathophysiology of atrial
cardiomyopathy

2.1 Changes in atrial structure and function

2.1.1 Changes in atrial structure
Atrial hypertrophy, fibrosis, and remodeling are the major

morphologic changes observed in the atrial structure (31–33).

Atrial fibrosis is invariably associated with atrial hypertrophy,

which is induced by prolonged pressure or volume overload and

ultimately leads to proliferation and hypertrophic dilatation of

atrial myocytes (34, 35). Atrial fibrosis is a major feature of

ACM and manifests as an abnormal accumulation of collagen

within the atrial myocardium (16, 33). This pathological

deposition leads to changes in the electrophysiological properties

of the atria and increases susceptibility to arrhythmias (36). In

addition, as the disease progresses, the atria undergo significant

geometric and structural changes, including atrial wall thickening

and ventricular dilatation, which may affect overall cardiac

function (37).
ascular diseases along potential interventions. Microbiome dysbiosis may
ing bacteria, which may lead to TMAO accumulation as well as a decrease
pathy and exacerbate the progression of CVDs. Conversely, interventions
icrobiota transplantation offer opportunities to indirectly influence CVD
PS, lipopolysaccharides; CVDs, cardiovascular diseases (By Figdraw).
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In addition to atrial enlargement, atrial wall fibrosis, and the

presence of atrial anatomic abnormalities (1, 2), other structural

changes occur in ACM, including atrial trabecular hyperplasia,

atrial microarteriovenous atheromatosis, and intra-atrial

thrombosis (38–40). Together, these changes contribute to the

complex pathophysiology of ACM, highlighting the need for a

comprehensive understanding of the multiple effects of the

disease on cardiac structure and function.
2.1.2 Changes in atrial function
The atria play both active and passive roles in the cardiac cycle,

which can be divided into three distinct phases: the atrial storage

phase, the atrial conduction phase, and the atrial contraction

phase. During the atrial storage phase, the atria accommodate

venous return by adjusting the interval between closure and

opening of the atrioventricular (AV) valve during ventricular

systole. The ability of the atria to store blood depends on atrial

compliance and diastolic function (41). Simultaneously, as intra-

atrial pressure rises and the ventricles actively relax, the atria

enter the atrial conduit phase with the onset of AV valve

opening. During the initial phase of ventricular diastole, blood

from the atria, systemic veins, and pulmonary veins passively fills

the ventricles, while the atria play the role of conduit. The

pressure gradient between the atria and the ventricles gradually

decreases, causing ventricular filling to slow or stop in mid-

diastole, a phase known as diastole. Finally, at the end of

ventricular diastole, the atria actively push the remaining blood

into the ventricles by contracting. In healthy individuals, the atria

contribute approximately 40%, 35%, and 25% to ventricular

filling during the blood storage, inflow, and contraction phases,

respectively (42). In atrial fibrillation (AF), ventricular filling is

more dependent on the conduit phase because of the loss of

systolic function and the significant reduction in blood storage

due to atrial stiffness (43).

The main functional changes in ACM are manifested

by altered electrophysiological properties and impairment

of atrial systolic and diastolic function. ACM induces

electrophysiological abnormalities, such as decreased electrical

conduction velocity and increased autoregulation, which

can lead to electrical instability of the atria and an

increased tendency to develop atrial fibrillation and other

arrhythmogenic events (1, 32, 41, 44).

In addition, atrial contractility is often impaired in ACM due to

atrial myocyte dysfunction and dynamic changes in intra-atrial

pressure. This dysfunction reduces the ability of the atria to push

blood during ventricular contraction. At the same time, diastolic

atrial function is also impaired, as evidenced by the inability of

the diastolic atria to adequately fill with blood (1, 40, 43). This

deficiency leads to an increase in intra-atrial pressure, which

exacerbates structural remodeling of the atria.

These functional abnormalities highlight the intricate interplay

between electrophysiological and mechanistic alterations in atrial

electrophysiology and mechanics in the pathogenesis of ACM,

and a nuanced approach is required to understand and manage

this complex heart disease.
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2.2 Cellular and molecular mechanisms of
atrial cardiomyopathy

The electrophysiologic characteristics of ACM are closely related

to a range of cellular and molecular mechanisms. These mechanisms

include the electrophysiological properties of atrial myocytes,

intercellular electrical coupling, and the process of atrial

remodeling. Atrial myocytes in patients with ACM can exhibit

different electrophysiological characteristics (1, 38, 45), such as

changes in action potential duration and alterations in ion channel

function. These changes may affect atrial excitability and

conduction, thereby inducing arrhythmias. The presence of atrial

fibrosis in ACM leads to reduced intercellular electrical coupling.

Reduced coupling leads to heterogeneous propagation of electrical

signals within the atria, which in turn leads to instability of

electrical activity within the atria and an increased risk of

reentrant cardioversion excitation (35, 38, 44–46). ACM is closely

associated with atrial remodeling (47), which is a multifaceted

process involving structural changes, apoptosis, and the initiation

of fibrosis. During the remodeling process, the electrophysiological

characteristics of atrial myocytes undergo progressive changes,

ultimately leading to deterioration of atrial electrophysiological

function and subsequent arrhythmias (1, 38, 40, 44, 46).

In summary, the electrophysiological features of ACM are

central to a complete understanding of the disease. These

features include a shortened effective atrial refractory period,

delayed atrial conduction, and increased reentrant excitation, all

of which are closely associated with alterations in atrial structure

and function (39). By elucidating these electrophysiological

features and their underlying cellular and molecular mechanisms,

clinicians can more accurately assess and reduce the risk of

arrhythmias in patients with ACM.
2.3 Signaling mechanisms in atrial
cardiomyopathy

The development of ACM is closely related to the

electrophysiological activity of the atria, particularly the atrial

remodeling process. The atria play an important role in cardiac

function, including the regulation of left ventricular filling

pressures and cardiovascular function. Structural and functional

changes in the atria affect these physiological processes and

contribute to the development of ACM (Figure 2).
2.3.1 Wnt signaling pathway
The Wnt pathway plays an important role in ACM. Studies

have shown that activation of the Wnt pathway is associated

with the development of ACM (48, 49). This pathway influences

the structural remodeling and electrophysiological properties of

the atria by regulating cell proliferation and differentiation

(50, 51). The GM influences the host’s physiological state

through its metabolic products, particularly SCFAs (52–54).

These SCFAs modulate immune responses and inflammation

levels, thereby indirectly affecting the Wnt signaling pathway
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FIGURE 2

Metabolites derived from the gut microbiota are closely linked to mechanisms that promote atrial remodeling. Alterations in the composition of the
gut microbiota can initiate changes in metabolic pathways, which may lead to the translocation of bacteria, their fragments, and products into the
circulation. This process can intensify the pro-inflammatory environment and induce metabolic dysregulation, creating a conducive setting for the
development of cardiovascular disease. Specifically, LPS activates the NLRP3 inflammasome, resulting in the production of IL-1β and IL-18, which
contribute to atrial fibrosis. Furthermore, LPS may enhance oxidative stress by activating the NF-κB pathway or inhibiting the expression of Nrf2.
A reduction in the production of SCFAs may lead to an overproduction of TNF-α and IL-6, inflammatory factors that activate the Wnt pathway
and induce pathological changes in atrial cardiomyocytes. Concurrently, the decrease in SCFAs may also inhibit Nrf2 production, further
exacerbating oxidative stress and promoting atrial remodeling. Collectively, these metabolites derived from gut microbiota have a significant
impact on atrial electrophysiology and structural remodeling. LPS, lipopolysaccharide; SCFAs, short-chain fatty acids; IL-1β, interleukin-1 beta; IL-6,
interleukin-6; IL-18, interleukin-18; TNF-α, tumor necrosis factor-alpha (By Figdraw).
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(55, 56). Research indicates that certain SCFAs may promote

cardiac cell proliferation and repair by regulating the Wnt

signaling pathway (57–59). Dysbiosis of the GM is often

associated with chronic low-grade inflammation, which can

activate the Wnt signaling pathway, leading to pathological

changes in atrial cardiomyocytes (60). Specifically, inflammatory

cytokines such as tumor necrosis factor-alpha and interleukin-6

(IL-6) can enhance the transmission of Wnt signals through

various pathways, thereby promoting the progression of ACM (61).

2.3.2 NLRP3 inflammasome pathway
The NLRP3 inflammasome is a critical component of the

immune response, capable of detecting intracellular pathogens

and damage signals (62, 63). Dysbiosis of the GM leads to

elevated levels of lipopolysaccharides (LPS), which activate the

NLRP3 inflammasome via Toll-like receptors (64, 65). The

activation of the NLRP3 inflammasome results in the release of

pro-inflammatory cytokines, such as interleukin-1 beta (IL-1β)

and interleukin-18 (IL-18), which contribute to atrial remodeling

and electrophysiological abnormalities (66–68). Furthermore, the

release of these cytokines promotes atrial fibrosis, thereby

increasing the risk of AF (69, 70). Similarly, an imbalance in the

GM can impair cardiac function and elevate the risk of

cardiovascular events (71, 72).
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2.3.3 Nrf2 pathway
ACM is a pathological condition characterized by alterations in

atrial structure and function, frequently associated with AF and

heart failure (HF) (73, 74). Nrf2 is a pivotal transcription factor

that regulates antioxidant responses and maintains cellular

homeostasis. In the context of cardiovascular health, Nrf2 plays a

critical role by mitigating oxidative stress and inflammatory

responses, thereby protecting cardiac function (75–77). Oxidative

stress has been shown to significantly contribute to the

development of atrial cardiomyopathy (78–80). As oxidative stress

levels increase, calcium homeostasis in cardiac cells is disrupted,

leading to changes in the electrophysiological properties of the

atrium and the initiation of arrhythmias (81–83). Dysbiosis of GM

may promote the progression of ACM through several pathways:

1. Dysbiosis can lead to increased intestinal permeability, allowing

endotoxins to enter the circulation and activate a systemic

inflammatory response. This inflammatory state may further

exacerbate oxidative stress by activating NF-κB and other pathways

while down-regulating Nrf2 (84–86). 2. Metabolites such as SCFAs,

produced by gut microbes, have protective effects on heart health.

However, dysbiosis leads to a reduction in these beneficial

metabolites, impairing Nrf2 activation and promoting the

development of atrial cardiomyopathy (87, 88). 3. Autonomic

nervous system regulation: The GM and its metabolites may
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influence the cardiac autonomic nervous system through direct or

indirect mechanisms, subsequently affecting the electrophysiological

characteristics of the heart. This may occur by modulating Nrf2

expression and activity (86, 89, 90).

2.3.4 Key molecules and their roles
Several key molecules play important roles in the cellular and

molecular mechanisms of ACM that affect atrial structure and

function. These molecules include cyclooxygenase-2 (COX-2),

endothelin-1 (ET-1), and other factors (91) that play key roles

in cardiac remodeling, atrial dysfunction, vasoconstriction, and

inflammatory responses.

2.3.4.1 Cyclooxygenase-2 (COX-2)
COX-2 is a key enzyme in prostaglandin biosynthesis and is

involved in a variety of physiological and pathological processes.

Its functions are manifold and include the following three

factors. (1) The inflammatory response: COX-2 is upregulated in

response to inflammation and its expression level is significantly

increased in patients with ACM. It mediates the local

inflammatory response through the synthesis of prostaglandins,

which affect atrial function and morphology (92, 93). (2) Cardiac

remodeling: COX-2 expression is increased in conditions such as

myocardial infarction and HF, leading to increased cardiac

remodeling and functional decline. Pharmacological inhibition of

COX-2 has been shown to improve cardiac function, making it a

promising target for therapeutic intervention (94, 95). (3)

Apoptosis: COX-2 activity is associated with cardiomyocyte

apoptosis, which in turn promotes atrial fibrosis and dysfunction.

In summary, COX-2 has a major impact on the pathogenesis of

myocardial ischemia through its involvement in inflammation,

cardiac remodeling, and apoptosis, highlighting its potential as a

therapeutic target to mitigate disease progression (96).

2.3.4.2 Endothelin-1 (ET-1)
ET-1 is a potent vasoconstrictor with important effects on the heart

and blood vessels. Its major functions are as follows. (1)

Vasoconstriction: By binding to endothelin receptors, ET-1

induces vascular smooth muscle contraction and elevated blood

pressure (97–99), which plays an important role in the

pathophysiology of ACM. (2) Cardiac remodeling: ET-1

promotes cardiomyocyte proliferation and fibrosis, which leads to

structural changes in the atria, triggering atrial dysfunction and

AF (100). (3) Promotion of the inflammatory response: ET-1 is

also involved in regulation of the inflammatory response and can

stimulate the release of cytokines that exacerbate atrial damage

and fibrosis (101).

2.3.4.3 Other key molecules
In addition to COX-2 and ET-1, a number of other important

molecules are involved in ACM as follows. (1) Neurotrophic

factors, such as brain-derived neurotrophic factor, which play an

important role in adaptive remodeling of the heart and affect

cardiomyocyte survival and function (102, 103). (2) Cytokines,

such as tumor necrosis factor-alpha (TNFα) and IL-6, which can

contribute to inflammation and apoptosis in ACM, further

exacerbating cardiac dysfunction (104). (3) Atrial natriuretic
Frontiers in Cardiovascular Medicine 05
peptide, a hormone secreted by the atria with diuretic and

antihypertensive effects that reduces atrial workload and

improves cardiac function (105–107).
3 Brief overview of the gut microbiota

Sequencing technology has advanced dramatically over the past

decade, allowing researchers around the world to assess how

genetic modifications affect human health. Humans develop

symbiotic relationships with microorganisms from an early age

(108). Factors such as environment (109, 110), proximity to

other humans and animals (111), diet (112, 113), genetics

(114–116), and temporal changes (117–119) influence the

microbial communities in our skin, mouth, and gut (120, 121).

In terms of its impact, the GM has been likened to a previously

unknown organ; it is extensively metabolized and carries 150

times more genes than the human genome, providing the host

with a range of metabolic capabilities that would otherwise be

unavailable (122). Unlike the human genome, the GM is

relatively plastic. It can be rapidly altered by factors such as diet,

drugs, probiotics, and metabolites produced by microbes.

Therefore, intentional modification of the GM may have health

consequences. Transgenesis is increasingly recognized as an

important target for drugs, and certain microbes have been

shown to inactivate or activate certain exogenous substances,

thereby altering the effects of various therapeutic drugs (123).

We are just beginning to understand the systemic effects of

whole transgenes on the entire metabolite pool.

Studies have shown that a healthy GM correlates with high

microbial diversity and abundance (124–128), which is largely

influenced by the host’s diet, lifestyle, and genetic predisposition.

GM diversity is typically assessed using two parameters, namely

species richness and species evenness. A robust gut may contain

approximately 1,000 different bacterial species (129, 130), with

inter-individual variation attributable to dietary, environmental,

and genetic factors. Under healthy conditions, GMs are

characterized by a relatively even distribution of bacterial species;

however, under pathological conditions such as inflammatory

bowel disease or ACM, certain species may overgrow, leading to

dysbiosis (131). Transgenic diversity affects not only digestive and

metabolic processes, but also the immune system, neuroendocrine

regulation, and the cardiovascular health of the host (132).

The composition and function of the GM is critical to the

maintenance of overall health. It is closely linked to nutrient

metabolism, immunomodulation, and pharmacokinetics, and is

essential for maintaining the integrity of the GM. Dysregulation

of the GM can lead to a number of health problems, particularly

affecting cardiovascular health (131).
4 Intestinal dysbiosis and atrial
cardiomyopathy

It is hypothesized that gut dysbiosis has multiple effects on the

etiology and progression of ACM through the following
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mechanisms. (1) The inflammatory response: Gut dysbiosis is often

associated with increased systemic inflammation. Bacterial

metabolites (e.g., lipopolysaccharides) can cross the intestinal

barrier as a result of increased permeability, triggering a systemic

inflammatory cascade that leads to cardiac tissue damage and

the progression of ACM (133, 134). (2) Effects of metabolites:

Gut microbial metabolites such as SCFAs have anti-

inflammatory and cardioprotective properties. Interfering with

genetic modifications may reduce SCFA production, which may

decrease cardioprotective effects and increase susceptibility to

acute myocardial infarction (135, 136). (3) Dysfunction of

the intestinal barrier: Dysbiosis of the transgenic microbiota

induces intestinal epithelial dysfunction, which increases intestinal

permeability and facilitates the translocation of endogenous toxins

and bacteria into the systemic circulation. This translocation

can trigger an inflammatory response that may lead to the

development of ACM (133, 137, 138). (4) Microbiota diversity:

Empirical evidence suggests that patients with HF have reduced

microbiota diversity, which may be associated with the

development of ACM. Genomes with reduced diversity may be

less effective in maintaining gut and immune health, thereby

increasing the risk of cardiovascular disease (139, 140).

The interactions between gut dysbiosis and ACM are complex

and involve inflammatory responses, metabolite synthesis, gut

barrier integrity, and microbial diversity. Enhancing microbial

diversity and metabolic function by modulating the gut

microbiota may be a strategy to reduce the risk of ACM.
4.1 Impact of gut dysbiosis on atrial
cardiomyopathy and its underlying
mechanisms

In recent years, an increasing number of studies have

demonstrated a significant correlation between the composition of

the GM and its metabolites and the incidence of a variety of

cardiovascular diseases, with a particular focus on ACM (8, 9, 16,

141), a cardiac disorder characterized by structural and functional

changes in the atria that can lead to severe arrhythmias, including

AF. The relationship between the GM and AF remains to be

elucidated (142, 143). The hypothesis is that GM or its metabolic

by-products have effects on distal cellular targets, as indicated by

the presence of key metabolites. These include SCFAs (the major

end products of microbial fermentation of dietary fiber), TMAO,

and lipopolysaccharides (26, 144, 145).

The left atrium (LA) serves three primary functions: fluid

storage, conduit, and contraction. The interplay among these

functions is essential for optimal ventricular filling and cardiac

output, with the LA often being the first to respond to left

ventricular (LV) diastolic dysfunction. Over time, however, the

LA loses its contractile function, leading to mechanical failure

and structural changes (146). Patients with LV diastolic

dysfunction in the preclinical phase of HF have an abnormal LA

strain and left atrial volume index, although the prevalence of

abnormal strain is generally high (147). The dependence on the

contribution of the LA to LV filling increases as LV diastolic
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dysfunction progresses (148). Some patients eventually progress

to the clinical stage of HF. The presence of abnormal left strain

during the reservoir phase is independently associated with

incident HF despite a normal left atrial volume index (149). The

risk of HF events associated with LA structural and functional

abnormalities is not related to the left ventricular ejection

fraction or natriuretic peptide levels (150). Alterations in atrial

mechanics, particularly the LA, play an important role in various

aspects of HF with a preserved ejection fraction. Emerging

evidence suggests that gut ecological dysregulation has an impact

on clinical HF and its subtypes (e.g., HF with a preserved

ejection fraction) (151). Although the underlying mechanisms of

the gut–heart axis during HF remain largely unknown, increased

filling pressures and impaired diastolic blood pressure, which

may lead to a progressive decrease in cardiac output, have been

proposed as main drivers of gut ecological dysregulation (152).

These changes in gut composition are characterized by a decrease

in microbial α-diversity and a decrease in the number of

beneficial bacteria, such as those with the potential to produce

SCFAs (151). At the same time, the number of pathogenic

bacteria in the gut ecosystem increases. In addition, gut dysbiosis

has been shown to affect human health by modulating the host’s

circulating metabolite profile. This has been attributed to the

ability of the GM to produce a wide range of functional

metabolites that can enter the circulation alone or in concert

with host metabolic processes (153).

Gut dysbiosis leads to reduced SCFA production, which

triggers metabolic dysregulation and systemic inflammation, both

of which are potential risk factors for the development of ACM.

With the development of gut dysbiosis, intestinal barrier

function is compromised, allowing endogenous bacterial

components (e.g., lipopolysaccharides) to enter the circulation

and trigger a systemic inflammatory response (15). Studies have

shown that chronic inflammation is closely associated with the

development of atrial cardiomyopathy. Elevated levels of

inflammatory factors such as TNF-α and IL-6 may damage atrial

myocytes and remodel the atrial structure, leading to the

development of ACM (104).

In addition to affecting the host immune response, GM also

affects cardiac function through the production of various

metabolites. For example, some metabolites produced by the GM,

such as TMAO (20–22), have been shown to be associated with

an increased risk of cardiovascular disease, and accumulation of

TMAO may indirectly affect the electrophysiological properties of

the atria by promoting atherosclerosis and myocardial damage,

leading to ACM (15).

Changes in metabolites due to gut dysbiosis affect the

electrophysiological properties of the heart (154). Studies have

shown that metabolites produced by the GM affect the electrical

activity of the heart, leading to changes in cardiac autoregulation

and excitability. These changes can lead to atrial myocardial

remodeling and electrical conduction abnormalities, increasing

the risk of AF and other arrhythmias (8, 15).

To prevent ACM, it is important to maintain a good glycemic

balance. This can be achieved through a healthy diet (high in fiber,

low in sugar, high in prebiotics and probiotics) (126, 127, 151),
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moderate exercise, and good lifestyle habits. By promoting the

growth of beneficial microorganisms, intestinal barrier function

can be improved and systemic inflammatory responses can be

reduced, which in turn promotes cardiovascular health.
4.2 Role of the gut–cardiovascular axis in
atrial cardiomyopathy

The gut–heart axis is a biological mechanism that describes how

the GM affects heart health through multiple pathways (155). Studies

have shown that the GM may interact with the heart in the following

ways. (1) The inflammatory response: Gut dysbiosis leads to increased

intestinal permeability, which allows endogenous toxins and bacterial

metabolites to enter the bloodstream and trigger systemic

inflammation, which is thought to be an important mechanism in

cardiovascular disease (133). (2) Metabolites: The GM produces

SCFAs and other metabolites that may affect cardiac metabolism

and function (156, 157). (3) Neurological signaling: The GM

interacts with the central nervous system via the vagus nerve and

affects autonomic regulation of the heart (158).

Gut dysbiosis is strongly associated with the development of

ACM (16). Reduced GM diversity can lead to inflammation and

fibrosis of cardiac tissue, which in turn can lead to atrial

dysfunction (159, 160). Gut dysbiosis is usually associated with

chronic low-grade inflammation, and this inflammatory state

may promote electrophysiological remodeling of the atria,

increasing the risk of AF. Changes in GM composition can

strongly influence the synthesis of metabolites, and TMAO is one

such metabolite that has been extensively studied for its role in

increasing the risk of cardiovascular disease. The mechanisms of

action of TMAO are diverse and include modulation of tissue

sterol metabolism (26, 161, 162), which may alter cholesterol

distribution and metabolism; enhancement of endothelial cell

activation, which promotes vascular inflammation (26, 163–165);

and stimulation of the pro-fibrotic pathway (166), which may

contribute to pathological remodeling of cardiovascular tissue.

These metabolites may affect the heart through a variety of

mechanisms, including improvement of endothelial function and

suppression of inflammatory responses. The gut–heart axis also

includes transgenes that may affect heart health through neural

mechanisms. Studies have shown that the GM can affect

autonomic homeostasis in the heart by modulating vagal activity,

which may play a role in ACM (167).
4.3 Correlation between gut dysbiosis and
atrial cardiomyopathy

A growing number of studies have examined the association

between the GM and metabolic and CVD, including coronary

heart disease and HF (168, 169). Macrogenomic analyses of

various CVD patient populations have demonstrated significant

differences in GM composition in the presence or absence of

CVD and HF (170, 171). In addition, metabolomics-based clinical

studies (172, 173) and mechanistic studies in animal models have
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further confirmed the potential causal role of the genome in the

development of CVD and hyperlipidemia (174–176). GM

produces a diverse array of metabolites, including SCFAs, amines,

and phenolic compounds. These metabolites significantly

contribute to the pathophysiology of ACM through multiple

pathways: they modulate immune responses, alter cardiac

metabolism, and interact with receptors in cardiac tissue (177).

In clinical observations, many studies have found significant

differences in the GM composition of AF patients compared with

healthy individuals. It has been established that the metabolic

interactions between the gut and the host play a pivotal role in the

development of AF (178). For example, it has been shown that

certain GM compositions are significantly decreased in AF patients,

while others are increased, which may be related to the

pathogenesis of AF (179, 180). Dysregulation of the GM has been

demonstrated to result in alterations to cardiac structure and

function, thereby elevating the risk of AF (181). In addition,

changes in GM are strongly correlated with a patient’s cardiac

functional status and metabolic profile, suggesting that gut health

may be potentially valuable in the prevention and treatment of

ACM. Research indicates that GM and its metabolites may

significantly influence the development of HF. Patients diagnosed

with HF often exhibit a pronounced imbalance in their GM, which

may be closely associated with the pathophysiological mechanisms

underlying ACM (182). Changes in GM not only affect the direct

symptoms of ACM but may also indirectly contribute to the onset

of heart failure by modulating cardiovascular risk factors, including

metabolic syndrome, obesity, and diabetes (177, 183, 184).

Laboratory studies also support a link between the GM and

ACM. For example, a study in an animal model found that

modulating genetic changes improved ventricular function and

reduced the risk of developing atrial myopathy. Specifically,

antibiotic intervention significantly improved atrial structure and

electrophysiological properties in an animal model, suggesting that

changes in the GM may directly affect cardiac physiology (185).

Currently, numerous clinical studies and fundamental

experiments are in progress to elucidate the precise mechanisms

by which GM and its metabolites contribute to ACM (21).

Researchers have employed a variety of advanced technologies,

including high-throughput sequencing and metabolomics

analysis, to gain a comprehensive understanding of the

interactions between GM and cardiovascular health.

Future research should focus on enhancing outcomes for

patients with ACM by modulating GM through interventions

such as probiotics or dietary modifications. This strategy

represents a novel therapeutic approach with significant potential

for clinical applications (186, 187).
5 Interventions for atrial
cardiomyopathy

5.1 Dietary changes

Fiber is an important source of energy for the body. Increased

intake of whole grains, legumes, fruits, and vegetables may improve
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heart health by promoting the growth of beneficial bacteria and

increasing the production of SCFAs. Epidemiologic studies have

shown that adequate fiber intake helps prevent dyslipidemia and

atherosclerotic vascular disease (188). Omega-3 fatty acids have

anti-inflammatory properties and can be obtained from foods

such as fish, nuts, and seeds (189). These fatty acids are not only

good for the heart, but also help improve the composition of the

blood. Adequate hydration helps maintain a healthy digestive

system and promotes gut microbial balance (190).
5.2 Lifestyle changes

Lifestyle modifications can significantly slow the progression of

ACM by influencing the GM and its metabolites (191–194).

Engaging in moderate exercise and ensuring adequate sleep can

promote the growth of beneficial microbes, thereby enhancing

heart health. Regular physical activity has been shown to improve

GM diversity and foster the proliferation of advantageous bacteria.

Research indicates that exercise enhances gut barrier function and

reduces systemic inflammation, both of which contribute to

slowing the progression of ACM (195–198). Additionally, exercise

increases the heart’s pumping capacity and electrophysiological

stability, thereby lowering the risk of arrhythmias associated with

ACM (199–202). Conversely, sleep deprivation is linked to an

elevated risk of various cardiovascular diseases, while quality

sleep facilitates physical repair and supports immune function

(203, 204). Studies have demonstrated that improved sleep quality

can help restore GM balance and mitigate inflammatory responses,

which is beneficial for managing ACM (205, 206).
5.3 Use of probiotics and prebiotics

Probiotics are live microorganisms that are beneficial to the

health of the host (207). Common probiotics include Lactobacillus

and Bifidobacterium, and supplementation with these probiotics

may help to restore the GM balance. Prebiotics are food

ingredients that promote the growth of beneficial microorganisms,

such as inulin and oligofructose. Supplementation with prebiotics

may increase the number and activity of beneficial bacteria in the

gut (208). Probiotics are typically administered through oral

supplements or fermented foods, both of which are user-friendly

and well-accepted by patients (182, 209, 210). They play a crucial

role in regulating intestinal microbiota, enhancing intestinal

barrier function, and reducing intestinal inflammation, thereby

contributing to overall health improvement (211, 212). Research

has indicated that specific probiotics may positively influence

cardiovascular health by lowering blood pressure and improving

lipid profiles, which could indirectly benefit patients with ACM

(213). In comparison to pharmacological treatments, probiotics

generally exhibit fewer side effects, which are often benign and

self-limiting (214). However, the health effects of various probiotic

strains can differ significantly, and some may have limited

effectiveness in ameliorating ACM (215, 216). Consequently,

selecting appropriate probiotics is essential. The market offers a
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wide range of probiotic products; however, the absence of uniform

quality control and standardization can result in variable efficacy

(217). Furthermore, the benefits of probiotics often necessitate

long-term usage to sustain their effects, which may pose

convenience challenges for patients requiring consistent dietary

supplementation (218). Although preliminary studies suggest

potential benefits of probiotics on cardiovascular health, there

remains a lack of robust clinical evidence supporting their

application in ACM, necessitating further research to confirm their

efficacy (219).
5.4 Microbiota transplantation

Fecal microbiota transplantation is an emerging therapy that

restores the diversity and function of gut microbes by

transplanting the GM from healthy donors into patients

(220–223). FMT has been shown to effectively restore the

intestinal microbiome in patients, thereby correcting gut

dysbiosis (186, 224–226). This restoration may alleviate systemic

inflammatory responses, potentially benefiting cardiovascular

health. Several studies indicate that FMT can reduce myocardial

damage and improve cardiac function by reestablishing a healthy

microbiota (21, 227). This is particularly significant for patients

with ACM, as enhanced atrial function could decrease the

incidence of AF (178, 228). FMT may exert its effects by

modulating the immune system, which plays a crucial role in

cardiovascular diseases where immune-inflammatory responses

are among the key pathophysiological mechanisms. The efficacy

of FMT can be optimized through personalized adjustments

based on an individual’s unique microbiome profile, thereby

enhancing therapeutic outcomes (224, 229). However, FMT

involves the transplantation of fecal matter from healthy donors

to patients, which poses risks of infectious disease transmission

(186). Although stringent screening protocols are implemented,

caution remains essential. The effectiveness of FMT varies among

individuals, and some patients may not experience significant

improvements. Additionally, the duration of therapeutic effects

can be limited, with some patients experiencing relapses shortly

after treatment (186). The acceptability of FMT may be

challenged due to its association with fecal matter, both among

patients and healthcare providers (186). Ethical concerns may

also impede its widespread adoption and application (230).

Currently, there is limited research on the long-term effects and

safety of FMT in patients with atrial cardiomyopathy,

underscoring the need for large-scale clinical trials to validate its

sustained efficacy (231).
6 Conclusions

Gut dysbiosis, recognized as a significant correlate of several

diseases, has emerged as a prominent factor in ACM. It is

involved in the systemic inflammatory profile of the host and

modulates the oxidative state via the gut–heart axis. The

influence of the GM on systemic health through the regulation of
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immune responses, inflammatory mediators, metabolic pathways,

and nervous system function is now widely recognized as

substantial and should not be overlooked. Consequently,

maintaining a diverse and balanced GM is essential for optimal

health, with potential preventive and therapeutic implications for

certain diseases. However, the precise mechanisms by which the

GM exerts its influence on health require further elucidation,

particularly in the context of probiotic interventions. Current

research into the interplay between heart disease and the GM is

predominantly limited to animal models, with a paucity of large-

scale clinical trials and an even more limited number of positive

results. Future research efforts should focus on delineating the

specific mechanisms of the gut microbiota and their potential

applications in disease prevention and treatment, thereby

providing a sound scientific basis for improving human health.
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